
fast because it was the peak of computerization
at the time. However, as time passes, a thousand
new types of malware are created each day [7].
Due to widespread development of malware
nowadays, the most recent malware is
significantly more targeted, covert zero-day,
and persistent than classic malware, which was
open, broad, and performed just once [8-10].
Furthermore, today's malware is quite
sophisticated, with the primary goal of
exploiting computer system flaws. To get
around malware identification and analysis
systems, malware authors utilize a variety of
obfuscation procedures [11]. Malware authors
also used encryption and encoding techniques to
create complicated harmful programs such as
metamorphic , polymorphic, and packed
malware, is extremely difficult to analyze and
identify [12-14].

The spreading vectors, which are mentioned in
Table 1, are typically used to propagate malware
from one system to another. The battle between
malware creators and analysts continues. Both
sides are creating new methodologies and
techniques for malware detection systems
concurrently, while the other is building
malicious software to breach the detection
system to target computer and network
resources. The malware researcher analyses
knew malware intending to prevent an assault
on the computer system [15, 16]. Malware is
spotted using one of two approaches:
signature-based and behavior-based
identification. While signature-based malware
recognition methods are quick and effective,
obfuscated software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on

behavior and signatures been developed, but
also many hybrid tactics that incorporate the
recompenses of both. Hybrid detection methods
are intended to overcome the concerns
associated with both signature-based and
behavior-based methods for detection. Zero-day
malware detection is thought-provoking as such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
suggested in the literature [16, 24].

Two main aspects arise after the evaluation of
the proposed machine-based detection methods.
For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for

addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

Malware authors also used encryption and
encoding techniques to create complicated
harmful programs such as polymorphic,
metamorphic, and packed malware, which is
extremely difficult to detect and analyze
[12-14]. The spreading vectors, which are
mentioned in Table 1, are typically used to
propagate malware from one computer system
to another. The battle between malware creators
and analysts continues. Both sides are creating
new methodologies and techniques for malware
detection systems concurrently, while the other
is building malicious software to breach the
detection system to target computer and
network resources. The malware researcher
analyses knew malware intending to prevent an
assault on the computer system [15, 16].
Malware is spotted using one of two methods:
signature-based detection or behavior-based
detection.

While signature-based malware recognition
methods are quick and effective, obfuscated
software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on
behavior and signatures been developed, but
also many hybrid tactics that incorporate the
advantages of both. Hybrid detection methods
are intended to overcome the issues associated
with both signature-based and behavior-based
methods for detection. Zero-day malware

detection is thought-provoking because such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
proposed in the literature [16, 24]. Two main
aspects arise after the evaluation of the proposed
machine-based detection methods.

For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for
addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

1.1. Contributions
The current state and evolution of malware
detection systems are discussed in this research
study.

1. Many classifications technique for machine
learning is explored and compared.

2. Recent classifications of signature,
behavioral and hybrid machine learning are
explored. It shares with its advantages and
limitations a fraction of the data in the
proposed malware detection systems.

3. The present study has covered some
important parameters that influence
malware classifier performance. A hybrid

model for malware detection has been
presented utilizing machine learning is also
provided. Finally, the paper was completed,
and the topic of the future directive was
discussed.

1.2. Scope Overview
The emphasis of this study is based on the
detection of malware using ML techniques, and
to create the executable files system's automated
smart malware detection. This article examines
the work suggested for the identification of
executing files and provides information on
current research on malware revealing via
numerous characteristics and methods.

1.3. Evolution
There is a complete review of machine learning
malware identification methods. Owing to
significant variances in the number of data sets
used, ML algorithms, and valuation processes,
the detection technique provided are very
difficult to compare properly. The results of
suggested ML-based malware classificatory are
nevertheless equated and presented with certain
in this research.

1.4. Orgnization
The rest of the paper is systematized as follows.
Section 2 introduces systems for malware
research. Section 3 debates the machine
learning methods employed to categorize
malware. In Section 4 static, dynamic, and
hybrid, the analysis of different approaches is
provided. Section 5 assesses the result of the
examined papers, and the many criteria for
malware classification are explained in section
finally it illustrates the possible breadth and
concludes the study.

2. MALWARE ANALYSIS

Different malware data samples are investigated
to obtain results that can be utilized to detect
them. Static and dynamic studies are two basic
malware research methodologies that are
illustrated below.

2.1. Static Malware Analysis
In the study, features are gathered without

running the malware sample. Following the
analysis by the extraction of several static
features such as N-grams, hash value, strings,
opcodes, and PE header information. The
development of malware revealing software
(antiviruses, intrusion detection systems etc. is
based on these characteristics [26, 27]. Security
analysts examine malware samples either by
using reverse engineering or not. The malware
files are dismantled and converted into
assembly language code, which is then used to
test the malware sample during the coding
stage. Some of the most widely used IDA Pro,
Ollydbg, WinDbg, and capstone disassemblers
are among the most widely used disassemblers
and debuggers [33, 34]. An examination of the
assembly code is performed to discover the
processing route of a malicious operation file,
pattern and structure. This information may be
used to detect new or variant malware. To study
the assembly language code to identify the
execution functions is a time-consuming
procedure. The use of code obfuscation
practices makes the forecaster's work even more
difficult. Malware authors employ a variety of
methods to escape malware inspection,
including code encryption, code reordering
instructions, and dead code insert techniques
[28, 29]. Static analysis techniques are defined
briefly in Table 2, which is followed by a
discussion of the methodologies.

International Journal for
Electronic Crime Investigation
DOI: https://doi.org/10.54692/ijeci.2024.0801185

(IJECI)
ISSN: 2522-3429 (Print)
ISSN: 2616-6003 (Online)

Research Article

Zohaib et al. (IJECI) 2024

Vol. 8 issue 1 Jan-Mar 2024

A Comprehensive Study for Malware Detection through
Machine Learning in Executable Files

Zohaib Ahmad1, Ahsan Wajahat2 and Muhammad Salman Pathan3

1 Faculty of Electronics and Information Engineering, Beijing University of Technology, Beijing, China.
2 Faculty of information Technology, Beijing University of Technology, Beijing, China.

3 School of Computer Science, National University of Ireland, Maynooth: IE.
Correspondence Author: ahmedzohaib03@gmail.com

Received: December 18, 2023; Accepted: January 07, 2024; Published: March 15, 2024

ABSTRACT
Two methods are frequently used to analyze malware and start specimens: static analysis and
dynamic analysis. Following analysis, distinct characteristics are retrieved to distinguish malware
from benign samples. The detection capacity of malware is contingent upon the effectiveness with
which discriminative malware characteristics are retrieved through analysis methods. While
conventional approaches and techniques were used inadvertently, machine learning algorithms are
now utilized to classify malware, which can deal with the complexity and velocity of malware
creation. However, even though a few research papers have been published, recent classifications of
signature, behavioral and hybrid machine learning is not introduced well. Based on this demand, we
provide a comprehensive analysis of malware detection using machine learning, as well as address
the different difficulties associated with building the malware classifier. Finally, future work is
addressed to build an effective malware detection system by addressing different malware detection
problems.
Keywords: Machine learning, Static analysis, API calls, Ransomware, obfuscation technique
malicious software, Dynamic analysis.

03Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

1. INTRODUCTION

 Despite major improvements in
computer security methods and their continual
growth, the malware remains the primary threat
in cyberspace [1, 2]. Malware investigators
analyze malicious samples using techniques

from several domains, including program
analysis and network analysis, to acquire a
better knowledge of their behavior and
evolution [3-6]. The first computer malware,
known as the brain, was developed in the 1980s
and a lot of computers were infected. At that
time the speed of malware creation was not very

04 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

fast because it was the peak of computerization
at the time. However, as time passes, a thousand
new types of malware are created each day [7].
Due to widespread development of malware
nowadays, the most recent malware is
significantly more targeted, covert zero-day,
and persistent than classic malware, which was
open, broad, and performed just once [8-10].
Furthermore, today's malware is quite
sophisticated, with the primary goal of
exploiting computer system flaws. To get
around malware identification and analysis
systems, malware authors utilize a variety of
obfuscation procedures [11]. Malware authors
also used encryption and encoding techniques to
create complicated harmful programs such as
metamorphic , polymorphic, and packed
malware, is extremely difficult to analyze and
identify [12-14].

The spreading vectors, which are mentioned in
Table 1, are typically used to propagate malware
from one system to another. The battle between
malware creators and analysts continues. Both
sides are creating new methodologies and
techniques for malware detection systems
concurrently, while the other is building
malicious software to breach the detection
system to target computer and network
resources. The malware researcher analyses
knew malware intending to prevent an assault
on the computer system [15, 16]. Malware is
spotted using one of two approaches:
signature-based and behavior-based
identification. While signature-based malware
recognition methods are quick and effective,
obfuscated software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on

behavior and signatures been developed, but
also many hybrid tactics that incorporate the
recompenses of both. Hybrid detection methods
are intended to overcome the concerns
associated with both signature-based and
behavior-based methods for detection. Zero-day
malware detection is thought-provoking as such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
suggested in the literature [16, 24].

Two main aspects arise after the evaluation of
the proposed machine-based detection methods.
For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for

addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

Malware authors also used encryption and
encoding techniques to create complicated
harmful programs such as polymorphic,
metamorphic, and packed malware, which is
extremely difficult to detect and analyze
[12-14]. The spreading vectors, which are
mentioned in Table 1, are typically used to
propagate malware from one computer system
to another. The battle between malware creators
and analysts continues. Both sides are creating
new methodologies and techniques for malware
detection systems concurrently, while the other
is building malicious software to breach the
detection system to target computer and
network resources. The malware researcher
analyses knew malware intending to prevent an
assault on the computer system [15, 16].
Malware is spotted using one of two methods:
signature-based detection or behavior-based
detection.

While signature-based malware recognition
methods are quick and effective, obfuscated
software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on
behavior and signatures been developed, but
also many hybrid tactics that incorporate the
advantages of both. Hybrid detection methods
are intended to overcome the issues associated
with both signature-based and behavior-based
methods for detection. Zero-day malware

detection is thought-provoking because such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
proposed in the literature [16, 24]. Two main
aspects arise after the evaluation of the proposed
machine-based detection methods.

For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for
addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

1.1. Contributions
The current state and evolution of malware
detection systems are discussed in this research
study.

1. Many classifications technique for machine
learning is explored and compared.

2. Recent classifications of signature,
behavioral and hybrid machine learning are
explored. It shares with its advantages and
limitations a fraction of the data in the
proposed malware detection systems.

3. The present study has covered some
important parameters that influence
malware classifier performance. A hybrid

model for malware detection has been
presented utilizing machine learning is also
provided. Finally, the paper was completed,
and the topic of the future directive was
discussed.

1.2. Scope Overview
The emphasis of this study is based on the
detection of malware using ML techniques, and
to create the executable files system's automated
smart malware detection. This article examines
the work suggested for the identification of
executing files and provides information on
current research on malware revealing via
numerous characteristics and methods.

1.3. Evolution
There is a complete review of machine learning
malware identification methods. Owing to
significant variances in the number of data sets
used, ML algorithms, and valuation processes,
the detection technique provided are very
difficult to compare properly. The results of
suggested ML-based malware classificatory are
nevertheless equated and presented with certain
in this research.

1.4. Orgnization
The rest of the paper is systematized as follows.
Section 2 introduces systems for malware
research. Section 3 debates the machine
learning methods employed to categorize
malware. In Section 4 static, dynamic, and
hybrid, the analysis of different approaches is
provided. Section 5 assesses the result of the
examined papers, and the many criteria for
malware classification are explained in section
finally it illustrates the possible breadth and
concludes the study.

2. MALWARE ANALYSIS

Different malware data samples are investigated
to obtain results that can be utilized to detect
them. Static and dynamic studies are two basic
malware research methodologies that are
illustrated below.

2.1. Static Malware Analysis
In the study, features are gathered without

running the malware sample. Following the
analysis by the extraction of several static
features such as N-grams, hash value, strings,
opcodes, and PE header information. The
development of malware revealing software
(antiviruses, intrusion detection systems etc. is
based on these characteristics [26, 27]. Security
analysts examine malware samples either by
using reverse engineering or not. The malware
files are dismantled and converted into
assembly language code, which is then used to
test the malware sample during the coding
stage. Some of the most widely used IDA Pro,
Ollydbg, WinDbg, and capstone disassemblers
are among the most widely used disassemblers
and debuggers [33, 34]. An examination of the
assembly code is performed to discover the
processing route of a malicious operation file,
pattern and structure. This information may be
used to detect new or variant malware. To study
the assembly language code to identify the
execution functions is a time-consuming
procedure. The use of code obfuscation
practices makes the forecaster's work even more
difficult. Malware authors employ a variety of
methods to escape malware inspection,
including code encryption, code reordering
instructions, and dead code insert techniques
[28, 29]. Static analysis techniques are defined
briefly in Table 2, which is followed by a
discussion of the methodologies.

1. INTRODUCTION

 Despite major improvements in
computer security methods and their continual
growth, the malware remains the primary threat
in cyberspace [1, 2]. Malware investigators
analyze malicious samples using techniques

from several domains, including program
analysis and network analysis, to acquire a
better knowledge of their behavior and
evolution [3-6]. The first computer malware,
known as the brain, was developed in the 1980s
and a lot of computers were infected. At that
time the speed of malware creation was not very

fast because it was the peak of computerization
at the time. However, as time passes, a thousand
new types of malware are created each day [7].
Due to widespread development of malware
nowadays, the most recent malware is
significantly more targeted, covert zero-day,
and persistent than classic malware, which was
open, broad, and performed just once [8-10].
Furthermore, today's malware is quite
sophisticated, with the primary goal of
exploiting computer system flaws. To get
around malware identification and analysis
systems, malware authors utilize a variety of
obfuscation procedures [11]. Malware authors
also used encryption and encoding techniques to
create complicated harmful programs such as
metamorphic , polymorphic, and packed
malware, is extremely difficult to analyze and
identify [12-14].

The spreading vectors, which are mentioned in
Table 1, are typically used to propagate malware
from one system to another. The battle between
malware creators and analysts continues. Both
sides are creating new methodologies and
techniques for malware detection systems
concurrently, while the other is building
malicious software to breach the detection
system to target computer and network
resources. The malware researcher analyses
knew malware intending to prevent an assault
on the computer system [15, 16]. Malware is
spotted using one of two approaches:
signature-based and behavior-based
identification. While signature-based malware
recognition methods are quick and effective,
obfuscated software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on

behavior and signatures been developed, but
also many hybrid tactics that incorporate the
recompenses of both. Hybrid detection methods
are intended to overcome the concerns
associated with both signature-based and
behavior-based methods for detection. Zero-day
malware detection is thought-provoking as such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
suggested in the literature [16, 24].

Two main aspects arise after the evaluation of
the proposed machine-based detection methods.
For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

05Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

Malware authors also used encryption and
encoding techniques to create complicated
harmful programs such as polymorphic,
metamorphic, and packed malware, which is
extremely difficult to detect and analyze
[12-14]. The spreading vectors, which are
mentioned in Table 1, are typically used to
propagate malware from one computer system
to another. The battle between malware creators
and analysts continues. Both sides are creating
new methodologies and techniques for malware
detection systems concurrently, while the other
is building malicious software to breach the
detection system to target computer and
network resources. The malware researcher
analyses knew malware intending to prevent an
assault on the computer system [15, 16].
Malware is spotted using one of two methods:
signature-based detection or behavior-based
detection.

While signature-based malware recognition
methods are quick and effective, obfuscated
software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on
behavior and signatures been developed, but
also many hybrid tactics that incorporate the
advantages of both. Hybrid detection methods
are intended to overcome the issues associated
with both signature-based and behavior-based
methods for detection. Zero-day malware

detection is thought-provoking because such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
proposed in the literature [16, 24]. Two main
aspects arise after the evaluation of the proposed
machine-based detection methods.

For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for
addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

1.1. Contributions
The current state and evolution of malware
detection systems are discussed in this research
study.

1. Many classifications technique for machine
learning is explored and compared.

2. Recent classifications of signature,
behavioral and hybrid machine learning are
explored. It shares with its advantages and
limitations a fraction of the data in the
proposed malware detection systems.

3. The present study has covered some
important parameters that influence
malware classifier performance. A hybrid

model for malware detection has been
presented utilizing machine learning is also
provided. Finally, the paper was completed,
and the topic of the future directive was
discussed.

1.2. Scope Overview
The emphasis of this study is based on the
detection of malware using ML techniques, and
to create the executable files system's automated
smart malware detection. This article examines
the work suggested for the identification of
executing files and provides information on
current research on malware revealing via
numerous characteristics and methods.

1.3. Evolution
There is a complete review of machine learning
malware identification methods. Owing to
significant variances in the number of data sets
used, ML algorithms, and valuation processes,
the detection technique provided are very
difficult to compare properly. The results of
suggested ML-based malware classificatory are
nevertheless equated and presented with certain
in this research.

1.4. Orgnization
The rest of the paper is systematized as follows.
Section 2 introduces systems for malware
research. Section 3 debates the machine
learning methods employed to categorize
malware. In Section 4 static, dynamic, and
hybrid, the analysis of different approaches is
provided. Section 5 assesses the result of the
examined papers, and the many criteria for
malware classification are explained in section
finally it illustrates the possible breadth and
concludes the study.

2. MALWARE ANALYSIS

Different malware data samples are investigated
to obtain results that can be utilized to detect
them. Static and dynamic studies are two basic
malware research methodologies that are
illustrated below.

2.1. Static Malware Analysis
In the study, features are gathered without

running the malware sample. Following the
analysis by the extraction of several static
features such as N-grams, hash value, strings,
opcodes, and PE header information. The
development of malware revealing software
(antiviruses, intrusion detection systems etc. is
based on these characteristics [26, 27]. Security
analysts examine malware samples either by
using reverse engineering or not. The malware
files are dismantled and converted into
assembly language code, which is then used to
test the malware sample during the coding
stage. Some of the most widely used IDA Pro,
Ollydbg, WinDbg, and capstone disassemblers
are among the most widely used disassemblers
and debuggers [33, 34]. An examination of the
assembly code is performed to discover the
processing route of a malicious operation file,
pattern and structure. This information may be
used to detect new or variant malware. To study
the assembly language code to identify the
execution functions is a time-consuming
procedure. The use of code obfuscation
practices makes the forecaster's work even more
difficult. Malware authors employ a variety of
methods to escape malware inspection,
including code encryption, code reordering
instructions, and dead code insert techniques
[28, 29]. Static analysis techniques are defined
briefly in Table 2, which is followed by a
discussion of the methodologies.

1. INTRODUCTION

 Despite major improvements in
computer security methods and their continual
growth, the malware remains the primary threat
in cyberspace [1, 2]. Malware investigators
analyze malicious samples using techniques

from several domains, including program
analysis and network analysis, to acquire a
better knowledge of their behavior and
evolution [3-6]. The first computer malware,
known as the brain, was developed in the 1980s
and a lot of computers were infected. At that
time the speed of malware creation was not very

fast because it was the peak of computerization
at the time. However, as time passes, a thousand
new types of malware are created each day [7].
Due to widespread development of malware
nowadays, the most recent malware is
significantly more targeted, covert zero-day,
and persistent than classic malware, which was
open, broad, and performed just once [8-10].
Furthermore, today's malware is quite
sophisticated, with the primary goal of
exploiting computer system flaws. To get
around malware identification and analysis
systems, malware authors utilize a variety of
obfuscation procedures [11]. Malware authors
also used encryption and encoding techniques to
create complicated harmful programs such as
metamorphic , polymorphic, and packed
malware, is extremely difficult to analyze and
identify [12-14].

The spreading vectors, which are mentioned in
Table 1, are typically used to propagate malware
from one system to another. The battle between
malware creators and analysts continues. Both
sides are creating new methodologies and
techniques for malware detection systems
concurrently, while the other is building
malicious software to breach the detection
system to target computer and network
resources. The malware researcher analyses
knew malware intending to prevent an assault
on the computer system [15, 16]. Malware is
spotted using one of two approaches:
signature-based and behavior-based
identification. While signature-based malware
recognition methods are quick and effective,
obfuscated software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on

behavior and signatures been developed, but
also many hybrid tactics that incorporate the
recompenses of both. Hybrid detection methods
are intended to overcome the concerns
associated with both signature-based and
behavior-based methods for detection. Zero-day
malware detection is thought-provoking as such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
suggested in the literature [16, 24].

Two main aspects arise after the evaluation of
the proposed machine-based detection methods.
For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for

addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

Malware authors also used encryption and
encoding techniques to create complicated
harmful programs such as polymorphic,
metamorphic, and packed malware, which is
extremely difficult to detect and analyze
[12-14]. The spreading vectors, which are
mentioned in Table 1, are typically used to
propagate malware from one computer system
to another. The battle between malware creators
and analysts continues. Both sides are creating
new methodologies and techniques for malware
detection systems concurrently, while the other
is building malicious software to breach the
detection system to target computer and
network resources. The malware researcher
analyses knew malware intending to prevent an
assault on the computer system [15, 16].
Malware is spotted using one of two methods:
signature-based detection or behavior-based
detection.

While signature-based malware recognition
methods are quick and effective, obfuscated
software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on
behavior and signatures been developed, but
also many hybrid tactics that incorporate the
advantages of both. Hybrid detection methods
are intended to overcome the issues associated
with both signature-based and behavior-based
methods for detection. Zero-day malware

detection is thought-provoking because such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
proposed in the literature [16, 24]. Two main
aspects arise after the evaluation of the proposed
machine-based detection methods.

For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for
addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

06 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

1.1. Contributions
The current state and evolution of malware
detection systems are discussed in this research
study.

1. Many classifications technique for machine
learning is explored and compared.

2. Recent classifications of signature,
behavioral and hybrid machine learning are
explored. It shares with its advantages and
limitations a fraction of the data in the
proposed malware detection systems.

3. The present study has covered some
important parameters that influence
malware classifier performance. A hybrid

model for malware detection has been
presented utilizing machine learning is also
provided. Finally, the paper was completed,
and the topic of the future directive was
discussed.

1.2. Scope Overview
The emphasis of this study is based on the
detection of malware using ML techniques, and
to create the executable files system's automated
smart malware detection. This article examines
the work suggested for the identification of
executing files and provides information on
current research on malware revealing via
numerous characteristics and methods.

1.3. Evolution
There is a complete review of machine learning
malware identification methods. Owing to
significant variances in the number of data sets
used, ML algorithms, and valuation processes,
the detection technique provided are very
difficult to compare properly. The results of
suggested ML-based malware classificatory are
nevertheless equated and presented with certain
in this research.

1.4. Orgnization
The rest of the paper is systematized as follows.
Section 2 introduces systems for malware
research. Section 3 debates the machine
learning methods employed to categorize
malware. In Section 4 static, dynamic, and
hybrid, the analysis of different approaches is
provided. Section 5 assesses the result of the
examined papers, and the many criteria for
malware classification are explained in section
finally it illustrates the possible breadth and
concludes the study.

2. MALWARE ANALYSIS

Different malware data samples are investigated
to obtain results that can be utilized to detect
them. Static and dynamic studies are two basic
malware research methodologies that are
illustrated below.

2.1. Static Malware Analysis
In the study, features are gathered without

running the malware sample. Following the
analysis by the extraction of several static
features such as N-grams, hash value, strings,
opcodes, and PE header information. The
development of malware revealing software
(antiviruses, intrusion detection systems etc. is
based on these characteristics [26, 27]. Security
analysts examine malware samples either by
using reverse engineering or not. The malware
files are dismantled and converted into
assembly language code, which is then used to
test the malware sample during the coding
stage. Some of the most widely used IDA Pro,
Ollydbg, WinDbg, and capstone disassemblers
are among the most widely used disassemblers
and debuggers [33, 34]. An examination of the
assembly code is performed to discover the
processing route of a malicious operation file,
pattern and structure. This information may be
used to detect new or variant malware. To study
the assembly language code to identify the
execution functions is a time-consuming
procedure. The use of code obfuscation
practices makes the forecaster's work even more
difficult. Malware authors employ a variety of
methods to escape malware inspection,
including code encryption, code reordering
instructions, and dead code insert techniques
[28, 29]. Static analysis techniques are defined
briefly in Table 2, which is followed by a
discussion of the methodologies.

1. INTRODUCTION

 Despite major improvements in
computer security methods and their continual
growth, the malware remains the primary threat
in cyberspace [1, 2]. Malware investigators
analyze malicious samples using techniques

from several domains, including program
analysis and network analysis, to acquire a
better knowledge of their behavior and
evolution [3-6]. The first computer malware,
known as the brain, was developed in the 1980s
and a lot of computers were infected. At that
time the speed of malware creation was not very

Table 1 : Methods for Spreading

Methods for
Spreading

 Features

Drive-by
Download

Unintentional drive-by downloads point to a malware infection that causes damage to users in
a variety of ways. Cybercriminals steal and gather personal information and get all the account
credentials via drive-by downloads. For example, their banking information such as usernames
and passwords may also include Trojans or exploit kits that may be used to spread other
malicious targets.

Vulnerability A vulnerability is a security hole in a device's or program's software that allows an invader
activity to insert malware into the system. It may be a fault arising due to programming in an
application or device software, design fault, or some other form of inbuilt flaw. A very
successful WannaCry (2017) ransomware exploited Windows 7's vulnerability to encrypt
millions of users' files. This malware exploited an existing weakness in the Windows 7 OS
SMB. The user who mended the susceptibility did not affect them, while the remaining lost
their data. It is a perilous kind of vector of propagation that is very hard to deal with. An
invader discovers a weakness in the OS or application and attempts to create malware to
exploit the existing defect to do the most harm. As a result, to handle various types of
malwares, the user must update the system periodically.

Backdoor A backdoor denotes any technique that enables allowed and unauthorized operators to utilize
regular security mechanisms to increase high-level user access and to a device, network, or
software program (aka root-access). Cyber thieves will exploit a loophole when the
information is stolen, further software is installed, and the machine is hijacked.

Removable
Drives

Nowadays, removable drives are available on both flash discs and hard discs. These are the
most prevalent malware distribution techniques for each device. Despite the existence of anti-
malware software on the infected computer, it enables infection propagation and connects the
infected device to the mobile drive. Users should always take care while transferring data
between computers using flash devices. It can transmit any kind of malware, including viruses,
worms, and ransomware.

Homogeneity The setup of similar OS software connected via the same network becomes the source of worm
virus spreading from one machine to another.

fast because it was the peak of computerization
at the time. However, as time passes, a thousand
new types of malware are created each day [7].
Due to widespread development of malware
nowadays, the most recent malware is
significantly more targeted, covert zero-day,
and persistent than classic malware, which was
open, broad, and performed just once [8-10].
Furthermore, today's malware is quite
sophisticated, with the primary goal of
exploiting computer system flaws. To get
around malware identification and analysis
systems, malware authors utilize a variety of
obfuscation procedures [11]. Malware authors
also used encryption and encoding techniques to
create complicated harmful programs such as
metamorphic , polymorphic, and packed
malware, is extremely difficult to analyze and
identify [12-14].

The spreading vectors, which are mentioned in
Table 1, are typically used to propagate malware
from one system to another. The battle between
malware creators and analysts continues. Both
sides are creating new methodologies and
techniques for malware detection systems
concurrently, while the other is building
malicious software to breach the detection
system to target computer and network
resources. The malware researcher analyses
knew malware intending to prevent an assault
on the computer system [15, 16]. Malware is
spotted using one of two approaches:
signature-based and behavior-based
identification. While signature-based malware
recognition methods are quick and effective,
obfuscated software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on

behavior and signatures been developed, but
also many hybrid tactics that incorporate the
recompenses of both. Hybrid detection methods
are intended to overcome the concerns
associated with both signature-based and
behavior-based methods for detection. Zero-day
malware detection is thought-provoking as such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
suggested in the literature [16, 24].

Two main aspects arise after the evaluation of
the proposed machine-based detection methods.
For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for

addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

Malware authors also used encryption and
encoding techniques to create complicated
harmful programs such as polymorphic,
metamorphic, and packed malware, which is
extremely difficult to detect and analyze
[12-14]. The spreading vectors, which are
mentioned in Table 1, are typically used to
propagate malware from one computer system
to another. The battle between malware creators
and analysts continues. Both sides are creating
new methodologies and techniques for malware
detection systems concurrently, while the other
is building malicious software to breach the
detection system to target computer and
network resources. The malware researcher
analyses knew malware intending to prevent an
assault on the computer system [15, 16].
Malware is spotted using one of two methods:
signature-based detection or behavior-based
detection.

While signature-based malware recognition
methods are quick and effective, obfuscated
software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on
behavior and signatures been developed, but
also many hybrid tactics that incorporate the
advantages of both. Hybrid detection methods
are intended to overcome the issues associated
with both signature-based and behavior-based
methods for detection. Zero-day malware

detection is thought-provoking because such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
proposed in the literature [16, 24]. Two main
aspects arise after the evaluation of the proposed
machine-based detection methods.

For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for
addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

1.1. Contributions
The current state and evolution of malware
detection systems are discussed in this research
study.

1. Many classifications technique for machine
learning is explored and compared.

2. Recent classifications of signature,
behavioral and hybrid machine learning are
explored. It shares with its advantages and
limitations a fraction of the data in the
proposed malware detection systems.

3. The present study has covered some
important parameters that influence
malware classifier performance. A hybrid

model for malware detection has been
presented utilizing machine learning is also
provided. Finally, the paper was completed,
and the topic of the future directive was
discussed.

1.2. Scope Overview
The emphasis of this study is based on the
detection of malware using ML techniques, and
to create the executable files system's automated
smart malware detection. This article examines
the work suggested for the identification of
executing files and provides information on
current research on malware revealing via
numerous characteristics and methods.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

07Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

1.3. Evolution
There is a complete review of machine learning
malware identification methods. Owing to
significant variances in the number of data sets
used, ML algorithms, and valuation processes,
the detection technique provided are very
difficult to compare properly. The results of
suggested ML-based malware classificatory are
nevertheless equated and presented with certain
in this research.

1.4. Orgnization
The rest of the paper is systematized as follows.
Section 2 introduces systems for malware
research. Section 3 debates the machine
learning methods employed to categorize
malware. In Section 4 static, dynamic, and
hybrid, the analysis of different approaches is
provided. Section 5 assesses the result of the
examined papers, and the many criteria for
malware classification are explained in section
finally it illustrates the possible breadth and
concludes the study.

2. MALWARE ANALYSIS

Different malware data samples are investigated
to obtain results that can be utilized to detect
them. Static and dynamic studies are two basic
malware research methodologies that are
illustrated below.

2.1. Static Malware Analysis
In the study, features are gathered without

running the malware sample. Following the
analysis by the extraction of several static
features such as N-grams, hash value, strings,
opcodes, and PE header information. The
development of malware revealing software
(antiviruses, intrusion detection systems etc. is
based on these characteristics [26, 27]. Security
analysts examine malware samples either by
using reverse engineering or not. The malware
files are dismantled and converted into
assembly language code, which is then used to
test the malware sample during the coding
stage. Some of the most widely used IDA Pro,
Ollydbg, WinDbg, and capstone disassemblers
are among the most widely used disassemblers
and debuggers [33, 34]. An examination of the
assembly code is performed to discover the
processing route of a malicious operation file,
pattern and structure. This information may be
used to detect new or variant malware. To study
the assembly language code to identify the
execution functions is a time-consuming
procedure. The use of code obfuscation
practices makes the forecaster's work even more
difficult. Malware authors employ a variety of
methods to escape malware inspection,
including code encryption, code reordering
instructions, and dead code insert techniques
[28, 29]. Static analysis techniques are defined
briefly in Table 2, which is followed by a
discussion of the methodologies.

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

1. INTRODUCTION

 Despite major improvements in
computer security methods and their continual
growth, the malware remains the primary threat
in cyberspace [1, 2]. Malware investigators
analyze malicious samples using techniques

from several domains, including program
analysis and network analysis, to acquire a
better knowledge of their behavior and
evolution [3-6]. The first computer malware,
known as the brain, was developed in the 1980s
and a lot of computers were infected. At that
time the speed of malware creation was not very

Table 2: Static analysis tools

Tool name Description
PeView [44] The 32-bit Portable Execution File (PE) structure and content of files, as well as the

Component Object File Format, may be viewed quickly and simply with this tool (COFF).
This PE/COFF file reader reads headers, sections, directories, import tables, and tables for
exporting, and resource data numerous files (such as EXE, OBJ, DLL, DBG and LIB) as well
as information for resource purposes.

PEid [45] Used to test if the malware is hideous if the packer tool is used (for example NSPACK, UPX,
etc.). The creators of malware are increasingly utilizing antivirus methods to disguise the true
malicious code. The packaged malware may be classified using PEid.

fast because it was the peak of computerization
at the time. However, as time passes, a thousand
new types of malware are created each day [7].
Due to widespread development of malware
nowadays, the most recent malware is
significantly more targeted, covert zero-day,
and persistent than classic malware, which was
open, broad, and performed just once [8-10].
Furthermore, today's malware is quite
sophisticated, with the primary goal of
exploiting computer system flaws. To get
around malware identification and analysis
systems, malware authors utilize a variety of
obfuscation procedures [11]. Malware authors
also used encryption and encoding techniques to
create complicated harmful programs such as
metamorphic , polymorphic, and packed
malware, is extremely difficult to analyze and
identify [12-14].

The spreading vectors, which are mentioned in
Table 1, are typically used to propagate malware
from one system to another. The battle between
malware creators and analysts continues. Both
sides are creating new methodologies and
techniques for malware detection systems
concurrently, while the other is building
malicious software to breach the detection
system to target computer and network
resources. The malware researcher analyses
knew malware intending to prevent an assault
on the computer system [15, 16]. Malware is
spotted using one of two approaches:
signature-based and behavior-based
identification. While signature-based malware
recognition methods are quick and effective,
obfuscated software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on

behavior and signatures been developed, but
also many hybrid tactics that incorporate the
recompenses of both. Hybrid detection methods
are intended to overcome the concerns
associated with both signature-based and
behavior-based methods for detection. Zero-day
malware detection is thought-provoking as such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
suggested in the literature [16, 24].

Two main aspects arise after the evaluation of
the proposed machine-based detection methods.
For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for

addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

Malware authors also used encryption and
encoding techniques to create complicated
harmful programs such as polymorphic,
metamorphic, and packed malware, which is
extremely difficult to detect and analyze
[12-14]. The spreading vectors, which are
mentioned in Table 1, are typically used to
propagate malware from one computer system
to another. The battle between malware creators
and analysts continues. Both sides are creating
new methodologies and techniques for malware
detection systems concurrently, while the other
is building malicious software to breach the
detection system to target computer and
network resources. The malware researcher
analyses knew malware intending to prevent an
assault on the computer system [15, 16].
Malware is spotted using one of two methods:
signature-based detection or behavior-based
detection.

While signature-based malware recognition
methods are quick and effective, obfuscated
software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on
behavior and signatures been developed, but
also many hybrid tactics that incorporate the
advantages of both. Hybrid detection methods
are intended to overcome the issues associated
with both signature-based and behavior-based
methods for detection. Zero-day malware

detection is thought-provoking because such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
proposed in the literature [16, 24]. Two main
aspects arise after the evaluation of the proposed
machine-based detection methods.

For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for
addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

1.1. Contributions
The current state and evolution of malware
detection systems are discussed in this research
study.

1. Many classifications technique for machine
learning is explored and compared.

2. Recent classifications of signature,
behavioral and hybrid machine learning are
explored. It shares with its advantages and
limitations a fraction of the data in the
proposed malware detection systems.

3. The present study has covered some
important parameters that influence
malware classifier performance. A hybrid

model for malware detection has been
presented utilizing machine learning is also
provided. Finally, the paper was completed,
and the topic of the future directive was
discussed.

1.2. Scope Overview
The emphasis of this study is based on the
detection of malware using ML techniques, and
to create the executable files system's automated
smart malware detection. This article examines
the work suggested for the identification of
executing files and provides information on
current research on malware revealing via
numerous characteristics and methods.

1.3. Evolution
There is a complete review of machine learning
malware identification methods. Owing to
significant variances in the number of data sets
used, ML algorithms, and valuation processes,
the detection technique provided are very
difficult to compare properly. The results of
suggested ML-based malware classificatory are
nevertheless equated and presented with certain
in this research.

1.4. Orgnization
The rest of the paper is systematized as follows.
Section 2 introduces systems for malware
research. Section 3 debates the machine
learning methods employed to categorize
malware. In Section 4 static, dynamic, and
hybrid, the analysis of different approaches is
provided. Section 5 assesses the result of the
examined papers, and the many criteria for
malware classification are explained in section
finally it illustrates the possible breadth and
concludes the study.

2. MALWARE ANALYSIS

Different malware data samples are investigated
to obtain results that can be utilized to detect
them. Static and dynamic studies are two basic
malware research methodologies that are
illustrated below.

2.1. Static Malware Analysis
In the study, features are gathered without

running the malware sample. Following the
analysis by the extraction of several static
features such as N-grams, hash value, strings,
opcodes, and PE header information. The
development of malware revealing software
(antiviruses, intrusion detection systems etc. is
based on these characteristics [26, 27]. Security
analysts examine malware samples either by
using reverse engineering or not. The malware
files are dismantled and converted into
assembly language code, which is then used to
test the malware sample during the coding
stage. Some of the most widely used IDA Pro,
Ollydbg, WinDbg, and capstone disassemblers
are among the most widely used disassemblers
and debuggers [33, 34]. An examination of the
assembly code is performed to discover the
processing route of a malicious operation file,
pattern and structure. This information may be
used to detect new or variant malware. To study
the assembly language code to identify the
execution functions is a time-consuming
procedure. The use of code obfuscation
practices makes the forecaster's work even more
difficult. Malware authors employ a variety of
methods to escape malware inspection,
including code encryption, code reordering
instructions, and dead code insert techniques
[28, 29]. Static analysis techniques are defined
briefly in Table 2, which is followed by a
discussion of the methodologies.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

08 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

2.2. Dynamic Malware Analysis
When using this procedure for investigation
malware the files of malware are processed and
the resulting malware running time behavior is
captured and analyzed. There are many types of
runtime behavior including file system,
processing execution, modification to registry
key, and network activity [30-33]. Dynamic
inspection differs from static examination since
it relies on the connection amid malware and the
windows operating system. To ensure system
security, the execution of malware samples is
always carried out in a simulated environment,
since if the malware program’s file to be run
direct on the host machine, it would cause
damage to the operating system [34-37]. The
program Virtual Box or VMware, which allows
you to create a virtual environment on a
computer, is called virtualization software.

There are a variety of behaviors that can be
observed when a malware file is executed,
including the formation of new program’s files,
the removal of a system file, modification of a
registry key, creation of new log entries, API
calls, visiting of URLs, the installation of
malware, and the transmission of information to
the command-and-control scheme. The
following steps determine if the file is benign or
dangerous based on its contents. Dynamic
analyses may be used to investigate files that
were not properly deconstructed or evaluated by
static analysis. Table 3 provides a high-level
summary of the various dynamic analysis
techniques.

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

1. INTRODUCTION

 Despite major improvements in
computer security methods and their continual
growth, the malware remains the primary threat
in cyberspace [1, 2]. Malware investigators
analyze malicious samples using techniques

from several domains, including program
analysis and network analysis, to acquire a
better knowledge of their behavior and
evolution [3-6]. The first computer malware,
known as the brain, was developed in the 1980s
and a lot of computers were infected. At that
time the speed of malware creation was not very

CFF Explorer
[46]

This provides the executable file with complete header information and metadata. In this
application, you may view more detailed information about executable files.

PsFile [47] This useful tool shows details about the system's open files. Analyzing if the computer device
is remotely controlled is very beneficial. It can send details about opened files to the remote
computer on the local machine.

Accesschk [48] To evaluate the degree of security of the equipment, Accesschk is utilized. It contains
information on access rights, including whether a group or user can write, read, or accomplish,
among other things, registry keys and files.

IOC Finder [49] (IOC) Finder is a free utility that collects host system data and reports IOC presence. IOCs
are open-standard XML documents that assist incident responders in capturing a variety of
threat information.

Radare [50] Radare is a comprehensive set of tools for reverse engineering. This utility is available on a
wide range of platforms including Windows, Linux, Android, and MacOS. On the file system,
Radare can also do forensics.

Yara [51] The Yara tool is employed in executable files to match a string. To recognize the malware
file, such string signatures may be used in malware analysis. The Yara tool has the capability
of matching a certain string pattern contained inside a binary file. Other file formats, such as
PDFs, Word documents, and other similar documents may be matched using this feature.

SS Deep [52] Executed fuzzy hash values needed to verify malware variants may be calculated in this
utility. The fuzzy hash contains more potential to compact with malware variations, unlike
the simple hash value.

Disassemblers
[44]

Disassemblers are then employed if a more comprehensive static analysis is needed. IDA Pro
is a well-known and widely used disassembler. To effectively carry out the reverse
engineering task, a new Ghidra disassembler was constructed. The assembly code that is
transformed from the executable file, which is then examined manually to determine the
functionality of the malicious software.

fast because it was the peak of computerization
at the time. However, as time passes, a thousand
new types of malware are created each day [7].
Due to widespread development of malware
nowadays, the most recent malware is
significantly more targeted, covert zero-day,
and persistent than classic malware, which was
open, broad, and performed just once [8-10].
Furthermore, today's malware is quite
sophisticated, with the primary goal of
exploiting computer system flaws. To get
around malware identification and analysis
systems, malware authors utilize a variety of
obfuscation procedures [11]. Malware authors
also used encryption and encoding techniques to
create complicated harmful programs such as
metamorphic , polymorphic, and packed
malware, is extremely difficult to analyze and
identify [12-14].

The spreading vectors, which are mentioned in
Table 1, are typically used to propagate malware
from one system to another. The battle between
malware creators and analysts continues. Both
sides are creating new methodologies and
techniques for malware detection systems
concurrently, while the other is building
malicious software to breach the detection
system to target computer and network
resources. The malware researcher analyses
knew malware intending to prevent an assault
on the computer system [15, 16]. Malware is
spotted using one of two approaches:
signature-based and behavior-based
identification. While signature-based malware
recognition methods are quick and effective,
obfuscated software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on

behavior and signatures been developed, but
also many hybrid tactics that incorporate the
recompenses of both. Hybrid detection methods
are intended to overcome the concerns
associated with both signature-based and
behavior-based methods for detection. Zero-day
malware detection is thought-provoking as such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
suggested in the literature [16, 24].

Two main aspects arise after the evaluation of
the proposed machine-based detection methods.
For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for

addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

Malware authors also used encryption and
encoding techniques to create complicated
harmful programs such as polymorphic,
metamorphic, and packed malware, which is
extremely difficult to detect and analyze
[12-14]. The spreading vectors, which are
mentioned in Table 1, are typically used to
propagate malware from one computer system
to another. The battle between malware creators
and analysts continues. Both sides are creating
new methodologies and techniques for malware
detection systems concurrently, while the other
is building malicious software to breach the
detection system to target computer and
network resources. The malware researcher
analyses knew malware intending to prevent an
assault on the computer system [15, 16].
Malware is spotted using one of two methods:
signature-based detection or behavior-based
detection.

While signature-based malware recognition
methods are quick and effective, obfuscated
software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on
behavior and signatures been developed, but
also many hybrid tactics that incorporate the
advantages of both. Hybrid detection methods
are intended to overcome the issues associated
with both signature-based and behavior-based
methods for detection. Zero-day malware

detection is thought-provoking because such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
proposed in the literature [16, 24]. Two main
aspects arise after the evaluation of the proposed
machine-based detection methods.

For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for
addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

1.1. Contributions
The current state and evolution of malware
detection systems are discussed in this research
study.

1. Many classifications technique for machine
learning is explored and compared.

2. Recent classifications of signature,
behavioral and hybrid machine learning are
explored. It shares with its advantages and
limitations a fraction of the data in the
proposed malware detection systems.

3. The present study has covered some
important parameters that influence
malware classifier performance. A hybrid

model for malware detection has been
presented utilizing machine learning is also
provided. Finally, the paper was completed,
and the topic of the future directive was
discussed.

1.2. Scope Overview
The emphasis of this study is based on the
detection of malware using ML techniques, and
to create the executable files system's automated
smart malware detection. This article examines
the work suggested for the identification of
executing files and provides information on
current research on malware revealing via
numerous characteristics and methods.

1.3. Evolution
There is a complete review of machine learning
malware identification methods. Owing to
significant variances in the number of data sets
used, ML algorithms, and valuation processes,
the detection technique provided are very
difficult to compare properly. The results of
suggested ML-based malware classificatory are
nevertheless equated and presented with certain
in this research.

1.4. Orgnization
The rest of the paper is systematized as follows.
Section 2 introduces systems for malware
research. Section 3 debates the machine
learning methods employed to categorize
malware. In Section 4 static, dynamic, and
hybrid, the analysis of different approaches is
provided. Section 5 assesses the result of the
examined papers, and the many criteria for
malware classification are explained in section
finally it illustrates the possible breadth and
concludes the study.

2. MALWARE ANALYSIS

Different malware data samples are investigated
to obtain results that can be utilized to detect
them. Static and dynamic studies are two basic
malware research methodologies that are
illustrated below.

2.1. Static Malware Analysis
In the study, features are gathered without

running the malware sample. Following the
analysis by the extraction of several static
features such as N-grams, hash value, strings,
opcodes, and PE header information. The
development of malware revealing software
(antiviruses, intrusion detection systems etc. is
based on these characteristics [26, 27]. Security
analysts examine malware samples either by
using reverse engineering or not. The malware
files are dismantled and converted into
assembly language code, which is then used to
test the malware sample during the coding
stage. Some of the most widely used IDA Pro,
Ollydbg, WinDbg, and capstone disassemblers
are among the most widely used disassemblers
and debuggers [33, 34]. An examination of the
assembly code is performed to discover the
processing route of a malicious operation file,
pattern and structure. This information may be
used to detect new or variant malware. To study
the assembly language code to identify the
execution functions is a time-consuming
procedure. The use of code obfuscation
practices makes the forecaster's work even more
difficult. Malware authors employ a variety of
methods to escape malware inspection,
including code encryption, code reordering
instructions, and dead code insert techniques
[28, 29]. Static analysis techniques are defined
briefly in Table 2, which is followed by a
discussion of the methodologies.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

09Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

1. INTRODUCTION

 Despite major improvements in
computer security methods and their continual
growth, the malware remains the primary threat
in cyberspace [1, 2]. Malware investigators
analyze malicious samples using techniques

from several domains, including program
analysis and network analysis, to acquire a
better knowledge of their behavior and
evolution [3-6]. The first computer malware,
known as the brain, was developed in the 1980s
and a lot of computers were infected. At that
time the speed of malware creation was not very

Table 3: Dynamic analysis technologies

Name of Tool Features

Process
Explorer [9]

The system's task and control manager is called Process Explorer. It functions similarly to a
Windows task manager by offering comprehensive details on the active system processes.

ProcMon [57] The tasks performed by running processes are recorded by ProcMon (Process Monitor). It
collects all operating of file system, registry updates, memory activity, and network operations
system calls.

Wireshark,
Tshark [58]

Network traffic analysis is used by Wireshark and Tshark. These tools can internment all inward
and departing packets from the system to the outer world. Different system characteristics
including port addresses, URLs, and data streams are collected and subsequently analyzed for
malware file classification.

TCPdump [59] Network data analysis in real-time may be accomplished via the use of this command-line
application. It is a commonly used packet analyzer that shows in real-time the TCP/IP packets
are sent and received from a computer system.

TCPview [60]

Windows networking tool that displays system statistics from every endpoint in UDP and TCP.

Regshot [61] To capturing the registry modifications caused by the sample, the tool Regshot is utilized. The
registry state of the Windows operating system will be captured both before and after the
malware program sample is implemented. These both states may be equated to identify which
changes have been made by the sample file that has been run.

Memoryze [62] Memoryze is a command-based forensic memory tool that may be used to examine digital
memories. There may be a full memory dump. Once the malware has been run, the memory
dump is deleted from the computer. The memory dumps of rootkit malware are analyzed to
extract different features such as the processes that are currently executing, strings, and the
process that is being concealed from view.

Volatility [63] Volatility is a cutting-edge framework for memory dump analysis that is constantly evolving.
It is written in Python and has been built for various operating systems so that it may be used
simply (Linux, Windows, and Mac OS). Advanced memory dump features like processes,
registry keys, DLL-injected libraries, and strings may all be recovered with this tool, among
other things.

Redline [64] Redline is a portable manager that automatically collects information to examine the IOC. It is
designed to be portable (Indicator of Compromise). Safety analysis software is used to examine
several Windows components, including memory, the file system, the network, and registry
entries.

Inetsim [65] The network simulator is the component that imitates internet services to spread malware for
virtual internet communication, as previously explained. It is Inetsim that supplies the malware
with its virtual network environment, allowing the malware to perform its functions properly
throughout the dynamic analysis process. Consider the possibility that inetsim may respond to
such a query and that the malware will be permitted to continue to execute if the malware tries
to connect to the remote device.

Fake DNS [44] The FakeDNS software responds to DNS queries by generating a response. FakeDNS also
resolves the virus's DNS requests, allowing the malware to handle them in real-world situations
once the DNS queries have been resolved. Using the inetsim and FakeDNS programs, you may
simulate virtual networks to better understand how the virus behaves.

Apate DNS
[66]

ApateDNS, improved form of FakeDNS that incorporates a graphical user interface. When
compared to the Fake DNS tool, Apate DNS is easier to set up and evaluate DNS responses.

Sandboxes [67] For automated malware analysis, a variety of sandboxes, such as Cuckoo, Anubis, Panda,
Limon, Parsa, and others, are utilized. These tools are composed of a variety of embedded
analytical tools, such as those mentioned above. To remove the peculiarities of various groups,
sandboxes and other tools are used in conjunction with one another, such as tcpdump for
network traffic, the Cuckoo sandbox, volatility of memory dump, and so on.

fast because it was the peak of computerization
at the time. However, as time passes, a thousand
new types of malware are created each day [7].
Due to widespread development of malware
nowadays, the most recent malware is
significantly more targeted, covert zero-day,
and persistent than classic malware, which was
open, broad, and performed just once [8-10].
Furthermore, today's malware is quite
sophisticated, with the primary goal of
exploiting computer system flaws. To get
around malware identification and analysis
systems, malware authors utilize a variety of
obfuscation procedures [11]. Malware authors
also used encryption and encoding techniques to
create complicated harmful programs such as
metamorphic , polymorphic, and packed
malware, is extremely difficult to analyze and
identify [12-14].

The spreading vectors, which are mentioned in
Table 1, are typically used to propagate malware
from one system to another. The battle between
malware creators and analysts continues. Both
sides are creating new methodologies and
techniques for malware detection systems
concurrently, while the other is building
malicious software to breach the detection
system to target computer and network
resources. The malware researcher analyses
knew malware intending to prevent an assault
on the computer system [15, 16]. Malware is
spotted using one of two approaches:
signature-based and behavior-based
identification. While signature-based malware
recognition methods are quick and effective,
obfuscated software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on

behavior and signatures been developed, but
also many hybrid tactics that incorporate the
recompenses of both. Hybrid detection methods
are intended to overcome the concerns
associated with both signature-based and
behavior-based methods for detection. Zero-day
malware detection is thought-provoking as such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
suggested in the literature [16, 24].

Two main aspects arise after the evaluation of
the proposed machine-based detection methods.
For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for

addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

Malware authors also used encryption and
encoding techniques to create complicated
harmful programs such as polymorphic,
metamorphic, and packed malware, which is
extremely difficult to detect and analyze
[12-14]. The spreading vectors, which are
mentioned in Table 1, are typically used to
propagate malware from one computer system
to another. The battle between malware creators
and analysts continues. Both sides are creating
new methodologies and techniques for malware
detection systems concurrently, while the other
is building malicious software to breach the
detection system to target computer and
network resources. The malware researcher
analyses knew malware intending to prevent an
assault on the computer system [15, 16].
Malware is spotted using one of two methods:
signature-based detection or behavior-based
detection.

While signature-based malware recognition
methods are quick and effective, obfuscated
software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on
behavior and signatures been developed, but
also many hybrid tactics that incorporate the
advantages of both. Hybrid detection methods
are intended to overcome the issues associated
with both signature-based and behavior-based
methods for detection. Zero-day malware

detection is thought-provoking because such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
proposed in the literature [16, 24]. Two main
aspects arise after the evaluation of the proposed
machine-based detection methods.

For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for
addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

1.1. Contributions
The current state and evolution of malware
detection systems are discussed in this research
study.

1. Many classifications technique for machine
learning is explored and compared.

2. Recent classifications of signature,
behavioral and hybrid machine learning are
explored. It shares with its advantages and
limitations a fraction of the data in the
proposed malware detection systems.

3. The present study has covered some
important parameters that influence
malware classifier performance. A hybrid

model for malware detection has been
presented utilizing machine learning is also
provided. Finally, the paper was completed,
and the topic of the future directive was
discussed.

1.2. Scope Overview
The emphasis of this study is based on the
detection of malware using ML techniques, and
to create the executable files system's automated
smart malware detection. This article examines
the work suggested for the identification of
executing files and provides information on
current research on malware revealing via
numerous characteristics and methods.

1.3. Evolution
There is a complete review of machine learning
malware identification methods. Owing to
significant variances in the number of data sets
used, ML algorithms, and valuation processes,
the detection technique provided are very
difficult to compare properly. The results of
suggested ML-based malware classificatory are
nevertheless equated and presented with certain
in this research.

1.4. Orgnization
The rest of the paper is systematized as follows.
Section 2 introduces systems for malware
research. Section 3 debates the machine
learning methods employed to categorize
malware. In Section 4 static, dynamic, and
hybrid, the analysis of different approaches is
provided. Section 5 assesses the result of the
examined papers, and the many criteria for
malware classification are explained in section
finally it illustrates the possible breadth and
concludes the study.

2. MALWARE ANALYSIS

Different malware data samples are investigated
to obtain results that can be utilized to detect
them. Static and dynamic studies are two basic
malware research methodologies that are
illustrated below.

2.1. Static Malware Analysis
In the study, features are gathered without

running the malware sample. Following the
analysis by the extraction of several static
features such as N-grams, hash value, strings,
opcodes, and PE header information. The
development of malware revealing software
(antiviruses, intrusion detection systems etc. is
based on these characteristics [26, 27]. Security
analysts examine malware samples either by
using reverse engineering or not. The malware
files are dismantled and converted into
assembly language code, which is then used to
test the malware sample during the coding
stage. Some of the most widely used IDA Pro,
Ollydbg, WinDbg, and capstone disassemblers
are among the most widely used disassemblers
and debuggers [33, 34]. An examination of the
assembly code is performed to discover the
processing route of a malicious operation file,
pattern and structure. This information may be
used to detect new or variant malware. To study
the assembly language code to identify the
execution functions is a time-consuming
procedure. The use of code obfuscation
practices makes the forecaster's work even more
difficult. Malware authors employ a variety of
methods to escape malware inspection,
including code encryption, code reordering
instructions, and dead code insert techniques
[28, 29]. Static analysis techniques are defined
briefly in Table 2, which is followed by a
discussion of the methodologies.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

10 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

2.3. Dynamic Analysis Framework
The dynamic analysis framework is configured
to record the behavioral features of the
executable files using hypervisor Type-1 and
Type-2 [38, 39]. Type-1 hypervisors are
recognized as bare-metal hypervisors because
they handle and monitor guest computers
directly on the hardware computer. Nutanix
AHV, AntsleOs, VMware ESXi, XEN, Oracle
VM Server Microsoft Hyper-V, are the patterns
of type-1 hypervisors. Fig. 1 (a) displays the
type-1 hypervisor architecture. Type-2
hypervisor run within the guest machine tools

including Virtual machine ware, Virtual Box
and Microsoft Hyper-V are employed to
provide a dynamic analysis environment for
type 2. VMware Player, Virtual Box, VMware
Workstation, QEM, and so on are examples of
type-2 hypervisors. Fig. 1 (b) demonstrates the
type-2 architecture. In malware execution, the
abstraction level is provided by these figures.
Both kinds are based on the benefits and
limitations stated in Table 4. The difference
between methods for dynamic and static
analysis based on their merits and demerits is
given in Table 5.

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

1. INTRODUCTION

 Despite major improvements in
computer security methods and their continual
growth, the malware remains the primary threat
in cyberspace [1, 2]. Malware investigators
analyze malicious samples using techniques

from several domains, including program
analysis and network analysis, to acquire a
better knowledge of their behavior and
evolution [3-6]. The first computer malware,
known as the brain, was developed in the 1980s
and a lot of computers were infected. At that
time the speed of malware creation was not very

Table 4: Hypervisor comparison for dynamic analysis
 Type-1 Type-2

Architecture Virtualization of hardware Most deprived code that works on low-end hardware

Detection
methods

CPU Background performance low but
not zero overhead

VMs have similar difficulties as emulators, although
they may be more transparent.

Benefit Close to hardware negligible overhead Easy to use introspection and state control

Drawback Lower introspection ability but
measurable

Conceived for transparency compatibility

Protected It is protected little, if a host issue that affects the whole OS, like
hypervisor,

Scalability The scalability may be improved. Less, reliant on host OS

Fig. 1. (a) Hypervisor Type-I architecture

 (b) Hypervisor Type-II architecture

fast because it was the peak of computerization
at the time. However, as time passes, a thousand
new types of malware are created each day [7].
Due to widespread development of malware
nowadays, the most recent malware is
significantly more targeted, covert zero-day,
and persistent than classic malware, which was
open, broad, and performed just once [8-10].
Furthermore, today's malware is quite
sophisticated, with the primary goal of
exploiting computer system flaws. To get
around malware identification and analysis
systems, malware authors utilize a variety of
obfuscation procedures [11]. Malware authors
also used encryption and encoding techniques to
create complicated harmful programs such as
metamorphic , polymorphic, and packed
malware, is extremely difficult to analyze and
identify [12-14].

The spreading vectors, which are mentioned in
Table 1, are typically used to propagate malware
from one system to another. The battle between
malware creators and analysts continues. Both
sides are creating new methodologies and
techniques for malware detection systems
concurrently, while the other is building
malicious software to breach the detection
system to target computer and network
resources. The malware researcher analyses
knew malware intending to prevent an assault
on the computer system [15, 16]. Malware is
spotted using one of two approaches:
signature-based and behavior-based
identification. While signature-based malware
recognition methods are quick and effective,
obfuscated software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on

behavior and signatures been developed, but
also many hybrid tactics that incorporate the
recompenses of both. Hybrid detection methods
are intended to overcome the concerns
associated with both signature-based and
behavior-based methods for detection. Zero-day
malware detection is thought-provoking as such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
suggested in the literature [16, 24].

Two main aspects arise after the evaluation of
the proposed machine-based detection methods.
For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for

addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

Malware authors also used encryption and
encoding techniques to create complicated
harmful programs such as polymorphic,
metamorphic, and packed malware, which is
extremely difficult to detect and analyze
[12-14]. The spreading vectors, which are
mentioned in Table 1, are typically used to
propagate malware from one computer system
to another. The battle between malware creators
and analysts continues. Both sides are creating
new methodologies and techniques for malware
detection systems concurrently, while the other
is building malicious software to breach the
detection system to target computer and
network resources. The malware researcher
analyses knew malware intending to prevent an
assault on the computer system [15, 16].
Malware is spotted using one of two methods:
signature-based detection or behavior-based
detection.

While signature-based malware recognition
methods are quick and effective, obfuscated
software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on
behavior and signatures been developed, but
also many hybrid tactics that incorporate the
advantages of both. Hybrid detection methods
are intended to overcome the issues associated
with both signature-based and behavior-based
methods for detection. Zero-day malware

detection is thought-provoking because such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
proposed in the literature [16, 24]. Two main
aspects arise after the evaluation of the proposed
machine-based detection methods.

For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for
addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

1.1. Contributions
The current state and evolution of malware
detection systems are discussed in this research
study.

1. Many classifications technique for machine
learning is explored and compared.

2. Recent classifications of signature,
behavioral and hybrid machine learning are
explored. It shares with its advantages and
limitations a fraction of the data in the
proposed malware detection systems.

3. The present study has covered some
important parameters that influence
malware classifier performance. A hybrid

model for malware detection has been
presented utilizing machine learning is also
provided. Finally, the paper was completed,
and the topic of the future directive was
discussed.

1.2. Scope Overview
The emphasis of this study is based on the
detection of malware using ML techniques, and
to create the executable files system's automated
smart malware detection. This article examines
the work suggested for the identification of
executing files and provides information on
current research on malware revealing via
numerous characteristics and methods.

1.3. Evolution
There is a complete review of machine learning
malware identification methods. Owing to
significant variances in the number of data sets
used, ML algorithms, and valuation processes,
the detection technique provided are very
difficult to compare properly. The results of
suggested ML-based malware classificatory are
nevertheless equated and presented with certain
in this research.

1.4. Orgnization
The rest of the paper is systematized as follows.
Section 2 introduces systems for malware
research. Section 3 debates the machine
learning methods employed to categorize
malware. In Section 4 static, dynamic, and
hybrid, the analysis of different approaches is
provided. Section 5 assesses the result of the
examined papers, and the many criteria for
malware classification are explained in section
finally it illustrates the possible breadth and
concludes the study.

2. MALWARE ANALYSIS

Different malware data samples are investigated
to obtain results that can be utilized to detect
them. Static and dynamic studies are two basic
malware research methodologies that are
illustrated below.

2.1. Static Malware Analysis
In the study, features are gathered without

running the malware sample. Following the
analysis by the extraction of several static
features such as N-grams, hash value, strings,
opcodes, and PE header information. The
development of malware revealing software
(antiviruses, intrusion detection systems etc. is
based on these characteristics [26, 27]. Security
analysts examine malware samples either by
using reverse engineering or not. The malware
files are dismantled and converted into
assembly language code, which is then used to
test the malware sample during the coding
stage. Some of the most widely used IDA Pro,
Ollydbg, WinDbg, and capstone disassemblers
are among the most widely used disassemblers
and debuggers [33, 34]. An examination of the
assembly code is performed to discover the
processing route of a malicious operation file,
pattern and structure. This information may be
used to detect new or variant malware. To study
the assembly language code to identify the
execution functions is a time-consuming
procedure. The use of code obfuscation
practices makes the forecaster's work even more
difficult. Malware authors employ a variety of
methods to escape malware inspection,
including code encryption, code reordering
instructions, and dead code insert techniques
[28, 29]. Static analysis techniques are defined
briefly in Table 2, which is followed by a
discussion of the methodologies.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

11Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

3. MACHINE LEARNING FOR
MALWARE DETECTION

In detecting and grouping malware, machine
learning is becoming extremely helpful. There
has been a great deal of effort in the literature to
categorize benign and malicious files. ML
technology offers additional options and
flexibility to construct a more precise model by
allowing for more properties of a malware and a
benign file [26, 40]. In the realm of computer
security, ML delivers a variety of options for the
revealing of malware, infiltration, and harmful
URL identification. Malware samples are
examined, and the data collected for the training
of the classifier is utilized. Fig. 2 displays the
machine learning framework for the detection
of benign and malignant files. This figure
illuminates the simple building of ML
classifiers, as well as the construction of
classifiers in other problem areas. First step is
feature extraction. After that feature
representation and selection are completed. Last

step is classification methods are employed to
train malware classification models. Another
advantage of employing ML in malware
revealing is that it may be used to develop a
model for identifying previously undiscovered
malware. There is reasoning that it consists of
many methods that may be used to create
several malware algorithms to better identify
malware. Furthermore, the following perks of
employing ML algorithms to detect malware are
some of its many uses.
• Current anti-viruses and sandboxing

technique can be ousted.
• Automatically extracts samples of malware.
• The detection of unknown variants can be

further generalized.
• It has the potential to decrease human

efforts and time spent studying malware.
Many researchers have already carried out
extensive research, demonstrating their high
level of reliability regarding detecting malware.

Fig. 2. Machine Learning framework for the detection of
benign and malignant file

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

1. INTRODUCTION

 Despite major improvements in
computer security methods and their continual
growth, the malware remains the primary threat
in cyberspace [1, 2]. Malware investigators
analyze malicious samples using techniques

from several domains, including program
analysis and network analysis, to acquire a
better knowledge of their behavior and
evolution [3-6]. The first computer malware,
known as the brain, was developed in the 1980s
and a lot of computers were infected. At that
time the speed of malware creation was not very

Table 5: Brief comparison of static and dynamic analytical approaches

 Static Dynamic
Methodology The study is performed without the need to run the files in

question.
Analysis takes place with
running the files

Benefits Quick and little time-consuming Robust for handling obscure
methods

Drawbacks Unable to determine new malware, obscure techniques may
simply be circumvented.

Time-consuming and
complicated

fast because it was the peak of computerization
at the time. However, as time passes, a thousand
new types of malware are created each day [7].
Due to widespread development of malware
nowadays, the most recent malware is
significantly more targeted, covert zero-day,
and persistent than classic malware, which was
open, broad, and performed just once [8-10].
Furthermore, today's malware is quite
sophisticated, with the primary goal of
exploiting computer system flaws. To get
around malware identification and analysis
systems, malware authors utilize a variety of
obfuscation procedures [11]. Malware authors
also used encryption and encoding techniques to
create complicated harmful programs such as
metamorphic , polymorphic, and packed
malware, is extremely difficult to analyze and
identify [12-14].

The spreading vectors, which are mentioned in
Table 1, are typically used to propagate malware
from one system to another. The battle between
malware creators and analysts continues. Both
sides are creating new methodologies and
techniques for malware detection systems
concurrently, while the other is building
malicious software to breach the detection
system to target computer and network
resources. The malware researcher analyses
knew malware intending to prevent an assault
on the computer system [15, 16]. Malware is
spotted using one of two approaches:
signature-based and behavior-based
identification. While signature-based malware
recognition methods are quick and effective,
obfuscated software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on

behavior and signatures been developed, but
also many hybrid tactics that incorporate the
recompenses of both. Hybrid detection methods
are intended to overcome the concerns
associated with both signature-based and
behavior-based methods for detection. Zero-day
malware detection is thought-provoking as such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
suggested in the literature [16, 24].

Two main aspects arise after the evaluation of
the proposed machine-based detection methods.
For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for

addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

Malware authors also used encryption and
encoding techniques to create complicated
harmful programs such as polymorphic,
metamorphic, and packed malware, which is
extremely difficult to detect and analyze
[12-14]. The spreading vectors, which are
mentioned in Table 1, are typically used to
propagate malware from one computer system
to another. The battle between malware creators
and analysts continues. Both sides are creating
new methodologies and techniques for malware
detection systems concurrently, while the other
is building malicious software to breach the
detection system to target computer and
network resources. The malware researcher
analyses knew malware intending to prevent an
assault on the computer system [15, 16].
Malware is spotted using one of two methods:
signature-based detection or behavior-based
detection.

While signature-based malware recognition
methods are quick and effective, obfuscated
software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on
behavior and signatures been developed, but
also many hybrid tactics that incorporate the
advantages of both. Hybrid detection methods
are intended to overcome the issues associated
with both signature-based and behavior-based
methods for detection. Zero-day malware

detection is thought-provoking because such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
proposed in the literature [16, 24]. Two main
aspects arise after the evaluation of the proposed
machine-based detection methods.

For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for
addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

1.1. Contributions
The current state and evolution of malware
detection systems are discussed in this research
study.

1. Many classifications technique for machine
learning is explored and compared.

2. Recent classifications of signature,
behavioral and hybrid machine learning are
explored. It shares with its advantages and
limitations a fraction of the data in the
proposed malware detection systems.

3. The present study has covered some
important parameters that influence
malware classifier performance. A hybrid

model for malware detection has been
presented utilizing machine learning is also
provided. Finally, the paper was completed,
and the topic of the future directive was
discussed.

1.2. Scope Overview
The emphasis of this study is based on the
detection of malware using ML techniques, and
to create the executable files system's automated
smart malware detection. This article examines
the work suggested for the identification of
executing files and provides information on
current research on malware revealing via
numerous characteristics and methods.

1.3. Evolution
There is a complete review of machine learning
malware identification methods. Owing to
significant variances in the number of data sets
used, ML algorithms, and valuation processes,
the detection technique provided are very
difficult to compare properly. The results of
suggested ML-based malware classificatory are
nevertheless equated and presented with certain
in this research.

1.4. Orgnization
The rest of the paper is systematized as follows.
Section 2 introduces systems for malware
research. Section 3 debates the machine
learning methods employed to categorize
malware. In Section 4 static, dynamic, and
hybrid, the analysis of different approaches is
provided. Section 5 assesses the result of the
examined papers, and the many criteria for
malware classification are explained in section
finally it illustrates the possible breadth and
concludes the study.

2. MALWARE ANALYSIS

Different malware data samples are investigated
to obtain results that can be utilized to detect
them. Static and dynamic studies are two basic
malware research methodologies that are
illustrated below.

2.1. Static Malware Analysis
In the study, features are gathered without

running the malware sample. Following the
analysis by the extraction of several static
features such as N-grams, hash value, strings,
opcodes, and PE header information. The
development of malware revealing software
(antiviruses, intrusion detection systems etc. is
based on these characteristics [26, 27]. Security
analysts examine malware samples either by
using reverse engineering or not. The malware
files are dismantled and converted into
assembly language code, which is then used to
test the malware sample during the coding
stage. Some of the most widely used IDA Pro,
Ollydbg, WinDbg, and capstone disassemblers
are among the most widely used disassemblers
and debuggers [33, 34]. An examination of the
assembly code is performed to discover the
processing route of a malicious operation file,
pattern and structure. This information may be
used to detect new or variant malware. To study
the assembly language code to identify the
execution functions is a time-consuming
procedure. The use of code obfuscation
practices makes the forecaster's work even more
difficult. Malware authors employ a variety of
methods to escape malware inspection,
including code encryption, code reordering
instructions, and dead code insert techniques
[28, 29]. Static analysis techniques are defined
briefly in Table 2, which is followed by a
discussion of the methodologies.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

12 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

3.1. Implementing ML Challenges in Malware
Identification
There are two main hurdles to implement ML in
malware revealing, discussed in the subsequent
sections.

3.1.1. High Computation Cost
Machine learning must be trained and upgraded
to overcome the first barrier to using it in
malware classifiers. Malware indicators must be
restructured frequently to be effective.
Computer views, where computer education has
successfully been used, unlike other NLP
domains, however, the classifiers often need to
be re-trained to identify new and mutated
viruses in this domain. According to the finding
of the research everyday thousands of new
viruses are created, and malware changes its
behavior in a matter of hours or minutes. In
contrast to other approaches, ML is thus more
expensive and complex. As a result, while using
machine learning for malware revealing, we
must think in a different way.

3.1.2. Adversarial Machine Learning
In the field of computer-based malware
categorization, adversarial machine learning is a
major concern. The use of machine learning
technologies by malware writers to escape
malware detectors is critical for the
development of unfavorable machine learning.
In addition, Kolosnjaji et al. (2016) [41]
pointed out that it was feasible to circumvent the
machine-learning revealing method provided by
the authors [42] with the aid of an intelligent
escape assault. It is a fact that, apart from
machine learning, there is no other technique
available for detecting the most recent and
greatly complicated malware. The development

of malware is also moving at a breakneck speed.
Now the Question is how we can hold these
tests to employ machine learning in cyber
security Realm. We may choose to minimize the
dimensionality of the dataset to reduce training
costs since machine learning algorithms take
longer to learn from a dataset that includes more
data characteristics than necessary.
Consequently, only the most useful and
discriminating malware features may make use
of function selection and size reduction
techniques to accomplish this. The second
problem of an adversary's machine learning
may be fixed by creating fusion malware
classifiers. Fusion classifiers may utilize both
dynamic and static information in their
classification. It is possible to train some
classification algorithms once the attributes
have been extracted. A single machine learning
method may be used to bypass the malware
detector; however, the malware detector
ensemble may be more resistant to unfavorable
machinery learning than a single ML algorithm.
Machine learning algorithms such as the vector
support machines (SVM), Naive Bayes (NB),
Random Forest (RF), and Decision Tree (DT),
as well as set algorithms such as Random Forest
(RF), and others in the classification literature
have been used to train classification models.
Machine learning techniques such as k-Nearest
Neighbors (KNN) and others are also used to
train classification models (ADA). ML
classification methods are briefly discussed in
Table 6, which includes a brief contrast of the
different techniques.

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

1. INTRODUCTION

 Despite major improvements in
computer security methods and their continual
growth, the malware remains the primary threat
in cyberspace [1, 2]. Malware investigators
analyze malicious samples using techniques

from several domains, including program
analysis and network analysis, to acquire a
better knowledge of their behavior and
evolution [3-6]. The first computer malware,
known as the brain, was developed in the 1980s
and a lot of computers were infected. At that
time the speed of malware creation was not very

fast because it was the peak of computerization
at the time. However, as time passes, a thousand
new types of malware are created each day [7].
Due to widespread development of malware
nowadays, the most recent malware is
significantly more targeted, covert zero-day,
and persistent than classic malware, which was
open, broad, and performed just once [8-10].
Furthermore, today's malware is quite
sophisticated, with the primary goal of
exploiting computer system flaws. To get
around malware identification and analysis
systems, malware authors utilize a variety of
obfuscation procedures [11]. Malware authors
also used encryption and encoding techniques to
create complicated harmful programs such as
metamorphic , polymorphic, and packed
malware, is extremely difficult to analyze and
identify [12-14].

The spreading vectors, which are mentioned in
Table 1, are typically used to propagate malware
from one system to another. The battle between
malware creators and analysts continues. Both
sides are creating new methodologies and
techniques for malware detection systems
concurrently, while the other is building
malicious software to breach the detection
system to target computer and network
resources. The malware researcher analyses
knew malware intending to prevent an assault
on the computer system [15, 16]. Malware is
spotted using one of two approaches:
signature-based and behavior-based
identification. While signature-based malware
recognition methods are quick and effective,
obfuscated software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on

behavior and signatures been developed, but
also many hybrid tactics that incorporate the
recompenses of both. Hybrid detection methods
are intended to overcome the concerns
associated with both signature-based and
behavior-based methods for detection. Zero-day
malware detection is thought-provoking as such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
suggested in the literature [16, 24].

Two main aspects arise after the evaluation of
the proposed machine-based detection methods.
For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for

addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

Malware authors also used encryption and
encoding techniques to create complicated
harmful programs such as polymorphic,
metamorphic, and packed malware, which is
extremely difficult to detect and analyze
[12-14]. The spreading vectors, which are
mentioned in Table 1, are typically used to
propagate malware from one computer system
to another. The battle between malware creators
and analysts continues. Both sides are creating
new methodologies and techniques for malware
detection systems concurrently, while the other
is building malicious software to breach the
detection system to target computer and
network resources. The malware researcher
analyses knew malware intending to prevent an
assault on the computer system [15, 16].
Malware is spotted using one of two methods:
signature-based detection or behavior-based
detection.

While signature-based malware recognition
methods are quick and effective, obfuscated
software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on
behavior and signatures been developed, but
also many hybrid tactics that incorporate the
advantages of both. Hybrid detection methods
are intended to overcome the issues associated
with both signature-based and behavior-based
methods for detection. Zero-day malware

detection is thought-provoking because such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
proposed in the literature [16, 24]. Two main
aspects arise after the evaluation of the proposed
machine-based detection methods.

For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for
addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

1.1. Contributions
The current state and evolution of malware
detection systems are discussed in this research
study.

1. Many classifications technique for machine
learning is explored and compared.

2. Recent classifications of signature,
behavioral and hybrid machine learning are
explored. It shares with its advantages and
limitations a fraction of the data in the
proposed malware detection systems.

3. The present study has covered some
important parameters that influence
malware classifier performance. A hybrid

model for malware detection has been
presented utilizing machine learning is also
provided. Finally, the paper was completed,
and the topic of the future directive was
discussed.

1.2. Scope Overview
The emphasis of this study is based on the
detection of malware using ML techniques, and
to create the executable files system's automated
smart malware detection. This article examines
the work suggested for the identification of
executing files and provides information on
current research on malware revealing via
numerous characteristics and methods.

1.3. Evolution
There is a complete review of machine learning
malware identification methods. Owing to
significant variances in the number of data sets
used, ML algorithms, and valuation processes,
the detection technique provided are very
difficult to compare properly. The results of
suggested ML-based malware classificatory are
nevertheless equated and presented with certain
in this research.

1.4. Orgnization
The rest of the paper is systematized as follows.
Section 2 introduces systems for malware
research. Section 3 debates the machine
learning methods employed to categorize
malware. In Section 4 static, dynamic, and
hybrid, the analysis of different approaches is
provided. Section 5 assesses the result of the
examined papers, and the many criteria for
malware classification are explained in section
finally it illustrates the possible breadth and
concludes the study.

2. MALWARE ANALYSIS

Different malware data samples are investigated
to obtain results that can be utilized to detect
them. Static and dynamic studies are two basic
malware research methodologies that are
illustrated below.

2.1. Static Malware Analysis
In the study, features are gathered without

running the malware sample. Following the
analysis by the extraction of several static
features such as N-grams, hash value, strings,
opcodes, and PE header information. The
development of malware revealing software
(antiviruses, intrusion detection systems etc. is
based on these characteristics [26, 27]. Security
analysts examine malware samples either by
using reverse engineering or not. The malware
files are dismantled and converted into
assembly language code, which is then used to
test the malware sample during the coding
stage. Some of the most widely used IDA Pro,
Ollydbg, WinDbg, and capstone disassemblers
are among the most widely used disassemblers
and debuggers [33, 34]. An examination of the
assembly code is performed to discover the
processing route of a malicious operation file,
pattern and structure. This information may be
used to detect new or variant malware. To study
the assembly language code to identify the
execution functions is a time-consuming
procedure. The use of code obfuscation
practices makes the forecaster's work even more
difficult. Malware authors employ a variety of
methods to escape malware inspection,
including code encryption, code reordering
instructions, and dead code insert techniques
[28, 29]. Static analysis techniques are defined
briefly in Table 2, which is followed by a
discussion of the methodologies.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

13Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

1. INTRODUCTION

 Despite major improvements in
computer security methods and their continual
growth, the malware remains the primary threat
in cyberspace [1, 2]. Malware investigators
analyze malicious samples using techniques

from several domains, including program
analysis and network analysis, to acquire a
better knowledge of their behavior and
evolution [3-6]. The first computer malware,
known as the brain, was developed in the 1980s
and a lot of computers were infected. At that
time the speed of malware creation was not very

Table 6: Description of classification methods for machine learning

ML
Methods

Depiction Benefits Drawbacks

NB [43] The likelihood to each class and the
dependent possibility of every database within
each class are computed using the NB
method. To predict the probability of a class
occurring in each data instance collection, the
cumulative likelihood of the class is estimated
by measuring the class chance and
conditionally likelihood of every backing
instance of data. NB can be utilized for both
multi-class and binary classification.

It is quite easy to use
and comprehend the
NB classification
method. It can operate
well with non-relevant
data. Furthermore, a
tiny dataset may be
used in the classifier.

The major
disadvantage of the
NB classification is
that when the data
features in training
data are correlated, it
is poorly performed.
According to NB,
data components
should be
autonomous.

K-NN [79] The K-Nearest Neighbor (K-NN)
classification technique divides the instance
input into classes based on the class labels of
the k-instances that are closest to the input
instance. It is anticipated that the class of the
input instance will correspond to the class of
the majority. If it is necessary to catch the
class label of the instance of input from the
adjacent K occurrences, distance measures
such as Euclidean, Manhattan, Hamming, and
Minkowski will be employed.

KNN is simple to
construct as novel
instances with well-
defined class labels,
and can be restructured
at a low rate. There are
no assumptions on the
data in the KNN
algorithm. Search space
is more resilient; thus,
the data set is not
linearly separable.

The major fault of
the k-NN method is
that, does not work
when a data set is
spread randomly. It is
moreover uncertain
to choose a suitable
value for k.

SVM [89] A hyper plane is used to split data instances
into various classes in the data set entry by the
SVM algorithm. A point vector in a two-
dimensional space input may be seen to divide
the instance of input data into two benign and
the binary class. For correctly categorizing
classes, usage of kernel functions in SVM
classification training is essential. SVM
classifiers utilize linear, radial, and poly
kernel features often.

SVM is the most
promising technique for
classification since it
provides high accuracy
while yet being simple
to use. SVM is capable
of handling large
datasets with multiple
dimensions. It may also
categorize separable
non-linear data. Each
issue has a
regularization
parameter and kernel
function.

When the penalty
parameter is set to a
high value, the
training time for
SVM becomes very
lengthy (C).
Furthermore, the
selection of the C
value involves a
balancing act
between a test error
and a training
miscalculation.

LR [81] As a parametrical binary classification
technique, Logistic Regression is used to
categorize data and divide it into groups. To
build a logistic regression classifier, LR
acquires the quantities from the training
samples. In a qualitative response model, the
likelihood ratio (LR) is employed to estimate
the empirical parameter value.

It is less difficult to
analyze and less
complicated to use. The
independent variables
do not need to have
identical variances, nor
must a normal
distribution with equal
variances be used. In
addition, since there are
no linear connections
between the
independent and
dependent variables, it
may be used to cope
with non-linear effects.

On average, the
accuracy of LR's
predictions is low. It
has a lot of
undesirable qualities
that must be dealt
with.

fast because it was the peak of computerization
at the time. However, as time passes, a thousand
new types of malware are created each day [7].
Due to widespread development of malware
nowadays, the most recent malware is
significantly more targeted, covert zero-day,
and persistent than classic malware, which was
open, broad, and performed just once [8-10].
Furthermore, today's malware is quite
sophisticated, with the primary goal of
exploiting computer system flaws. To get
around malware identification and analysis
systems, malware authors utilize a variety of
obfuscation procedures [11]. Malware authors
also used encryption and encoding techniques to
create complicated harmful programs such as
metamorphic , polymorphic, and packed
malware, is extremely difficult to analyze and
identify [12-14].

The spreading vectors, which are mentioned in
Table 1, are typically used to propagate malware
from one system to another. The battle between
malware creators and analysts continues. Both
sides are creating new methodologies and
techniques for malware detection systems
concurrently, while the other is building
malicious software to breach the detection
system to target computer and network
resources. The malware researcher analyses
knew malware intending to prevent an assault
on the computer system [15, 16]. Malware is
spotted using one of two approaches:
signature-based and behavior-based
identification. While signature-based malware
recognition methods are quick and effective,
obfuscated software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on

behavior and signatures been developed, but
also many hybrid tactics that incorporate the
recompenses of both. Hybrid detection methods
are intended to overcome the concerns
associated with both signature-based and
behavior-based methods for detection. Zero-day
malware detection is thought-provoking as such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
suggested in the literature [16, 24].

Two main aspects arise after the evaluation of
the proposed machine-based detection methods.
For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for

addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

Malware authors also used encryption and
encoding techniques to create complicated
harmful programs such as polymorphic,
metamorphic, and packed malware, which is
extremely difficult to detect and analyze
[12-14]. The spreading vectors, which are
mentioned in Table 1, are typically used to
propagate malware from one computer system
to another. The battle between malware creators
and analysts continues. Both sides are creating
new methodologies and techniques for malware
detection systems concurrently, while the other
is building malicious software to breach the
detection system to target computer and
network resources. The malware researcher
analyses knew malware intending to prevent an
assault on the computer system [15, 16].
Malware is spotted using one of two methods:
signature-based detection or behavior-based
detection.

While signature-based malware recognition
methods are quick and effective, obfuscated
software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on
behavior and signatures been developed, but
also many hybrid tactics that incorporate the
advantages of both. Hybrid detection methods
are intended to overcome the issues associated
with both signature-based and behavior-based
methods for detection. Zero-day malware

detection is thought-provoking because such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
proposed in the literature [16, 24]. Two main
aspects arise after the evaluation of the proposed
machine-based detection methods.

For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for
addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

1.1. Contributions
The current state and evolution of malware
detection systems are discussed in this research
study.

1. Many classifications technique for machine
learning is explored and compared.

2. Recent classifications of signature,
behavioral and hybrid machine learning are
explored. It shares with its advantages and
limitations a fraction of the data in the
proposed malware detection systems.

3. The present study has covered some
important parameters that influence
malware classifier performance. A hybrid

model for malware detection has been
presented utilizing machine learning is also
provided. Finally, the paper was completed,
and the topic of the future directive was
discussed.

1.2. Scope Overview
The emphasis of this study is based on the
detection of malware using ML techniques, and
to create the executable files system's automated
smart malware detection. This article examines
the work suggested for the identification of
executing files and provides information on
current research on malware revealing via
numerous characteristics and methods.

1.3. Evolution
There is a complete review of machine learning
malware identification methods. Owing to
significant variances in the number of data sets
used, ML algorithms, and valuation processes,
the detection technique provided are very
difficult to compare properly. The results of
suggested ML-based malware classificatory are
nevertheless equated and presented with certain
in this research.

1.4. Orgnization
The rest of the paper is systematized as follows.
Section 2 introduces systems for malware
research. Section 3 debates the machine
learning methods employed to categorize
malware. In Section 4 static, dynamic, and
hybrid, the analysis of different approaches is
provided. Section 5 assesses the result of the
examined papers, and the many criteria for
malware classification are explained in section
finally it illustrates the possible breadth and
concludes the study.

2. MALWARE ANALYSIS

Different malware data samples are investigated
to obtain results that can be utilized to detect
them. Static and dynamic studies are two basic
malware research methodologies that are
illustrated below.

2.1. Static Malware Analysis
In the study, features are gathered without

running the malware sample. Following the
analysis by the extraction of several static
features such as N-grams, hash value, strings,
opcodes, and PE header information. The
development of malware revealing software
(antiviruses, intrusion detection systems etc. is
based on these characteristics [26, 27]. Security
analysts examine malware samples either by
using reverse engineering or not. The malware
files are dismantled and converted into
assembly language code, which is then used to
test the malware sample during the coding
stage. Some of the most widely used IDA Pro,
Ollydbg, WinDbg, and capstone disassemblers
are among the most widely used disassemblers
and debuggers [33, 34]. An examination of the
assembly code is performed to discover the
processing route of a malicious operation file,
pattern and structure. This information may be
used to detect new or variant malware. To study
the assembly language code to identify the
execution functions is a time-consuming
procedure. The use of code obfuscation
practices makes the forecaster's work even more
difficult. Malware authors employ a variety of
methods to escape malware inspection,
including code encryption, code reordering
instructions, and dead code insert techniques
[28, 29]. Static analysis techniques are defined
briefly in Table 2, which is followed by a
discussion of the methodologies.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

14 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

1. INTRODUCTION

 Despite major improvements in
computer security methods and their continual
growth, the malware remains the primary threat
in cyberspace [1, 2]. Malware investigators
analyze malicious samples using techniques

from several domains, including program
analysis and network analysis, to acquire a
better knowledge of their behavior and
evolution [3-6]. The first computer malware,
known as the brain, was developed in the 1980s
and a lot of computers were infected. At that
time the speed of malware creation was not very

RF [91] Random Forest is a machine learning method
that makes use of bagging to improve
performance. DT produces a single decision
tree, while RF creates multiple decision trees
based on separate sub-sets of the dataset with
replacement, each of which is different from
the previous one. The result of the RF is
determined by the votes of each tree.

Since the RF learning
machine algorithm
randomly chooses
various subsets, it is
immune from data set
variations and therefore
minimizes the danger
of overfitting. This
provides the best results
in categorization. It
may provide excellent
results, but the dataset
varies, as opposed to
the decision tree.

The training pace is
sluggish. The number
of classifiers that
must be trained to
create a powerful
classifier is directly
proportional to the
strength of the
classifier. Unlike
decision-making
book since many
decision-making
bodies are designed
to produce a strong
modal outcome.
Because of this, it is
challenging to assess
the consequences.

Boosting
Algorithms
[67]

Alternative approach to ML is to boost
processes that are used to train many weak
classifiers sequentially. Without a
replacement for sub-sets of data, weak
classification is learned linear. The average of
all weak graduates is then utilized to build a
strong grading system. Another kind of
algorithm is boosting machines. Boosting
varies in many ways from bagging. Bagging
subsets are chosen at random from the entire
data samples, while the training subsets are
designated from previously unselected data.
Adaptive and Gradient boosting (GB) are two
boosting approaches that are often utilized
(AdaBoost).

Boosting techniques
with any dataset works
well. Boost techniques,
like the RDF, address
the variation in data
characteristics. To train
the week classifiers,
several fundamental
classification methods
for machine research
(SVM, KNN, DT) may
be employed in
conjunction with boost
approaches before
edifice the ultimate
classifier.

Enhancing systems
may be time-
consuming and
computer consuming.
Increased algorithms
on a real-time
platform are tough to
implement. A long
and time-consuming
computation is
required for malware
analysis since the
classification method
must be used to
classify millions of
malware samples.

DT [90] A DT is built by calculating the information
achievement of each attribute in a dataset and
applying that information gain to the decision
tree classification. The root is the most
important feature for obtaining knowledge.
After then, the other transforms into a leaf of
the plant's root. DT that has been created is
then used to forecast the classes. Each node
within the decision tree (not leaf) verifies the
function, the function value correlates to the
branch of the decision tree and a leaf-node is a
class mark. The model has two division
functions: information gain and Gini index.
The model is trained.

High dimensional
datasets and bright data
may be handled using
DT classifiers. In
contrast to KNN and
SVM classifiers, it
operates in the white
case. It is feasible to do
a trained interpretation.
This enables the trained
model to be analyzed in
depth. DT classification
also has a high workout
pace.

A minor modification
of the dataset may
lead to a big change
in the decision tree
structure, which will
make the model
unstable. It does not
work properly
because of the
limited amount of
data characteristics.

ANN [73] Artificial Neural Networks (ANNs) represent
standard techniques that help identify decision
limits while reducing error rates in the same
manner that human brains do.

ANN may be used to
model a non-linear
dataset with a high
number of input
characteristics. ANN
may be utilized to solve
virtually any issue,
especially the optimum
problem.

Over-fitting may be a
problem for ANNs.
The weights for
training data may not
be computationally
costly for additional
data sets, even
though they are of
the same
demographics as the
training data.

fast because it was the peak of computerization
at the time. However, as time passes, a thousand
new types of malware are created each day [7].
Due to widespread development of malware
nowadays, the most recent malware is
significantly more targeted, covert zero-day,
and persistent than classic malware, which was
open, broad, and performed just once [8-10].
Furthermore, today's malware is quite
sophisticated, with the primary goal of
exploiting computer system flaws. To get
around malware identification and analysis
systems, malware authors utilize a variety of
obfuscation procedures [11]. Malware authors
also used encryption and encoding techniques to
create complicated harmful programs such as
metamorphic , polymorphic, and packed
malware, is extremely difficult to analyze and
identify [12-14].

The spreading vectors, which are mentioned in
Table 1, are typically used to propagate malware
from one system to another. The battle between
malware creators and analysts continues. Both
sides are creating new methodologies and
techniques for malware detection systems
concurrently, while the other is building
malicious software to breach the detection
system to target computer and network
resources. The malware researcher analyses
knew malware intending to prevent an assault
on the computer system [15, 16]. Malware is
spotted using one of two approaches:
signature-based and behavior-based
identification. While signature-based malware
recognition methods are quick and effective,
obfuscated software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on

behavior and signatures been developed, but
also many hybrid tactics that incorporate the
recompenses of both. Hybrid detection methods
are intended to overcome the concerns
associated with both signature-based and
behavior-based methods for detection. Zero-day
malware detection is thought-provoking as such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
suggested in the literature [16, 24].

Two main aspects arise after the evaluation of
the proposed machine-based detection methods.
For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for

addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

Malware authors also used encryption and
encoding techniques to create complicated
harmful programs such as polymorphic,
metamorphic, and packed malware, which is
extremely difficult to detect and analyze
[12-14]. The spreading vectors, which are
mentioned in Table 1, are typically used to
propagate malware from one computer system
to another. The battle between malware creators
and analysts continues. Both sides are creating
new methodologies and techniques for malware
detection systems concurrently, while the other
is building malicious software to breach the
detection system to target computer and
network resources. The malware researcher
analyses knew malware intending to prevent an
assault on the computer system [15, 16].
Malware is spotted using one of two methods:
signature-based detection or behavior-based
detection.

While signature-based malware recognition
methods are quick and effective, obfuscated
software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on
behavior and signatures been developed, but
also many hybrid tactics that incorporate the
advantages of both. Hybrid detection methods
are intended to overcome the issues associated
with both signature-based and behavior-based
methods for detection. Zero-day malware

detection is thought-provoking because such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
proposed in the literature [16, 24]. Two main
aspects arise after the evaluation of the proposed
machine-based detection methods.

For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for
addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

1.1. Contributions
The current state and evolution of malware
detection systems are discussed in this research
study.

1. Many classifications technique for machine
learning is explored and compared.

2. Recent classifications of signature,
behavioral and hybrid machine learning are
explored. It shares with its advantages and
limitations a fraction of the data in the
proposed malware detection systems.

3. The present study has covered some
important parameters that influence
malware classifier performance. A hybrid

model for malware detection has been
presented utilizing machine learning is also
provided. Finally, the paper was completed,
and the topic of the future directive was
discussed.

1.2. Scope Overview
The emphasis of this study is based on the
detection of malware using ML techniques, and
to create the executable files system's automated
smart malware detection. This article examines
the work suggested for the identification of
executing files and provides information on
current research on malware revealing via
numerous characteristics and methods.

1.3. Evolution
There is a complete review of machine learning
malware identification methods. Owing to
significant variances in the number of data sets
used, ML algorithms, and valuation processes,
the detection technique provided are very
difficult to compare properly. The results of
suggested ML-based malware classificatory are
nevertheless equated and presented with certain
in this research.

1.4. Orgnization
The rest of the paper is systematized as follows.
Section 2 introduces systems for malware
research. Section 3 debates the machine
learning methods employed to categorize
malware. In Section 4 static, dynamic, and
hybrid, the analysis of different approaches is
provided. Section 5 assesses the result of the
examined papers, and the many criteria for
malware classification are explained in section
finally it illustrates the possible breadth and
concludes the study.

2. MALWARE ANALYSIS

Different malware data samples are investigated
to obtain results that can be utilized to detect
them. Static and dynamic studies are two basic
malware research methodologies that are
illustrated below.

2.1. Static Malware Analysis
In the study, features are gathered without

running the malware sample. Following the
analysis by the extraction of several static
features such as N-grams, hash value, strings,
opcodes, and PE header information. The
development of malware revealing software
(antiviruses, intrusion detection systems etc. is
based on these characteristics [26, 27]. Security
analysts examine malware samples either by
using reverse engineering or not. The malware
files are dismantled and converted into
assembly language code, which is then used to
test the malware sample during the coding
stage. Some of the most widely used IDA Pro,
Ollydbg, WinDbg, and capstone disassemblers
are among the most widely used disassemblers
and debuggers [33, 34]. An examination of the
assembly code is performed to discover the
processing route of a malicious operation file,
pattern and structure. This information may be
used to detect new or variant malware. To study
the assembly language code to identify the
execution functions is a time-consuming
procedure. The use of code obfuscation
practices makes the forecaster's work even more
difficult. Malware authors employ a variety of
methods to escape malware inspection,
including code encryption, code reordering
instructions, and dead code insert techniques
[28, 29]. Static analysis techniques are defined
briefly in Table 2, which is followed by a
discussion of the methodologies.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

15Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

4. MALWARE DETECTION
TECHNIQUES

The objective is to detect and defend from
harmful programs that could harm the computer
systems or network properties. The input is
evaluated in various instances so that malware
samples are detected and classified into an
appropriate family. It is necessary the use of
specialized harmful file knowledge or expertise
that accurately reflects the actual malware file
behavior. Consequently, numerous malware
program samples are evaluated utilizing
dynamic, static and hybrid systems, depending
on their complexity. It is then displayed
properly to help with the continued training of
the revealing system. According to authors [43],
many distinct characteristics are used by several
malware detection researchers, including
Opcodes, strings, PE header information , API
calls, ,Windows registry, files system accessing
AV/Sandbox submissions, network Activities,
and generated exceptions. Malware
programmed files are assessed, and their
characteristics are extracted and presented in an
intermediate format prior to initiating malware
detection. This intermediate form shows an
important function in revealing. The
false-positive rate will only be decreased if the
collected data is optimal for malware revealing.
The numerous malware revealing approaches
presented are categorized into three primary
classes, as mentioned below.

4.1. Signature-Based Malware Detection
This technique used to identify malware that is
characterized by a certain file pattern and
signature. It is a standard way of detecting
known harmful files quickly, Compared to other
techniques. Signature-based methods are often

used in the development of antivirus software.
One easy technique to construct the signature of
malware program files by utilizing a hash
algorithm such as message-digest algorithm
(MD5), Secure hash Algorithm (SHA1) and
others. Malware file signatures are generated
and kept in the detection system database to
check the unknown program file signature. It is
assumed that if the signatures of the harmful file
match, formerly it will be avowed as virus else
the benign file. There is a problem with this
because, if just one byte of a file code is
modified, the signature of the program file will
also be altered. It follows that a new signature
must be created for each new malware variant
and each upgraded malware variant. Only after
that will a malware detector be able to identify
this malware. In addition, new malware
detection techniques based on signatures have
been proposed, which make use of a variety of
models, including program, graphic flow
control, and mnemonic sequences. The malware
data samples are investigated by means of a
range of IDA Pro, Preview, PeStudio, and
functional tools, among other tools, to
determine if they are malicious. Previously
mentioned standard and master learning
techniques are utilized to train the malware
detection system, which in turn is taught using
the characteristics that were extracted. All the
various methods to creating signature malware
classifiers that are based on static characteristics
is shown in Fig. 3. When it comes to developing
malware detectors, there are many tools, static
features, and methods to choose from. All the
techniques discussed in this section based on
signatures were proposed using this
architecture.

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

1. INTRODUCTION

 Despite major improvements in
computer security methods and their continual
growth, the malware remains the primary threat
in cyberspace [1, 2]. Malware investigators
analyze malicious samples using techniques

from several domains, including program
analysis and network analysis, to acquire a
better knowledge of their behavior and
evolution [3-6]. The first computer malware,
known as the brain, was developed in the 1980s
and a lot of computers were infected. At that
time the speed of malware creation was not very

fast because it was the peak of computerization
at the time. However, as time passes, a thousand
new types of malware are created each day [7].
Due to widespread development of malware
nowadays, the most recent malware is
significantly more targeted, covert zero-day,
and persistent than classic malware, which was
open, broad, and performed just once [8-10].
Furthermore, today's malware is quite
sophisticated, with the primary goal of
exploiting computer system flaws. To get
around malware identification and analysis
systems, malware authors utilize a variety of
obfuscation procedures [11]. Malware authors
also used encryption and encoding techniques to
create complicated harmful programs such as
metamorphic , polymorphic, and packed
malware, is extremely difficult to analyze and
identify [12-14].

The spreading vectors, which are mentioned in
Table 1, are typically used to propagate malware
from one system to another. The battle between
malware creators and analysts continues. Both
sides are creating new methodologies and
techniques for malware detection systems
concurrently, while the other is building
malicious software to breach the detection
system to target computer and network
resources. The malware researcher analyses
knew malware intending to prevent an assault
on the computer system [15, 16]. Malware is
spotted using one of two approaches:
signature-based and behavior-based
identification. While signature-based malware
recognition methods are quick and effective,
obfuscated software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on

behavior and signatures been developed, but
also many hybrid tactics that incorporate the
recompenses of both. Hybrid detection methods
are intended to overcome the concerns
associated with both signature-based and
behavior-based methods for detection. Zero-day
malware detection is thought-provoking as such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
suggested in the literature [16, 24].

Two main aspects arise after the evaluation of
the proposed machine-based detection methods.
For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for

addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

Malware authors also used encryption and
encoding techniques to create complicated
harmful programs such as polymorphic,
metamorphic, and packed malware, which is
extremely difficult to detect and analyze
[12-14]. The spreading vectors, which are
mentioned in Table 1, are typically used to
propagate malware from one computer system
to another. The battle between malware creators
and analysts continues. Both sides are creating
new methodologies and techniques for malware
detection systems concurrently, while the other
is building malicious software to breach the
detection system to target computer and
network resources. The malware researcher
analyses knew malware intending to prevent an
assault on the computer system [15, 16].
Malware is spotted using one of two methods:
signature-based detection or behavior-based
detection.

While signature-based malware recognition
methods are quick and effective, obfuscated
software easily evades them [17-19].
Behavior-based approaches, on the other hand,
outperform obfuscation. The behavior-based
approach takes a long time. Not only have
methods for detecting malware based on
behavior and signatures been developed, but
also many hybrid tactics that incorporate the
advantages of both. Hybrid detection methods
are intended to overcome the issues associated
with both signature-based and behavior-based
methods for detection. Zero-day malware

detection is thought-provoking because such
malware makes use of the recent susceptibilities
that have not yet been discovered [19, 20].
Crackers aim to find vulnerabilities in new
software and exploit them to breach the
software's security. Since the first malware
assault on a computer system, a defense
mechanism has been built [21, 22]. Machine
learning offers a potential answer to this
problem by allowing developers to create
malware classifiers that can detect new virus
and it’s variant [23, 24]. Various machine
learning-based strategies based on supervised
and unsupervised algorithms have been
proposed in the literature [16, 24]. Two main
aspects arise after the evaluation of the proposed
machine-based detection methods.

For the testing of malware, the first stage is the
development of classification algorithms for the
classification device and the second step is the
extraction of malware using a dynamic and
static approach. These two variables affect the
precise classification of malware. Both the NB,
DT, SVM, and ensemble classification
technology RF and Ada boosting have been
utilized and enhanced for classification training.
Classifying ensembles usually provide better
results [25]. The benefits and limitations of each
categorization algorithm include. In addition,
the representation of the feature greatly changes
the detection rate of the classifier. One needs a
far more reliable automated malware detection
technology. Some academics have created
automated cognitive analytic methods for
addressing the extremely disastrous zero-day
malware that can also resist malware assaults.
Continuous study of malware is crucial to
update techniques for detecting new malware
patterns and behavior and variants in existing
malware.

1.1. Contributions
The current state and evolution of malware
detection systems are discussed in this research
study.

1. Many classifications technique for machine
learning is explored and compared.

2. Recent classifications of signature,
behavioral and hybrid machine learning are
explored. It shares with its advantages and
limitations a fraction of the data in the
proposed malware detection systems.

3. The present study has covered some
important parameters that influence
malware classifier performance. A hybrid

model for malware detection has been
presented utilizing machine learning is also
provided. Finally, the paper was completed,
and the topic of the future directive was
discussed.

1.2. Scope Overview
The emphasis of this study is based on the
detection of malware using ML techniques, and
to create the executable files system's automated
smart malware detection. This article examines
the work suggested for the identification of
executing files and provides information on
current research on malware revealing via
numerous characteristics and methods.

1.3. Evolution
There is a complete review of machine learning
malware identification methods. Owing to
significant variances in the number of data sets
used, ML algorithms, and valuation processes,
the detection technique provided are very
difficult to compare properly. The results of
suggested ML-based malware classificatory are
nevertheless equated and presented with certain
in this research.

1.4. Orgnization
The rest of the paper is systematized as follows.
Section 2 introduces systems for malware
research. Section 3 debates the machine
learning methods employed to categorize
malware. In Section 4 static, dynamic, and
hybrid, the analysis of different approaches is
provided. Section 5 assesses the result of the
examined papers, and the many criteria for
malware classification are explained in section
finally it illustrates the possible breadth and
concludes the study.

2. MALWARE ANALYSIS

Different malware data samples are investigated
to obtain results that can be utilized to detect
them. Static and dynamic studies are two basic
malware research methodologies that are
illustrated below.

2.1. Static Malware Analysis
In the study, features are gathered without

running the malware sample. Following the
analysis by the extraction of several static
features such as N-grams, hash value, strings,
opcodes, and PE header information. The
development of malware revealing software
(antiviruses, intrusion detection systems etc. is
based on these characteristics [26, 27]. Security
analysts examine malware samples either by
using reverse engineering or not. The malware
files are dismantled and converted into
assembly language code, which is then used to
test the malware sample during the coding
stage. Some of the most widely used IDA Pro,
Ollydbg, WinDbg, and capstone disassemblers
are among the most widely used disassemblers
and debuggers [33, 34]. An examination of the
assembly code is performed to discover the
processing route of a malicious operation file,
pattern and structure. This information may be
used to detect new or variant malware. To study
the assembly language code to identify the
execution functions is a time-consuming
procedure. The use of code obfuscation
practices makes the forecaster's work even more
difficult. Malware authors employ a variety of
methods to escape malware inspection,
including code encryption, code reordering
instructions, and dead code insert techniques
[28, 29]. Static analysis techniques are defined
briefly in Table 2, which is followed by a
discussion of the methodologies.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

16 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

1. INTRODUCTION

 Despite major improvements in
computer security methods and their continual
growth, the malware remains the primary threat
in cyberspace [1, 2]. Malware investigators
analyze malicious samples using techniques

from several domains, including program
analysis and network analysis, to acquire a
better knowledge of their behavior and
evolution [3-6]. The first computer malware,
known as the brain, was developed in the 1980s
and a lot of computers were infected. At that
time the speed of malware creation was not very

Fig. 3. The malware detection system architecture based on static extracted features

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

17Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

18 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

19Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

20 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

21Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

22 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

Author(s) Input Data Source/ Number of malwares
samples

Outcomes

Wang and Wu
[45]

Portable Executable
(PE) Header

1056-Packed Malware and3789-
Unpacked Malware and Benign Files
/Vxheaven and PCHome Malware
Repositories

TPR-94.54%

Veeramani [26] Application
Programming Interface
calls

214- Malware and 300-Benign Files
Vxheaven Malware Repository

Accuracy-97%

Gavrilut [69] Application
Programming Interface
calls

16437-Benign Files, 12817-Malware Accuracy-88.78%

Shabtai [73] N-gram Opcode
sequence

7688-Malware and 22735-Benign
Files / Vxheaven Malware
Repository

Accuracy-96% TPR-
95%,
FPR-0.1%

Elhadi [74] Data Dependent
Application
Programming Interface
Graph

85-Malware Files / Vxheaven
Malware Repository

Accuracy-98%

Markel [43] Portable Executable
Header

42003 benign files, 122799 malware
files.

Accuracy-97% (Tree
CART)
94.5% (LR)

Pechaz [75] N-gram 1207-Malware and 194-Benign Files
/ Vxheaven Malware Repository

Accuracy-90%

Srndic [76] Strings, API Calls 440000-PDF and 40000-SWF files /
Virus total Malware Repository

Accuracy-
99%(PDF)95%(SWF)

Wang [80] Opcode Sequence 11665-Malware, 1000-Benign Files /
Vxheaven Malware Repository

Accuracy-88.75%

Huda [78] Application
Programming Interface
calls

Vxheaven Malware Repository and
using Honeypot

Accuracy-96.84%

Kim [93] Portable Executable
Header

271095-Malware, 9773-Benign Files
/ Vxheaven Malware Repository

Accuracy-99%

Narra [3] Opcode Sequence 7800-Malware Files / VirusShare
dataset

Accuracy-98%

Raff [42] Byte N-gram 400000-Malware and Benign Files /
/VirusShare Malware Repository
and Open Malware, MS Window

Accuracy-97.4%

Liu [19] N-gram opcode, Image
representation

20000-Malware Files Accuracy-95.10%

Searles [117] Control Flow Graph 22000-Malware Files 19% more accuracy
than n-gram model

Nagano and
Uda [79]

DLL import, hexdump
and assembly code

3600-Malware Files / MWS 2016
Malware Dataset

Accuracy-99%

Nikolopoulos
and Polenakis
 [96]

System Call
Dependency graph

2631-Malware Files Accuracy-83.42%

Le [97] Greyscale images 10568-Malware Files Accuracy-98.8%

Table 7: A complete analysis of the signature- based malware detection techniques

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

23Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

The proposed behavior-based malware
detection different algorithms are explained in
this section. Bailey et al. provided an interaction
malware detection technique with system
services that included System API calls, special
addresses, and functions [83]. Malware files
behave in a variety of ways, which may be
classified into many categories. A malware file,
for example, may include a virus, a Trojan
horse, spyware, or worms. Moreover, malware
is also categorized according to the information
retrieved in various classes and subclasses. The
Malware Instructions Set (MIST) was
suggested by Trinius et al. have described a new
Malware Instruction Set (MIST) representing
malware behaviors. CW sandbox used to
analyze the malware samples[84] . The XML
report is created by Sandbox and after that it is
converted into a MIST format. In addition,

machine learning and data mining have helped
to improve the efficiency of malware analysis
while simultaneously reducing the number of
reports. Rieck et al. proposed an autonomous
malware detection framework to detect
malware class variants [84]. The framework
divided into two steps. The first step uses the
clustering method to make malware types
comparable. The second step classifies or
assigns the unknown malware file to the
discovered classes. MIST representation was
utilized to speed up the process of clustering and
classification. Vasilescu et al. have made use of
the Cuckoo sandbox to get dynamic analysis
[85]. The generated report includes API calls to
the system, log entries, and portable binary
running information, among other things. The
malware detector is trained with these extracted
characteristics to identify zero-day malware. A

data-dependent API graph-based malware
detection method was developed by Elhadi et al.
[76]. In the first stage, the clustering technique
is used to create malware classes that have
comparable characteristics to one another. In the
second step, the unknown malware file is
categorized or allocated to one of the recognized
malware classes, depending on the properties of
accelerate the clustering and classification
process. Hegedus et al. utilized behavioral
characteristics for malware identification to two
classifiers k-nearest neighbor and random forest
[86]. The technique proposed operates in two
phases. In the first phase, the random projection
is used to reduce the dimensionality and
duration of the variable space. The index of
Jaccard was used to measure the similarity of
malware traits. Then the second phase is to
utilize, detect and categories malware samples
with Virus Total’s K-nearest neighbor classifier.
According to Mohaisen et al. they have used the
malicious filename in a virtual environment to
remove behavioral devices [81]. After that,
malware samples are identified based on file
transactions, network activity, registry key
changes, and memory operations to determine
their origin. SVM was used to categorize the
data, and it was quite effective. Logic regression
and hierarchical clustering methods were used
to split Characteristics. A special version of this
format, known as the MIST representation, was
created to Malware into families that had similar
characteristics, with each family having its own
set of attributes. The experiment was conducted
out on both medium and big datasets (each with
400 samples), and the results were compared
(115,000 malware samples). The article implies
98% accuracy in the classification of malware.
According to Ghiasi et al. proposed a new
malware recognition approach using CPU
registry entries [87].

In the monitored environment, this approach
extracts API calls with dynamic analysis by
running binary files. A similarity between two
binary files was then calculated based on the
content of their register. Four Machine learning
methods are utilized include Random Forest,
Bayesian Logistic Regression, and Bayesian
Logistic Regression with Bayesian Logistic
Regression. To train the detection model,
regression, SMO, and J48 have all been used.
The article declares well-regulated time to
match existing patterns efficiently. In the
Cuckoo sandbox method, Pirscoveanu et al
collected the contextual features of binary files.
A random forest algorithm was developed for
the categorization system [65]. Ki et al.
presented a technique of malware identification
that relied on the API call sequences [108]. The
study shows that dynamic analysis has been
proven to be more effective in obtaining
malware behavioral features. it is observed that
all the malwares contain Sequence alignment
technique has been used to address redundant or
non-relevant code insertion in malware. In the
testing step, if unknown file calls are matched to
stored API patterns for the extracted APIs, the
file is declared malicious else the file is benign.
Pan et al. proposed a malware classification
system based on the BPNN model [88].

The HABO system is designed to collect
runtime functions. The essential elements of the
report were extracted, for example reading
foreign memory, creating mortexes, creating the
process, or modifying registry entries. The
model was developed utilizing the method of
the Back Propagation neural network.
Narayanan et al. developed a supervised
machine learning techniques to build the
classification of malware [92]. Polymorphic
malware was managed using the suggested
method as pictures capable of capturing small

changes while maintaining the general
structure. Three classifiers have been trained on
the provided dataset using the KNN, ANN, and
SVM methods. Cho et al. presented a technique
employing the API call sequence [93]. API calls
have been extracted by running malware
samples in cuckoo sandbox for the construction
of the API sequences. 150 samples from 10
malware families were trained and 87 %
accuracy was obtained. Mira et al. presented a
research in which they built an API-based
malware detection model that was trained in
two algorithms: the Longest Common
Subsequent (LCSS) and the Longest Common
Substring (LCSS) (LCS) [90]. The
multi-process execution behavior of malicious
files was presented by Bidoki et al. [57] .
Malware may disseminate its activities over a
wide range of legitimate operations, but the
overall effect is always negative. It is necessary
to use the improved learning method during the
training phase, and every API request must be
gathered during the detection phase. The
execution rules of all processes have been
merged to determine whether a binary file is
harmful. A graphical call system technique was
proposed by Ming et al. (2017) [94] that
generates an invisible malware problem system
call-based dependency diagram using a
graphical call system. According to the author,
all variants of the same malware have the same
semantics; the only difference is in the
malware's syntax. A technique was trained on
5200 malware files and then tested on 960
malware files before being released. The model
that was proposed was 97.30 % accurate.
According to Wagner et al. (2017) [95],
malware may be visually identified by its
activities. This system was created to monitor
the visual pattern of malware activities using
knowledge-assisted visual analysis. Mao et al.
(2017) [113] established a methodology

wherein they assess, based on their usefulness,
the importance of system subjects. This allows
us to create a network for security dependencies
that gives us an insight into the value of system
object security. Enhanced DT It was decided to
utilize Amazon Web Services to host the new
cloud-based design, which provides for greater
scalability. To train the classifier, 150,000
malware samples and 87,000 benign samples
were used. Using the improved DT algorithm,
the detecting system obtained a 99 % accuracy
rate in its detection.

Ding et al. proposed the idea of graph-based
malware detection [31]. Instead, then creating a
behaviour graph for each malware, the author
proposes a standard graph for every malware
family. Dynamic taint analysis technique was
used for building the behavior graph. The
highest weight parameter subgraph was used to
compare the graph of an unknown file to the
graphs of each malware family that had
previously been created. Stiborek et al. have
presented a technique for capturing malware
behavior by running malware in a sandbox
environment [99]. The sandbox has a series of
names and resources for each malware sample.
The term for this approach to the issue framing
is multiple instance learning. Machine learning
is used to samples of varied sizes of malware; a
report on many instances of learning explains
several ways to deal with the issue of sample
size. To address the issue of sample size
fluctuation, a vocabulary approach was
employed. The method suggested was
developed in a big 11,2115 binary and obtained
a precision rate of 95.4 %. Ghafir et al.
presented an advanced persistent threat
detection approach. [100]. To train the classifier,
the author utilized SVM, KNN, and group
methods. This method successfully generated
the accuracy of 84.8% in APT prediction.

Run-time features were used by Alaeiyan et al.
to construct a malware detection algorithm
[101]. Using the Parsa sandbox, this method has
also discovered evasive malware. The given
method was tested on 1100 malware samples
and was shown to be accurate to 97.9% of the
samples. For the Windows platform, Xiaofeng
et al. created an API that uses sequence-based
malware classifiers.[102]. The cuckoo sandbox
was used to eliminate dynamic API calls from
the application. Following the training of two
classifiers. A model for categorizing malicious
traffic was proposed by Arivudainambi et al. in
their study of network traffic analysis [103].
They integrated PCA to handle sophisticated
anti-network traffic analyses. The approach
presented was evaluated via the Noriben,
Cuckoo, and Limon sandboxes by running 1000
malware samples. This technique has a 99%
accuracy rate in terms of malware identification.
Yucel et al. presented a techniques for creating
executable memory file images [104]. A total of
123 malware samples from various families
were collected. It was discovered that malware
samples ran similarly when run in virtual
machines, and 3D memory snapshots were
created for comparison. It showed that various
families of malware had varying rates of
similarity, such as 0.99 for Marina Botnet, 0.99
for Rex Virus, and 0.886 on average. Rabbani et
al. presented a model for the detection of
malicious behavior conduct in network traffic
using a Probabilistic Neural Network (PNN)
[105]. The vector featured IP, TCP, UDP, CON,
jitters, and other network capabilities. A
modified version of this technique was
developed by combining the PSO (Particle
Swarm Optimization) algorithm with the PNN
algorithms, which resulted in a malicious traffic
detection rate of 96.5 %.

Table 8 compares all the behavioral techniques

that were examined. There is now more research
being conducted on behaviorally based
techniques of malware identification. This is
because signature-based techniques are
incapable of dealing with emerging and
zero-day malware. Using runtime features,
these approaches have outperformed
signature-based accuracy solutions in terms of
accuracy. Many researchers, including Elhadi et
al. [106], Pan et al. [88], Ali et al. [67], and
others, have made use of dynamic API calls.
Alaeiyan et al. [101] have used file, registry, and
network activities in the training of malware
classifiers using supervised classification
techniques, as have Stiborek et al. [99], Paketas
et al. and Stiborek et al. [99]. For instance,
Ghafir et al. [101] have been developing their
models with several runtime characteristics. The
detection rate is considerably greater for
behavior methods as compared to signature
based. The methods also suggested to claim that
new and obscured malware may be predicted.
Historically, it has taken a long time to extract
the runtime function from conventional
behavioral methods; however, the use of
machine-learning algorithms has sped up the
process, allowing the proposed model to make
use of more data and larger malware samples to
train and test the malware classification system.
However, the implementation of these
suggested methods presents certain problems
and difficulties. The proposed methods are
tested and verified using a range of malware
samples. Furthermore, classifiers vary in
techniques for training. Before prediction, high
processing time and the running duration of
malware samples are obstacles to applying the
behavioral technology to a real system. The
advantages of signature and Behavior methods,
described in the next section. In addition, hybrid
approaches have been put out and will be
examined in the section.

Fig. 4. Scheme of behavioral malware detection system architecture

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

The proposed behavior-based malware
detection different algorithms are explained in
this section. Bailey et al. provided an interaction
malware detection technique with system
services that included System API calls, special
addresses, and functions [83]. Malware files
behave in a variety of ways, which may be
classified into many categories. A malware file,
for example, may include a virus, a Trojan
horse, spyware, or worms. Moreover, malware
is also categorized according to the information
retrieved in various classes and subclasses. The
Malware Instructions Set (MIST) was
suggested by Trinius et al. have described a new
Malware Instruction Set (MIST) representing
malware behaviors. CW sandbox used to
analyze the malware samples[84] . The XML
report is created by Sandbox and after that it is
converted into a MIST format. In addition,

machine learning and data mining have helped
to improve the efficiency of malware analysis
while simultaneously reducing the number of
reports. Rieck et al. proposed an autonomous
malware detection framework to detect
malware class variants [84]. The framework
divided into two steps. The first step uses the
clustering method to make malware types
comparable. The second step classifies or
assigns the unknown malware file to the
discovered classes. MIST representation was
utilized to speed up the process of clustering and
classification. Vasilescu et al. have made use of
the Cuckoo sandbox to get dynamic analysis
[85]. The generated report includes API calls to
the system, log entries, and portable binary
running information, among other things. The
malware detector is trained with these extracted
characteristics to identify zero-day malware. A

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

24 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

data-dependent API graph-based malware
detection method was developed by Elhadi et al.
[76]. In the first stage, the clustering technique
is used to create malware classes that have
comparable characteristics to one another. In the
second step, the unknown malware file is
categorized or allocated to one of the recognized
malware classes, depending on the properties of
accelerate the clustering and classification
process. Hegedus et al. utilized behavioral
characteristics for malware identification to two
classifiers k-nearest neighbor and random forest
[86]. The technique proposed operates in two
phases. In the first phase, the random projection
is used to reduce the dimensionality and
duration of the variable space. The index of
Jaccard was used to measure the similarity of
malware traits. Then the second phase is to
utilize, detect and categories malware samples
with Virus Total’s K-nearest neighbor classifier.
According to Mohaisen et al. they have used the
malicious filename in a virtual environment to
remove behavioral devices [81]. After that,
malware samples are identified based on file
transactions, network activity, registry key
changes, and memory operations to determine
their origin. SVM was used to categorize the
data, and it was quite effective. Logic regression
and hierarchical clustering methods were used
to split Characteristics. A special version of this
format, known as the MIST representation, was
created to Malware into families that had similar
characteristics, with each family having its own
set of attributes. The experiment was conducted
out on both medium and big datasets (each with
400 samples), and the results were compared
(115,000 malware samples). The article implies
98% accuracy in the classification of malware.
According to Ghiasi et al. proposed a new
malware recognition approach using CPU
registry entries [87].

In the monitored environment, this approach
extracts API calls with dynamic analysis by
running binary files. A similarity between two
binary files was then calculated based on the
content of their register. Four Machine learning
methods are utilized include Random Forest,
Bayesian Logistic Regression, and Bayesian
Logistic Regression with Bayesian Logistic
Regression. To train the detection model,
regression, SMO, and J48 have all been used.
The article declares well-regulated time to
match existing patterns efficiently. In the
Cuckoo sandbox method, Pirscoveanu et al
collected the contextual features of binary files.
A random forest algorithm was developed for
the categorization system [65]. Ki et al.
presented a technique of malware identification
that relied on the API call sequences [108]. The
study shows that dynamic analysis has been
proven to be more effective in obtaining
malware behavioral features. it is observed that
all the malwares contain Sequence alignment
technique has been used to address redundant or
non-relevant code insertion in malware. In the
testing step, if unknown file calls are matched to
stored API patterns for the extracted APIs, the
file is declared malicious else the file is benign.
Pan et al. proposed a malware classification
system based on the BPNN model [88].

The HABO system is designed to collect
runtime functions. The essential elements of the
report were extracted, for example reading
foreign memory, creating mortexes, creating the
process, or modifying registry entries. The
model was developed utilizing the method of
the Back Propagation neural network.
Narayanan et al. developed a supervised
machine learning techniques to build the
classification of malware [92]. Polymorphic
malware was managed using the suggested
method as pictures capable of capturing small

changes while maintaining the general
structure. Three classifiers have been trained on
the provided dataset using the KNN, ANN, and
SVM methods. Cho et al. presented a technique
employing the API call sequence [93]. API calls
have been extracted by running malware
samples in cuckoo sandbox for the construction
of the API sequences. 150 samples from 10
malware families were trained and 87 %
accuracy was obtained. Mira et al. presented a
research in which they built an API-based
malware detection model that was trained in
two algorithms: the Longest Common
Subsequent (LCSS) and the Longest Common
Substring (LCSS) (LCS) [90]. The
multi-process execution behavior of malicious
files was presented by Bidoki et al. [57] .
Malware may disseminate its activities over a
wide range of legitimate operations, but the
overall effect is always negative. It is necessary
to use the improved learning method during the
training phase, and every API request must be
gathered during the detection phase. The
execution rules of all processes have been
merged to determine whether a binary file is
harmful. A graphical call system technique was
proposed by Ming et al. (2017) [94] that
generates an invisible malware problem system
call-based dependency diagram using a
graphical call system. According to the author,
all variants of the same malware have the same
semantics; the only difference is in the
malware's syntax. A technique was trained on
5200 malware files and then tested on 960
malware files before being released. The model
that was proposed was 97.30 % accurate.
According to Wagner et al. (2017) [95],
malware may be visually identified by its
activities. This system was created to monitor
the visual pattern of malware activities using
knowledge-assisted visual analysis. Mao et al.
(2017) [113] established a methodology

wherein they assess, based on their usefulness,
the importance of system subjects. This allows
us to create a network for security dependencies
that gives us an insight into the value of system
object security. Enhanced DT It was decided to
utilize Amazon Web Services to host the new
cloud-based design, which provides for greater
scalability. To train the classifier, 150,000
malware samples and 87,000 benign samples
were used. Using the improved DT algorithm,
the detecting system obtained a 99 % accuracy
rate in its detection.

Ding et al. proposed the idea of graph-based
malware detection [31]. Instead, then creating a
behaviour graph for each malware, the author
proposes a standard graph for every malware
family. Dynamic taint analysis technique was
used for building the behavior graph. The
highest weight parameter subgraph was used to
compare the graph of an unknown file to the
graphs of each malware family that had
previously been created. Stiborek et al. have
presented a technique for capturing malware
behavior by running malware in a sandbox
environment [99]. The sandbox has a series of
names and resources for each malware sample.
The term for this approach to the issue framing
is multiple instance learning. Machine learning
is used to samples of varied sizes of malware; a
report on many instances of learning explains
several ways to deal with the issue of sample
size. To address the issue of sample size
fluctuation, a vocabulary approach was
employed. The method suggested was
developed in a big 11,2115 binary and obtained
a precision rate of 95.4 %. Ghafir et al.
presented an advanced persistent threat
detection approach. [100]. To train the classifier,
the author utilized SVM, KNN, and group
methods. This method successfully generated
the accuracy of 84.8% in APT prediction.

Run-time features were used by Alaeiyan et al.
to construct a malware detection algorithm
[101]. Using the Parsa sandbox, this method has
also discovered evasive malware. The given
method was tested on 1100 malware samples
and was shown to be accurate to 97.9% of the
samples. For the Windows platform, Xiaofeng
et al. created an API that uses sequence-based
malware classifiers.[102]. The cuckoo sandbox
was used to eliminate dynamic API calls from
the application. Following the training of two
classifiers. A model for categorizing malicious
traffic was proposed by Arivudainambi et al. in
their study of network traffic analysis [103].
They integrated PCA to handle sophisticated
anti-network traffic analyses. The approach
presented was evaluated via the Noriben,
Cuckoo, and Limon sandboxes by running 1000
malware samples. This technique has a 99%
accuracy rate in terms of malware identification.
Yucel et al. presented a techniques for creating
executable memory file images [104]. A total of
123 malware samples from various families
were collected. It was discovered that malware
samples ran similarly when run in virtual
machines, and 3D memory snapshots were
created for comparison. It showed that various
families of malware had varying rates of
similarity, such as 0.99 for Marina Botnet, 0.99
for Rex Virus, and 0.886 on average. Rabbani et
al. presented a model for the detection of
malicious behavior conduct in network traffic
using a Probabilistic Neural Network (PNN)
[105]. The vector featured IP, TCP, UDP, CON,
jitters, and other network capabilities. A
modified version of this technique was
developed by combining the PSO (Particle
Swarm Optimization) algorithm with the PNN
algorithms, which resulted in a malicious traffic
detection rate of 96.5 %.

Table 8 compares all the behavioral techniques

that were examined. There is now more research
being conducted on behaviorally based
techniques of malware identification. This is
because signature-based techniques are
incapable of dealing with emerging and
zero-day malware. Using runtime features,
these approaches have outperformed
signature-based accuracy solutions in terms of
accuracy. Many researchers, including Elhadi et
al. [106], Pan et al. [88], Ali et al. [67], and
others, have made use of dynamic API calls.
Alaeiyan et al. [101] have used file, registry, and
network activities in the training of malware
classifiers using supervised classification
techniques, as have Stiborek et al. [99], Paketas
et al. and Stiborek et al. [99]. For instance,
Ghafir et al. [101] have been developing their
models with several runtime characteristics. The
detection rate is considerably greater for
behavior methods as compared to signature
based. The methods also suggested to claim that
new and obscured malware may be predicted.
Historically, it has taken a long time to extract
the runtime function from conventional
behavioral methods; however, the use of
machine-learning algorithms has sped up the
process, allowing the proposed model to make
use of more data and larger malware samples to
train and test the malware classification system.
However, the implementation of these
suggested methods presents certain problems
and difficulties. The proposed methods are
tested and verified using a range of malware
samples. Furthermore, classifiers vary in
techniques for training. Before prediction, high
processing time and the running duration of
malware samples are obstacles to applying the
behavioral technology to a real system. The
advantages of signature and Behavior methods,
described in the next section. In addition, hybrid
approaches have been put out and will be
examined in the section.

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

The proposed behavior-based malware
detection different algorithms are explained in
this section. Bailey et al. provided an interaction
malware detection technique with system
services that included System API calls, special
addresses, and functions [83]. Malware files
behave in a variety of ways, which may be
classified into many categories. A malware file,
for example, may include a virus, a Trojan
horse, spyware, or worms. Moreover, malware
is also categorized according to the information
retrieved in various classes and subclasses. The
Malware Instructions Set (MIST) was
suggested by Trinius et al. have described a new
Malware Instruction Set (MIST) representing
malware behaviors. CW sandbox used to
analyze the malware samples[84] . The XML
report is created by Sandbox and after that it is
converted into a MIST format. In addition,

machine learning and data mining have helped
to improve the efficiency of malware analysis
while simultaneously reducing the number of
reports. Rieck et al. proposed an autonomous
malware detection framework to detect
malware class variants [84]. The framework
divided into two steps. The first step uses the
clustering method to make malware types
comparable. The second step classifies or
assigns the unknown malware file to the
discovered classes. MIST representation was
utilized to speed up the process of clustering and
classification. Vasilescu et al. have made use of
the Cuckoo sandbox to get dynamic analysis
[85]. The generated report includes API calls to
the system, log entries, and portable binary
running information, among other things. The
malware detector is trained with these extracted
characteristics to identify zero-day malware. A

data-dependent API graph-based malware
detection method was developed by Elhadi et al.
[76]. In the first stage, the clustering technique
is used to create malware classes that have
comparable characteristics to one another. In the
second step, the unknown malware file is
categorized or allocated to one of the recognized
malware classes, depending on the properties of
accelerate the clustering and classification
process. Hegedus et al. utilized behavioral
characteristics for malware identification to two
classifiers k-nearest neighbor and random forest
[86]. The technique proposed operates in two
phases. In the first phase, the random projection
is used to reduce the dimensionality and
duration of the variable space. The index of
Jaccard was used to measure the similarity of
malware traits. Then the second phase is to
utilize, detect and categories malware samples
with Virus Total’s K-nearest neighbor classifier.
According to Mohaisen et al. they have used the
malicious filename in a virtual environment to
remove behavioral devices [81]. After that,
malware samples are identified based on file
transactions, network activity, registry key
changes, and memory operations to determine
their origin. SVM was used to categorize the
data, and it was quite effective. Logic regression
and hierarchical clustering methods were used
to split Characteristics. A special version of this
format, known as the MIST representation, was
created to Malware into families that had similar
characteristics, with each family having its own
set of attributes. The experiment was conducted
out on both medium and big datasets (each with
400 samples), and the results were compared
(115,000 malware samples). The article implies
98% accuracy in the classification of malware.
According to Ghiasi et al. proposed a new
malware recognition approach using CPU
registry entries [87].

In the monitored environment, this approach
extracts API calls with dynamic analysis by
running binary files. A similarity between two
binary files was then calculated based on the
content of their register. Four Machine learning
methods are utilized include Random Forest,
Bayesian Logistic Regression, and Bayesian
Logistic Regression with Bayesian Logistic
Regression. To train the detection model,
regression, SMO, and J48 have all been used.
The article declares well-regulated time to
match existing patterns efficiently. In the
Cuckoo sandbox method, Pirscoveanu et al
collected the contextual features of binary files.
A random forest algorithm was developed for
the categorization system [65]. Ki et al.
presented a technique of malware identification
that relied on the API call sequences [108]. The
study shows that dynamic analysis has been
proven to be more effective in obtaining
malware behavioral features. it is observed that
all the malwares contain Sequence alignment
technique has been used to address redundant or
non-relevant code insertion in malware. In the
testing step, if unknown file calls are matched to
stored API patterns for the extracted APIs, the
file is declared malicious else the file is benign.
Pan et al. proposed a malware classification
system based on the BPNN model [88].

The HABO system is designed to collect
runtime functions. The essential elements of the
report were extracted, for example reading
foreign memory, creating mortexes, creating the
process, or modifying registry entries. The
model was developed utilizing the method of
the Back Propagation neural network.
Narayanan et al. developed a supervised
machine learning techniques to build the
classification of malware [92]. Polymorphic
malware was managed using the suggested
method as pictures capable of capturing small

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

25Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

changes while maintaining the general
structure. Three classifiers have been trained on
the provided dataset using the KNN, ANN, and
SVM methods. Cho et al. presented a technique
employing the API call sequence [93]. API calls
have been extracted by running malware
samples in cuckoo sandbox for the construction
of the API sequences. 150 samples from 10
malware families were trained and 87 %
accuracy was obtained. Mira et al. presented a
research in which they built an API-based
malware detection model that was trained in
two algorithms: the Longest Common
Subsequent (LCSS) and the Longest Common
Substring (LCSS) (LCS) [90]. The
multi-process execution behavior of malicious
files was presented by Bidoki et al. [57] .
Malware may disseminate its activities over a
wide range of legitimate operations, but the
overall effect is always negative. It is necessary
to use the improved learning method during the
training phase, and every API request must be
gathered during the detection phase. The
execution rules of all processes have been
merged to determine whether a binary file is
harmful. A graphical call system technique was
proposed by Ming et al. (2017) [94] that
generates an invisible malware problem system
call-based dependency diagram using a
graphical call system. According to the author,
all variants of the same malware have the same
semantics; the only difference is in the
malware's syntax. A technique was trained on
5200 malware files and then tested on 960
malware files before being released. The model
that was proposed was 97.30 % accurate.
According to Wagner et al. (2017) [95],
malware may be visually identified by its
activities. This system was created to monitor
the visual pattern of malware activities using
knowledge-assisted visual analysis. Mao et al.
(2017) [113] established a methodology

wherein they assess, based on their usefulness,
the importance of system subjects. This allows
us to create a network for security dependencies
that gives us an insight into the value of system
object security. Enhanced DT It was decided to
utilize Amazon Web Services to host the new
cloud-based design, which provides for greater
scalability. To train the classifier, 150,000
malware samples and 87,000 benign samples
were used. Using the improved DT algorithm,
the detecting system obtained a 99 % accuracy
rate in its detection.

Ding et al. proposed the idea of graph-based
malware detection [31]. Instead, then creating a
behaviour graph for each malware, the author
proposes a standard graph for every malware
family. Dynamic taint analysis technique was
used for building the behavior graph. The
highest weight parameter subgraph was used to
compare the graph of an unknown file to the
graphs of each malware family that had
previously been created. Stiborek et al. have
presented a technique for capturing malware
behavior by running malware in a sandbox
environment [99]. The sandbox has a series of
names and resources for each malware sample.
The term for this approach to the issue framing
is multiple instance learning. Machine learning
is used to samples of varied sizes of malware; a
report on many instances of learning explains
several ways to deal with the issue of sample
size. To address the issue of sample size
fluctuation, a vocabulary approach was
employed. The method suggested was
developed in a big 11,2115 binary and obtained
a precision rate of 95.4 %. Ghafir et al.
presented an advanced persistent threat
detection approach. [100]. To train the classifier,
the author utilized SVM, KNN, and group
methods. This method successfully generated
the accuracy of 84.8% in APT prediction.

Run-time features were used by Alaeiyan et al.
to construct a malware detection algorithm
[101]. Using the Parsa sandbox, this method has
also discovered evasive malware. The given
method was tested on 1100 malware samples
and was shown to be accurate to 97.9% of the
samples. For the Windows platform, Xiaofeng
et al. created an API that uses sequence-based
malware classifiers.[102]. The cuckoo sandbox
was used to eliminate dynamic API calls from
the application. Following the training of two
classifiers. A model for categorizing malicious
traffic was proposed by Arivudainambi et al. in
their study of network traffic analysis [103].
They integrated PCA to handle sophisticated
anti-network traffic analyses. The approach
presented was evaluated via the Noriben,
Cuckoo, and Limon sandboxes by running 1000
malware samples. This technique has a 99%
accuracy rate in terms of malware identification.
Yucel et al. presented a techniques for creating
executable memory file images [104]. A total of
123 malware samples from various families
were collected. It was discovered that malware
samples ran similarly when run in virtual
machines, and 3D memory snapshots were
created for comparison. It showed that various
families of malware had varying rates of
similarity, such as 0.99 for Marina Botnet, 0.99
for Rex Virus, and 0.886 on average. Rabbani et
al. presented a model for the detection of
malicious behavior conduct in network traffic
using a Probabilistic Neural Network (PNN)
[105]. The vector featured IP, TCP, UDP, CON,
jitters, and other network capabilities. A
modified version of this technique was
developed by combining the PSO (Particle
Swarm Optimization) algorithm with the PNN
algorithms, which resulted in a malicious traffic
detection rate of 96.5 %.

Table 8 compares all the behavioral techniques

that were examined. There is now more research
being conducted on behaviorally based
techniques of malware identification. This is
because signature-based techniques are
incapable of dealing with emerging and
zero-day malware. Using runtime features,
these approaches have outperformed
signature-based accuracy solutions in terms of
accuracy. Many researchers, including Elhadi et
al. [106], Pan et al. [88], Ali et al. [67], and
others, have made use of dynamic API calls.
Alaeiyan et al. [101] have used file, registry, and
network activities in the training of malware
classifiers using supervised classification
techniques, as have Stiborek et al. [99], Paketas
et al. and Stiborek et al. [99]. For instance,
Ghafir et al. [101] have been developing their
models with several runtime characteristics. The
detection rate is considerably greater for
behavior methods as compared to signature
based. The methods also suggested to claim that
new and obscured malware may be predicted.
Historically, it has taken a long time to extract
the runtime function from conventional
behavioral methods; however, the use of
machine-learning algorithms has sped up the
process, allowing the proposed model to make
use of more data and larger malware samples to
train and test the malware classification system.
However, the implementation of these
suggested methods presents certain problems
and difficulties. The proposed methods are
tested and verified using a range of malware
samples. Furthermore, classifiers vary in
techniques for training. Before prediction, high
processing time and the running duration of
malware samples are obstacles to applying the
behavioral technology to a real system. The
advantages of signature and Behavior methods,
described in the next section. In addition, hybrid
approaches have been put out and will be
examined in the section.

The assessment of numerous potential
signature-based techniques is presented in this
sector. Karnik et al. presented a malware
revealing method where he uses the sequences
of the function[53]. The sequence element
represented the opcode group, and the function
sequence was the hallmark of the malicious
program file to distinguish the malware
versions. The measure of cosine similitude has
been calculated to deal with the obfuscation
systems. Nevertheless, in this case, advanced
obfuscation methods (equivalent instruction
substitution) and packaged malware were
unable to defeat the attack. In 2007, Bruschi et

al [54] devised a method for categorizing
malware using graphical representations [80].
According to the author, this method can control
several fundamental obfuscation techniques.
Binary files were constructed to match control
flow charts to graphs of previously identified
hazardous files and then executed. Two
algorithms were utilized in this malware
detecting technique. The first method searches
for similarities between the two graphs of the
binary program file B which is underneath
assessment and, M. that previously recognized
file malware. The B-file charts that had been
reduced were then compared to the known

M-file charts in the second approach.
Concerning the first and second methods, the
author calculated the false positive rate as 4.4 %
and 4.5 % correspondingly for 78 malware data
samples that were established against these
procedures. Nonetheless, this technique is
incapable of dealing with zero-day malware.
Based on the characteristics of an n-graph byte
sequence, Zhang et al. suggested a technology
for detecting and classifying malware using
n-gram byte sequence properties [55]. A
selection strategy removed pre-eminent bytes of
n-gram that can indicate the malware program
files. Subsequently, a classifier was constructed
using the method of a stochastic neural network.
For each classification, entailed of a series of
malware detection decisions. Three malware
courses have been occupied from the virtual VX
Heavens database for training. The authors [56]
presented an opcode-based machine learning
methodology for detecting unknown malware
program files. The Opcode have been arranged
into the following sizes: 1 byte, 2 bytes, 3 bytes,
4 bytes, 5 bytes, and 6 bytes features.

In the n-byte function sets, four classification
techniques were employed, including Decision
Tree (DT), Naive Bayes, and Random Forest
(NB) and Adaboost. According to the author,
this method can considerably predict file
maliciousness. Griffin et al. provided a
technique for the identification of heuristic
malware[68]. This proposed method generates a
48-byte sequence that was used as a string
signature for identifying the malware strains.
The authors employed the several module
signatures for training the classifier instead of
utilizing a single component signature. When
compared to a single component signature, it
has a higher probability of achieving high
accuracy. On the other hand, it was unable to

comprehend the effect of many component
signatures during runtime. The one-sided
perceptron method employed by Gavrilut et al.
employed a single-sided perception of several
machine learning algorithms to distinguish
between benign and malicious [69]. This
algorithm was intended to minimize the number
of false positive rate. Firstly, they employed a
basic partial perception cascade, now the
unilateral partial perception system cascading
demonstrated greater accuracy (88.79 %)
compare to simple partial perceived cascades.
The authors suggested a technique for malware
recognition using the recovery of malicious file
execution [70]. Malware flow control charts
have been created using execution flow function
calls. Graph matching has been performed to
match the malware program files with the
stowed CFG malware patterns. Malware
patterns have been saved. The CFG was labeled
harmful by a malware detector when it was
included inside the CFG template. The issue is
that obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The authors created a text-based
pattern matching technique for the development
for the revealing of a malware system [71]. In
this study the feed-forwards bloom filter was
used to scan the whole collection of sample
malware files.

Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was required to
recognize the malware program files. A check
reduces bloom filter-induced false-positive
outcomes. It deals with the two problems.
Firstly, the enormous database of signatures is
easy to manage by decreasing those using

subsets of signatures. The issue is that
obfuscation methods such as code
rearrangement may escape malware detection
by changing the real execution of the path of the
malware. The author created a text-based form
matching technique for the development of a
malware system identifications [71]. In this
study the feed-forwards bloom filter was used to
scan the whole collection of sample malware
files. Two kinds of outputs were generated: (i)
malicious file matched and (ii) a subset of
signatures. The Signature subsets were mined
from the signature data base that was needed to
recognize the malware files. After that, a check
is carried out to reduce the number of
false-positive outcomes caused by the bloom
filters. It deals with the two difficulties. Firstly,
the enormous database of signatures is easy to
manage by decreasing those using subsets of
signatures. Secondly, a single-bit vector is used
to manage the difficulty of memory scaling.
Text-based detection matching method has not
produced useful results that this text-based
revealing model does not offer the high false
positive outcomes. The authors have suggested
a method for packaging detection framework to
tackle obfuscation malware [45]. The primary
goal of this technique is to detect malware that
has been packed. Malicious sample have been
evaluated utilizing static analysis for collecting
the more refined executable attributes. Then,
using a two-class vector machine support
approach, a malware detector was trained to
identify malicious code. Veeramani and Rai
have built a system for malware detection
utilizing the appropriate API calls[26]. The IDA
Disassembler was used in this method to extract
the malicious API calls. Unpacking tools were
employed before the virus was disassembled to
investigate packed malware. The malware
program files and Windows system 32 are

evaluated statically to excerpt the appropriate
API for these both classes. SVM classifier
training followed API call extraction. Even
though various methods exist to deconstruct
packaged malware, every infection is hard to
detonate. Obfuscated malware makes API call
extraction difficult. Consequently, there is high
chances of the false positive results.

The authors in [72] Extended Moskovitch et al.
[73] work, which was built employing opcode
pattern set of features. Four sizes of 50, 100,
150, and 200 opcode n-gram sequences were
created from malware program samples. Eight
different classifiers were trained. Logistic
regression, Artificial Neural Networks (ANNs),
Vector Support, Naive Bays, Random Forestry,
DT, and Boosted Naive Bays are some of the
methods that are used to train the opcode
patterns. In the study, it was discovered that the
accuracy was above 96 %, and the false-positive
rate was just 0.1 %. The API graph dependent
malware revealing solution was proposed by
Elhadi et al. [74]. In this method for each
malware file to a data-based API calls graph
were design. Apparently, a malware database
consisting of data type API graphs was created.
The analysis used the Longest Common
Subsequence (LCS) technique to equal the
unknown file's resemblance to the saved
malware graph. However, in the trial, just 85
malware samples were utilized, which led to a
detection rate of 98 %. In particular, The authors
suggested the malware system for the portable
executable program file of windows type PE
header information [43]. This approach was
utilized to train the model based on file
metadata. The results of the experiments
suggest that the executable metadata may be
used to discriminate between benign and
malicious. On the created attribute of the

portable program executable header three
important machine learning algorithms were
used. Decision Tree classification beat NB and
logistic regression classification. The authors
joined the n-gram structure with the statistical
examination with the malware-detection ML
method [75]. The goal was to produce the
co-operative architecture to identify the
emerging malware i.e., metamorphic, those are
difficult to identify by employing the statistical
method of the n-gram model. The Markov
blanket approach has been employed to choose
the features. It has been employed because it
minimizes feature size. In the next step, the
Hidden Markov Model (HMM), which
achieved an accuracy of 90 %, was trained in the
resultant function sequences.

Srndic et al. submitted a study on ML
algorithms for static analysis for the
classification of malware samples [76]. The
virus developer now uses portable document
format (PDF) and shock wave flash (SWF) files
to incorporate the executable scripts to harm
system resources. This research has evaluated
40,000 SWF and 440,000 PDF files. To identify
possibly dangerous programs included inside
PDF and SWF files, this approach was
employed in conjunction with other methods.
When it comes to malware detection, there are
many factors to consider. Kim et al. present a
technique for PE malware header detection
using the ML algorithm [77]. The main goal of
this approach is to advance the revealing ratio as
equated to preceding methods of malware
revealing that focused on the PE header data of
executable files. The portable executable header
features of malicious and benign program files
were observed in both cases (PE header
information). From there on three ML
procedures were applied to the retrieved feature:

Gradient Descent (GD), SVM and
Classification and Regression Tree (CART). To
put the technique through its paces, almost
27,000 malwares and 11,000 benign files were
used. This system has an accuracy rate of 98 %
and a false positive rate of 0.2 %. This method,
on the other hand, will not function if the actual
PE header was obfuscated. Narra et al.
developed a malware detection clustering
approach that is competitive in terms of
efficiency with SVM [3]. In their prior research,
they have only applied the clustering technique
like k-means, the maximizing of expectations
with HMM. In the research, clustering
techniques have been trained with 7800
malware program samples without HMM and
effects were equated with the SVM
classification, those have also been trained in
the same data samples. It's problematic to
regulate that many clusters are in the malware
dataset, leading to a hit and a testing solution.
Raff et al. developed byte n-gram-type
approaches and examined the shortcomings of
earlier n-gram strategies, those relied on the
n-gram function [42]. The characteristics for
Elastic Net Regularized logistic regression
model training have been selected and the
multi-byte identification has been analyzed.
This approach led to the discovery of three
significant faults in the prior n-gram methods.
First challenge is how the earlier corpora was
created the overestimate the detection precision,
the second challenge was most n-grams have
only been retrieved from string features and the
third challenge was, n-gram feature has
overpowered the classifier.

Searles et al. enhanced the previous work the
usual malware detection graph program using
control flow technique [93]. In this approach,
similarities were found between CFGs retrieved

from binary files using the Shortest Path Graph
kernel (SPGK). In conjunction with a similarity
matrix, the SVM method was then employed to
enhance the precise classification. Various
parallelization methods were assessed to lessen
computational costs or to boost up the
classification. It intimates a better accurateness
on 22000 binary files in contrast to the 2 gram
and 3-gram model. But it is quite difficult to
cope with the enormous sizes of CFG. No such
solutions have been familiarized to deal with
this method. The authors utilized malware
detection characteristics such as CPU
utilization, network traffic, and swap usage [2].
This way, spyware known as APTs (Advanced
Persistent Threats) detected. The findings
further showed that the obfuscated malware can
also be detected. The classifiers are trained on
the self-organization feature map to minimize
the problem of over fitting and produced great
outcomes 7% to 25% higher than older
methodologies. The authors have presented a
technique for malware detection that analyses
execution files using static analysis tools and
extracts elements such as DLL import, hex
dumping, and assembly code [34]. These
structures have been applied to paragraph
vectors via the training of SVM and k-NN
algorithms, which have been used to analyze the
data. Approximately 3600 malware samples
were used in the trial, which resulted in a 99 %
accuracy in detection. But simple obfuscated
method can avoid the proposed method. The
graph-based malware revealing method was
enlarged by authors [94]. In the current methods
each node represents a single system call freely
however in the methodology every single node
in the graph signifies a group of systems calls
for related kinds for the compilation of the
system dependence graph (ScD-graph). It is
also possible to detect mutated malware using

this technique, which involves categorizing a
weighted directed network, also known as a
group relationship graph (such as oligomorphic
and metamorphic). The main issue with
graphics detection techniques is the difficulty in
matching graphs for similarity. Same-similarity
and NP-similarity metrics have been proposed
as potential solutions to this problem.

There have been 2631 malware samples utilized
in the development of the anticipated model that
comprises 48 malware families. The detection
rate for the proposed model was 83.42 % when
using the data from this dataset. The suggested
system was assessed on 10568 binary program
files, with an accuracy rate of 98.7 %, and it was
shown to be effective. The authors [96] created
SVM type classifiers, which are now widely
used. Making use of the many features provided
by the executable PE header. The static PE
header features were split into 54 categories. A
total of 500,000 malware data samples collected
from the Vxheaven and Virusshare repositories
were utilized to train the SVM classification
system. There was a significant flaw in this
method in that the proposed model was not
explored in depth before it was implemented. In
addition, there is no clear description of how to
extract the static PE features of hidden malware
from its source code.

Table 7 confirmations the complete analysis of
the methods evaluated based on the signature. It
also compares the methods suggested after a
study of the signature-based malware
classifiers. Further, this also summarizes the
malware features, classification methods, and
performance metrics utilized to develop the
suggested strategies. In Real-time Detection
Scenarios, signature-based methods are
advantageous for reduced overhead and

runtime. Some suggested methods have claimed
greater than 99 % accuracy in malware
detection. These methods used several malware
features and showed their efficiency in the
classification of dangerous and benign files.
When combined with malware detection
features, the representation methodologies show
an important part, as demonstrated by Burn AP
et al. (2017) [2] and the authors [78], both of
whom are using API calling to improve
detection rates but have used various machine
learning and representation methodologies to do
so. However, methods relying on signatures
have some drawbacks, such as the inability to
identify new and disguised malware. While we
think that these methods may identify unknown
malware, especially those which rely on
heuristic signatures, they cannot detect malware
that has been disguised. This is because the
malware detector, which is based only on the
static features of known malware, is rendered
ineffective. Compared to traditional malware
detection approaches, the presence of machine
learning in signing-based methods has resulted
in significant improvements in malware
prediction (Fig. 2.). Using machine learning
techniques, the authors in [42], [79], and [73]
have obtained more accuracy than the research
by authors in [80] and [75].

4.2. Behavior-Based Malware Detection
In the behavioral approach, malware is detected
based on malicious activities carried out during
execution. APIs, browser events, and system
events, as well as network events, are all
examples of feature kinds of behavior that have
been specified [37, 81, 82]. These qualities are
classified into three groups in the context of
behavior methods: File activities, registry
activities, and network activities. The entire
process description to construct behavioral

malware detection systems is illustrated in Fig.
4. New malicious Files can be identified by
employing this malware detection because
malware files somehow share harmful
behaviors. Consequently, the malware detection
system is trained to recognize similar behavior
to identify new malware or variants of current
malware that has been introduced. Similar
activity, thus, is utilized to educate the system
for malware detection to detect new malware or
recognized malware variation. The behavioral
method also provides a strategy for controlling
the obfuscated malware. The obfuscation tactics
utilized by makers of malware can dodge
signature-based techniques. Behavior-based
technology is trained in two ways. Anomaly
denotes a malfunction that malicious files
perform. When a file displays an aberrant
behavior other than usual file stored behavior,
the file is declared as a malicious file. The logic
behind the malware is the abnormality
(abnormal operation performed by malware).
Malware detectors are being trained in the
system to identify abnormalities. Benign files
are examined using static or dynamic analysis.
For the categorization of benign files, the usual
activities of the benign files are used as a guide.
Anomaly and benign analysis are the process in
which malware data are analyzed alongside
innocuous ones. Because both normal and
dangerous activities are performed, it is
desirable to distinguish between benign and
malware behavior rather than using an
anomaly-based approach. The detector must be
trained for a longer time as compared to when
using an abnormal technique. Behavioral
malware detection techniques that use heuristics
perform much better. Machine learning is much
more important than traditional malware
detection methods when it comes to detecting
highly complex malware.

The proposed behavior-based malware
detection different algorithms are explained in
this section. Bailey et al. provided an interaction
malware detection technique with system
services that included System API calls, special
addresses, and functions [83]. Malware files
behave in a variety of ways, which may be
classified into many categories. A malware file,
for example, may include a virus, a Trojan
horse, spyware, or worms. Moreover, malware
is also categorized according to the information
retrieved in various classes and subclasses. The
Malware Instructions Set (MIST) was
suggested by Trinius et al. have described a new
Malware Instruction Set (MIST) representing
malware behaviors. CW sandbox used to
analyze the malware samples[84] . The XML
report is created by Sandbox and after that it is
converted into a MIST format. In addition,

machine learning and data mining have helped
to improve the efficiency of malware analysis
while simultaneously reducing the number of
reports. Rieck et al. proposed an autonomous
malware detection framework to detect
malware class variants [84]. The framework
divided into two steps. The first step uses the
clustering method to make malware types
comparable. The second step classifies or
assigns the unknown malware file to the
discovered classes. MIST representation was
utilized to speed up the process of clustering and
classification. Vasilescu et al. have made use of
the Cuckoo sandbox to get dynamic analysis
[85]. The generated report includes API calls to
the system, log entries, and portable binary
running information, among other things. The
malware detector is trained with these extracted
characteristics to identify zero-day malware. A

data-dependent API graph-based malware
detection method was developed by Elhadi et al.
[76]. In the first stage, the clustering technique
is used to create malware classes that have
comparable characteristics to one another. In the
second step, the unknown malware file is
categorized or allocated to one of the recognized
malware classes, depending on the properties of
accelerate the clustering and classification
process. Hegedus et al. utilized behavioral
characteristics for malware identification to two
classifiers k-nearest neighbor and random forest
[86]. The technique proposed operates in two
phases. In the first phase, the random projection
is used to reduce the dimensionality and
duration of the variable space. The index of
Jaccard was used to measure the similarity of
malware traits. Then the second phase is to
utilize, detect and categories malware samples
with Virus Total’s K-nearest neighbor classifier.
According to Mohaisen et al. they have used the
malicious filename in a virtual environment to
remove behavioral devices [81]. After that,
malware samples are identified based on file
transactions, network activity, registry key
changes, and memory operations to determine
their origin. SVM was used to categorize the
data, and it was quite effective. Logic regression
and hierarchical clustering methods were used
to split Characteristics. A special version of this
format, known as the MIST representation, was
created to Malware into families that had similar
characteristics, with each family having its own
set of attributes. The experiment was conducted
out on both medium and big datasets (each with
400 samples), and the results were compared
(115,000 malware samples). The article implies
98% accuracy in the classification of malware.
According to Ghiasi et al. proposed a new
malware recognition approach using CPU
registry entries [87].

In the monitored environment, this approach
extracts API calls with dynamic analysis by
running binary files. A similarity between two
binary files was then calculated based on the
content of their register. Four Machine learning
methods are utilized include Random Forest,
Bayesian Logistic Regression, and Bayesian
Logistic Regression with Bayesian Logistic
Regression. To train the detection model,
regression, SMO, and J48 have all been used.
The article declares well-regulated time to
match existing patterns efficiently. In the
Cuckoo sandbox method, Pirscoveanu et al
collected the contextual features of binary files.
A random forest algorithm was developed for
the categorization system [65]. Ki et al.
presented a technique of malware identification
that relied on the API call sequences [108]. The
study shows that dynamic analysis has been
proven to be more effective in obtaining
malware behavioral features. it is observed that
all the malwares contain Sequence alignment
technique has been used to address redundant or
non-relevant code insertion in malware. In the
testing step, if unknown file calls are matched to
stored API patterns for the extracted APIs, the
file is declared malicious else the file is benign.
Pan et al. proposed a malware classification
system based on the BPNN model [88].

The HABO system is designed to collect
runtime functions. The essential elements of the
report were extracted, for example reading
foreign memory, creating mortexes, creating the
process, or modifying registry entries. The
model was developed utilizing the method of
the Back Propagation neural network.
Narayanan et al. developed a supervised
machine learning techniques to build the
classification of malware [92]. Polymorphic
malware was managed using the suggested
method as pictures capable of capturing small

changes while maintaining the general
structure. Three classifiers have been trained on
the provided dataset using the KNN, ANN, and
SVM methods. Cho et al. presented a technique
employing the API call sequence [93]. API calls
have been extracted by running malware
samples in cuckoo sandbox for the construction
of the API sequences. 150 samples from 10
malware families were trained and 87 %
accuracy was obtained. Mira et al. presented a
research in which they built an API-based
malware detection model that was trained in
two algorithms: the Longest Common
Subsequent (LCSS) and the Longest Common
Substring (LCSS) (LCS) [90]. The
multi-process execution behavior of malicious
files was presented by Bidoki et al. [57] .
Malware may disseminate its activities over a
wide range of legitimate operations, but the
overall effect is always negative. It is necessary
to use the improved learning method during the
training phase, and every API request must be
gathered during the detection phase. The
execution rules of all processes have been
merged to determine whether a binary file is
harmful. A graphical call system technique was
proposed by Ming et al. (2017) [94] that
generates an invisible malware problem system
call-based dependency diagram using a
graphical call system. According to the author,
all variants of the same malware have the same
semantics; the only difference is in the
malware's syntax. A technique was trained on
5200 malware files and then tested on 960
malware files before being released. The model
that was proposed was 97.30 % accurate.
According to Wagner et al. (2017) [95],
malware may be visually identified by its
activities. This system was created to monitor
the visual pattern of malware activities using
knowledge-assisted visual analysis. Mao et al.
(2017) [113] established a methodology

wherein they assess, based on their usefulness,
the importance of system subjects. This allows
us to create a network for security dependencies
that gives us an insight into the value of system
object security. Enhanced DT It was decided to
utilize Amazon Web Services to host the new
cloud-based design, which provides for greater
scalability. To train the classifier, 150,000
malware samples and 87,000 benign samples
were used. Using the improved DT algorithm,
the detecting system obtained a 99 % accuracy
rate in its detection.

Ding et al. proposed the idea of graph-based
malware detection [31]. Instead, then creating a
behaviour graph for each malware, the author
proposes a standard graph for every malware
family. Dynamic taint analysis technique was
used for building the behavior graph. The
highest weight parameter subgraph was used to
compare the graph of an unknown file to the
graphs of each malware family that had
previously been created. Stiborek et al. have
presented a technique for capturing malware
behavior by running malware in a sandbox
environment [99]. The sandbox has a series of
names and resources for each malware sample.
The term for this approach to the issue framing
is multiple instance learning. Machine learning
is used to samples of varied sizes of malware; a
report on many instances of learning explains
several ways to deal with the issue of sample
size. To address the issue of sample size
fluctuation, a vocabulary approach was
employed. The method suggested was
developed in a big 11,2115 binary and obtained
a precision rate of 95.4 %. Ghafir et al.
presented an advanced persistent threat
detection approach. [100]. To train the classifier,
the author utilized SVM, KNN, and group
methods. This method successfully generated
the accuracy of 84.8% in APT prediction.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

26 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

Run-time features were used by Alaeiyan et al.
to construct a malware detection algorithm
[101]. Using the Parsa sandbox, this method has
also discovered evasive malware. The given
method was tested on 1100 malware samples
and was shown to be accurate to 97.9% of the
samples. For the Windows platform, Xiaofeng
et al. created an API that uses sequence-based
malware classifiers.[102]. The cuckoo sandbox
was used to eliminate dynamic API calls from
the application. Following the training of two
classifiers. A model for categorizing malicious
traffic was proposed by Arivudainambi et al. in
their study of network traffic analysis [103].
They integrated PCA to handle sophisticated
anti-network traffic analyses. The approach
presented was evaluated via the Noriben,
Cuckoo, and Limon sandboxes by running 1000
malware samples. This technique has a 99%
accuracy rate in terms of malware identification.
Yucel et al. presented a techniques for creating
executable memory file images [104]. A total of
123 malware samples from various families
were collected. It was discovered that malware
samples ran similarly when run in virtual
machines, and 3D memory snapshots were
created for comparison. It showed that various
families of malware had varying rates of
similarity, such as 0.99 for Marina Botnet, 0.99
for Rex Virus, and 0.886 on average. Rabbani et
al. presented a model for the detection of
malicious behavior conduct in network traffic
using a Probabilistic Neural Network (PNN)
[105]. The vector featured IP, TCP, UDP, CON,
jitters, and other network capabilities. A
modified version of this technique was
developed by combining the PSO (Particle
Swarm Optimization) algorithm with the PNN
algorithms, which resulted in a malicious traffic
detection rate of 96.5 %.

Table 8 compares all the behavioral techniques

that were examined. There is now more research
being conducted on behaviorally based
techniques of malware identification. This is
because signature-based techniques are
incapable of dealing with emerging and
zero-day malware. Using runtime features,
these approaches have outperformed
signature-based accuracy solutions in terms of
accuracy. Many researchers, including Elhadi et
al. [106], Pan et al. [88], Ali et al. [67], and
others, have made use of dynamic API calls.
Alaeiyan et al. [101] have used file, registry, and
network activities in the training of malware
classifiers using supervised classification
techniques, as have Stiborek et al. [99], Paketas
et al. and Stiborek et al. [99]. For instance,
Ghafir et al. [101] have been developing their
models with several runtime characteristics. The
detection rate is considerably greater for
behavior methods as compared to signature
based. The methods also suggested to claim that
new and obscured malware may be predicted.
Historically, it has taken a long time to extract
the runtime function from conventional
behavioral methods; however, the use of
machine-learning algorithms has sped up the
process, allowing the proposed model to make
use of more data and larger malware samples to
train and test the malware classification system.
However, the implementation of these
suggested methods presents certain problems
and difficulties. The proposed methods are
tested and verified using a range of malware
samples. Furthermore, classifiers vary in
techniques for training. Before prediction, high
processing time and the running duration of
malware samples are obstacles to applying the
behavioral technology to a real system. The
advantages of signature and Behavior methods,
described in the next section. In addition, hybrid
approaches have been put out and will be
examined in the section.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

27Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

Ki [118] Application Programming Interface
Call Sequence

23080-Malware Files /
VirusTotal Malware
Repository and
Malica Project

Recall 98.8 %
F1-Score
99.9 %

Pan [88] Application Programming Interface
calls

13600-Malware Files /
Kafan Forum

Precision 98
%

Nayaranan [92] Representation of Malware in
form of images

10868-Malware Files /
Kaggle Microsoft Malware
Dataset

Accuracy
96.6 %
(Linear
KNN)

Cho [93] Application Programming Interface
call sequence

150-Malware Files /
Vxheaven Malware
Repository

Precision 87
%

Mira [90] Application Programming Interface
call sequence

13600-Malware /
VirusSign, SAMI, CSDMC
Malware
datasets /

Precision 99
%

Mao [119] System objects 7257-Malware Files /
Vxheaven, MALICA and
Virustotal
Malware Repository

Precision
93.92 %
FPR 0.1 %

Bidoki [57] Application Programming Interface
Calls

378-Malware and 500-
Benign Files /
Vxheaven Malware
Repository

Precision
91.66 %

Ming [94] Dependency Graph 5200-Malware Files Precision
97.30 %

Wagner [95] Sequence of Application Programming
Interface calls

8847-Malware and 1460-
Benign
Files /
Vxheaven Malware
Repository

Precision
95.25 %

Pektas and
Acarman [98]

Registry, Network, File
System, Application Programming
Interface call sequence

17900-Malware /
Virusshare Malware
Repository

Precision 92.5
%

Ali [115] Run-time features 150000-Malware and 87000-
Benign
Files /
Malware Repository of
Nettitude

Precision 99
%

Table 8: A Complete analysis of the behaviors-based malware detection techniques

Author(s) Input Data Sources/ Number of
malwares samples

Outcomes

Elhadi [106] Data Dependent Application
Programming Interface Graph

416-Malware and 98-Benign
Files /
Vxheaven Malware
Repository

Precision 98
%

Mohaisen [81] Application Programming Interface
calls and Network
Activities

115000-Malware Files /
Antivirus companies

Precision 99.5
%
Recall 99.6 %

Ghiasi [87] Contents of Registers, Application
Programming Interface Calls

850-Malware and 300-
Benign Files

Precision 95.9
%

Pirscoveanu [65] Window Application Programming
Interface calls

42000-Malware Files /
VirusShare and Virustotal
Malware
Repositories

Precision 98
%

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

28 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

4.3. Hybrid Malware Detection
Behavior-based and signature-based techniques
have some advantages and disadvantages.
Consider that several researchers have
suggested ways to hybrid malware detection
that incorporate the advantages of both static
and dynamic malware techniques. In this part,
we discuss and compare the research of
different methods for hybrid malware detection
using various criteria. Rabek et al. suggested a
malware detection technique for detecting
harmful files that were obfuscated [107]. In
addition to the dynamics, the information
gathered includes all the function names,
addresses, and return addresses of system calls.
Malware files have been executed to record
runtime activity in a controlled dynamic
environment. The program is classed as
malicious when calling the same previously
saved system calls (which represents the
malware file). If, however, any unnecessary
system calls are included in the code, the
malware creator fails. The graph detector for
network worms was suggested by Collins et al.

[108]. Hosts in a network were represented as
nodes and connections as edges. The approach
mimicked a network to learn about the behavior
of worms. It addresses worms exclusively, not
Trojan horses, viruses, or other malware. The
following are the different methods used for
detecting hybrid malware. To minimize
false-positive reactions, Mangialardo and others
[109] suggested that the FAMA framework
address faults in both static and dynamic
analysis methods. For extracting static
characteristics, IDA pro was utilized and
Cuckoo's sandbox for capturing behavioral
functions. The features gathered were then used
to train the random forest and C5.0 algorithms,
which were both developed by the researchers.
The tests showed that the unknown file can be
classified as benign or dangerous with 95.75 %
accuracy. Shijo et al. presented an integrated
malware detection approach that was based on
machine learning [110]. Following the
deconstruction of the binary files, information
in the form of readable string information was
obtained. It also takes care of any superfluous

printed strings that were used to conceal the
code. Once the binary files had been run, they
were subjected to dynamic analysis in the
Cuckoo Sandbox. This included file
system-relevant API calls, change registries,
and the extraction of a specific process and
memory addresses. The Random Forest and
Support Vector Machine were used to train the
malware classifier. Edem et al. suggested a
malware detection methodology that is
automated [111].

Several data-mining techniques have been used
in integrated with the author's malware
investigation. A clustering technique called
k-means clustering was used to group malware
samples that had similar behavior together to
make the analysis easier and more useful. The
malware samples were analyzed both statically
and dynamically from the outset. The IDA Pro
and OllyDbg tools, as well as the CW Sandbox,
were utilized to extract the static characteristics
from the code during the static analysis. An
XML report on the malware sample activity is
generated by the CWSandbox. The data mining
method was then utilized to process both static
and behavior characteristics. The enhanced
malware detection method for malware
categorization using the SVM algorithm was
proposed by Okane et al. [112]. Unlike others,
this method utilizes the runtime trace as the
tracking feature of the application to train the
detection system. The Support Vector Classifier
was trained after the extracted functions were
reduced to smaller feature sets utilizing opcode
filtering methods, which resulted in the
reduction of the retrieved functions to smaller
feature sets. Nauman et al. introduced the
concept of tridimensional decision-making in
the context of malware detection systems [113].
All the previously proposed techniques were

accompanied by a binary file, which might be
malware or benign. Practically, the detector is
unable to correctly classify all the examined
files. Some complicated malware is wrongly
categorized, such as Stuxnet or extremely
unique files. In this instance, detectors are more
likely to produce false positive or negative
findings. Thus, the strategies of fered address
such viruses with three types of accepted,
rejected, and delayed decisions. Two
approaches to malware are proposed: (i) Rough
theoretical rough game sets (ii) rough
theoretical information test. The disadvantage
of this method is that it does not offer a solution
for the handling of malware that has not been
detected yet. By combining various static and
dynamic analytic methods with
component-based frameworks, Kaur et al. have
created a hybrid methodology for identifying
malware that may be used to detect a wide range
of threats [20]. Initially, the Hybrid Framework
was developed to automatically identify
zero-day malware that mimicked the destructive
behaviors of existing malware. The malware
detector is trained by extracting static and
dynamic characteristics from malware samples,
which are then used to identify malicious code.
This technique captures a broad variety of static
properties, such as the hash value, PE header
information, string values, and dynamic actions,
such as process activities, file operations,
storage operations, and network activities. This
method makes it possible to identify new
malware and classify it according to its static
characteristics.

Kolosnjaji et al. proposed an improved
semi-supervised malware detection approach
that incorporates both dynamic and static
malware analysis results to improve the
performance of categorization and classification

[41]. During the processing of extract
characteristics of dynamic and static analysis,
various methods were employed, which are
distinct from prior malware detection
approaches. To categorize static findings, the
semi-supervised propagation method has been
utilized and the dynamic reports, which found
hidden semanticized characteristics in malware
files, have been statistically modeled. Above all,
it provides an online dynamic malware
classification system for non-parametric
techniques. Damodaran et al. proposed a hybrid
approach for training a classifier, in which an
Opcode sequence or an API request was utilized
to train the classifier in parallel [114]. Like
earlier hybrid techniques, binary data is used to
extract both static and dynamic features from it.
The Hidden Markov technique was then used in
the classification process, both dynamically and
statically. This approach only produced good
results for a few malware types. Current
methods of obscuring may also avoid the static
analytical procedure of malware identification
using malware tactics. Pfeffer et al. suggested
MAAGI for malware detection (Malware
Analysis and Attributed using Genetic
Information) [115]. In this context, the genetic
algorithm has been used to the comparability
features of malware. Malicious samples are
processed in static and dynamic sandboxes to
collect malware features. Static analysis was
carried out using PEid and IDA pro tools while
dynamic analysis tools were utilized on Symon
and Introvert. The foundation of the MAAGI is
founded on the notion that biological behavior
and malware behavior share a great deal. The
outcome was the creation of the malware
detection framework using the artificial
intelligence algorithm, which showed
promising results. It is expected that it will
improve collaboration between cyber defense

and artificial intelligence groups in the long run.
Huda et al. suggested a semi-supervised
machine learning method that would automate
information regarding unknown malware in the
sensing system using previously tagged and
unlisted data, which would be implemented in a
sensor network [89]. Other techniques do not
have the advantage of automatically updating
the database of the detection system, which
makes this one stands out since it does not need
external help. This technology makes use of
k-means clustering with reverse document
frequency as the distance metric, word
frequency as the distance metric, and the
Support vector machine technique to categorize
binaries to extract cluster information, all of
which are used to extract cluster information.
Huda et al. [116] proposed a hybrid method that
combines the inclusion of wrapper filters with
the selection of characteristics to get the best
possible results. The author has selected the
maximum and minimum characteristics in this
research After that, several MR+SVM,
MRED+SVM and Fisher+SVM machine
learning methods were employed to train the
model that provided 99,49 % precision utilizing.
Table 9 offers a comprehensive summary of the
updated techniques for hybrid malware
detection, as well as their advantages and
disadvantages. It also presents the results of the
investigation into hybrid malware ratings. Huda
et al [116] achieved the highest accuracy in
malware detection with a 99.49 % detection
rate. These methods were proposed as a means
of bridging the gap between static and dynamic
malware detection by integrating the benefits of
both approaches.

Datasets
Yucel [104] Memory Images 123-Malware Files /

Virusign Malware Dataset
Precision 99.5
%

Stiborek [99] Behaviour artefacts 112115-Malware Files Precision 95.4
%

Alaeiyan [101] Behavioral features using
Parsa sandbox

1700-Malware and 1700-
Benign
Files /
Virusshare Malware
Repository

Precision 97.9
%

Xiaofeng [102] Application Programming Interface
call Sequence

1430 Malware and 1352
benign
Files /
Virusshare and Virus Total
Repositories

Precision 96.7
%

Arivudainambi
[103]

Network Artefacts 1000-Malware Files Precision 99
%

Rabbani [105] Network features 677789-Benign Files and
22211-Malware

Precision 96.5
%

Namavar [4] Behavioral features 18831-Malware Files /
Vxheaven and Microsoft
Kaggle

Precision
99.65 %

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

4.3. Hybrid Malware Detection
Behavior-based and signature-based techniques
have some advantages and disadvantages.
Consider that several researchers have
suggested ways to hybrid malware detection
that incorporate the advantages of both static
and dynamic malware techniques. In this part,
we discuss and compare the research of
different methods for hybrid malware detection
using various criteria. Rabek et al. suggested a
malware detection technique for detecting
harmful files that were obfuscated [107]. In
addition to the dynamics, the information
gathered includes all the function names,
addresses, and return addresses of system calls.
Malware files have been executed to record
runtime activity in a controlled dynamic
environment. The program is classed as
malicious when calling the same previously
saved system calls (which represents the
malware file). If, however, any unnecessary
system calls are included in the code, the
malware creator fails. The graph detector for
network worms was suggested by Collins et al.

[108]. Hosts in a network were represented as
nodes and connections as edges. The approach
mimicked a network to learn about the behavior
of worms. It addresses worms exclusively, not
Trojan horses, viruses, or other malware. The
following are the different methods used for
detecting hybrid malware. To minimize
false-positive reactions, Mangialardo and others
[109] suggested that the FAMA framework
address faults in both static and dynamic
analysis methods. For extracting static
characteristics, IDA pro was utilized and
Cuckoo's sandbox for capturing behavioral
functions. The features gathered were then used
to train the random forest and C5.0 algorithms,
which were both developed by the researchers.
The tests showed that the unknown file can be
classified as benign or dangerous with 95.75 %
accuracy. Shijo et al. presented an integrated
malware detection approach that was based on
machine learning [110]. Following the
deconstruction of the binary files, information
in the form of readable string information was
obtained. It also takes care of any superfluous

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

29Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

printed strings that were used to conceal the
code. Once the binary files had been run, they
were subjected to dynamic analysis in the
Cuckoo Sandbox. This included file
system-relevant API calls, change registries,
and the extraction of a specific process and
memory addresses. The Random Forest and
Support Vector Machine were used to train the
malware classifier. Edem et al. suggested a
malware detection methodology that is
automated [111].

Several data-mining techniques have been used
in integrated with the author's malware
investigation. A clustering technique called
k-means clustering was used to group malware
samples that had similar behavior together to
make the analysis easier and more useful. The
malware samples were analyzed both statically
and dynamically from the outset. The IDA Pro
and OllyDbg tools, as well as the CW Sandbox,
were utilized to extract the static characteristics
from the code during the static analysis. An
XML report on the malware sample activity is
generated by the CWSandbox. The data mining
method was then utilized to process both static
and behavior characteristics. The enhanced
malware detection method for malware
categorization using the SVM algorithm was
proposed by Okane et al. [112]. Unlike others,
this method utilizes the runtime trace as the
tracking feature of the application to train the
detection system. The Support Vector Classifier
was trained after the extracted functions were
reduced to smaller feature sets utilizing opcode
filtering methods, which resulted in the
reduction of the retrieved functions to smaller
feature sets. Nauman et al. introduced the
concept of tridimensional decision-making in
the context of malware detection systems [113].
All the previously proposed techniques were

accompanied by a binary file, which might be
malware or benign. Practically, the detector is
unable to correctly classify all the examined
files. Some complicated malware is wrongly
categorized, such as Stuxnet or extremely
unique files. In this instance, detectors are more
likely to produce false positive or negative
findings. Thus, the strategies of fered address
such viruses with three types of accepted,
rejected, and delayed decisions. Two
approaches to malware are proposed: (i) Rough
theoretical rough game sets (ii) rough
theoretical information test. The disadvantage
of this method is that it does not offer a solution
for the handling of malware that has not been
detected yet. By combining various static and
dynamic analytic methods with
component-based frameworks, Kaur et al. have
created a hybrid methodology for identifying
malware that may be used to detect a wide range
of threats [20]. Initially, the Hybrid Framework
was developed to automatically identify
zero-day malware that mimicked the destructive
behaviors of existing malware. The malware
detector is trained by extracting static and
dynamic characteristics from malware samples,
which are then used to identify malicious code.
This technique captures a broad variety of static
properties, such as the hash value, PE header
information, string values, and dynamic actions,
such as process activities, file operations,
storage operations, and network activities. This
method makes it possible to identify new
malware and classify it according to its static
characteristics.

Kolosnjaji et al. proposed an improved
semi-supervised malware detection approach
that incorporates both dynamic and static
malware analysis results to improve the
performance of categorization and classification

[41]. During the processing of extract
characteristics of dynamic and static analysis,
various methods were employed, which are
distinct from prior malware detection
approaches. To categorize static findings, the
semi-supervised propagation method has been
utilized and the dynamic reports, which found
hidden semanticized characteristics in malware
files, have been statistically modeled. Above all,
it provides an online dynamic malware
classification system for non-parametric
techniques. Damodaran et al. proposed a hybrid
approach for training a classifier, in which an
Opcode sequence or an API request was utilized
to train the classifier in parallel [114]. Like
earlier hybrid techniques, binary data is used to
extract both static and dynamic features from it.
The Hidden Markov technique was then used in
the classification process, both dynamically and
statically. This approach only produced good
results for a few malware types. Current
methods of obscuring may also avoid the static
analytical procedure of malware identification
using malware tactics. Pfeffer et al. suggested
MAAGI for malware detection (Malware
Analysis and Attributed using Genetic
Information) [115]. In this context, the genetic
algorithm has been used to the comparability
features of malware. Malicious samples are
processed in static and dynamic sandboxes to
collect malware features. Static analysis was
carried out using PEid and IDA pro tools while
dynamic analysis tools were utilized on Symon
and Introvert. The foundation of the MAAGI is
founded on the notion that biological behavior
and malware behavior share a great deal. The
outcome was the creation of the malware
detection framework using the artificial
intelligence algorithm, which showed
promising results. It is expected that it will
improve collaboration between cyber defense

and artificial intelligence groups in the long run.
Huda et al. suggested a semi-supervised
machine learning method that would automate
information regarding unknown malware in the
sensing system using previously tagged and
unlisted data, which would be implemented in a
sensor network [89]. Other techniques do not
have the advantage of automatically updating
the database of the detection system, which
makes this one stands out since it does not need
external help. This technology makes use of
k-means clustering with reverse document
frequency as the distance metric, word
frequency as the distance metric, and the
Support vector machine technique to categorize
binaries to extract cluster information, all of
which are used to extract cluster information.
Huda et al. [116] proposed a hybrid method that
combines the inclusion of wrapper filters with
the selection of characteristics to get the best
possible results. The author has selected the
maximum and minimum characteristics in this
research After that, several MR+SVM,
MRED+SVM and Fisher+SVM machine
learning methods were employed to train the
model that provided 99,49 % precision utilizing.
Table 9 offers a comprehensive summary of the
updated techniques for hybrid malware
detection, as well as their advantages and
disadvantages. It also presents the results of the
investigation into hybrid malware ratings. Huda
et al [116] achieved the highest accuracy in
malware detection with a 99.49 % detection
rate. These methods were proposed as a means
of bridging the gap between static and dynamic
malware detection by integrating the benefits of
both approaches.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

4.3. Hybrid Malware Detection
Behavior-based and signature-based techniques
have some advantages and disadvantages.
Consider that several researchers have
suggested ways to hybrid malware detection
that incorporate the advantages of both static
and dynamic malware techniques. In this part,
we discuss and compare the research of
different methods for hybrid malware detection
using various criteria. Rabek et al. suggested a
malware detection technique for detecting
harmful files that were obfuscated [107]. In
addition to the dynamics, the information
gathered includes all the function names,
addresses, and return addresses of system calls.
Malware files have been executed to record
runtime activity in a controlled dynamic
environment. The program is classed as
malicious when calling the same previously
saved system calls (which represents the
malware file). If, however, any unnecessary
system calls are included in the code, the
malware creator fails. The graph detector for
network worms was suggested by Collins et al.

[108]. Hosts in a network were represented as
nodes and connections as edges. The approach
mimicked a network to learn about the behavior
of worms. It addresses worms exclusively, not
Trojan horses, viruses, or other malware. The
following are the different methods used for
detecting hybrid malware. To minimize
false-positive reactions, Mangialardo and others
[109] suggested that the FAMA framework
address faults in both static and dynamic
analysis methods. For extracting static
characteristics, IDA pro was utilized and
Cuckoo's sandbox for capturing behavioral
functions. The features gathered were then used
to train the random forest and C5.0 algorithms,
which were both developed by the researchers.
The tests showed that the unknown file can be
classified as benign or dangerous with 95.75 %
accuracy. Shijo et al. presented an integrated
malware detection approach that was based on
machine learning [110]. Following the
deconstruction of the binary files, information
in the form of readable string information was
obtained. It also takes care of any superfluous

printed strings that were used to conceal the
code. Once the binary files had been run, they
were subjected to dynamic analysis in the
Cuckoo Sandbox. This included file
system-relevant API calls, change registries,
and the extraction of a specific process and
memory addresses. The Random Forest and
Support Vector Machine were used to train the
malware classifier. Edem et al. suggested a
malware detection methodology that is
automated [111].

Several data-mining techniques have been used
in integrated with the author's malware
investigation. A clustering technique called
k-means clustering was used to group malware
samples that had similar behavior together to
make the analysis easier and more useful. The
malware samples were analyzed both statically
and dynamically from the outset. The IDA Pro
and OllyDbg tools, as well as the CW Sandbox,
were utilized to extract the static characteristics
from the code during the static analysis. An
XML report on the malware sample activity is
generated by the CWSandbox. The data mining
method was then utilized to process both static
and behavior characteristics. The enhanced
malware detection method for malware
categorization using the SVM algorithm was
proposed by Okane et al. [112]. Unlike others,
this method utilizes the runtime trace as the
tracking feature of the application to train the
detection system. The Support Vector Classifier
was trained after the extracted functions were
reduced to smaller feature sets utilizing opcode
filtering methods, which resulted in the
reduction of the retrieved functions to smaller
feature sets. Nauman et al. introduced the
concept of tridimensional decision-making in
the context of malware detection systems [113].
All the previously proposed techniques were

accompanied by a binary file, which might be
malware or benign. Practically, the detector is
unable to correctly classify all the examined
files. Some complicated malware is wrongly
categorized, such as Stuxnet or extremely
unique files. In this instance, detectors are more
likely to produce false positive or negative
findings. Thus, the strategies of fered address
such viruses with three types of accepted,
rejected, and delayed decisions. Two
approaches to malware are proposed: (i) Rough
theoretical rough game sets (ii) rough
theoretical information test. The disadvantage
of this method is that it does not offer a solution
for the handling of malware that has not been
detected yet. By combining various static and
dynamic analytic methods with
component-based frameworks, Kaur et al. have
created a hybrid methodology for identifying
malware that may be used to detect a wide range
of threats [20]. Initially, the Hybrid Framework
was developed to automatically identify
zero-day malware that mimicked the destructive
behaviors of existing malware. The malware
detector is trained by extracting static and
dynamic characteristics from malware samples,
which are then used to identify malicious code.
This technique captures a broad variety of static
properties, such as the hash value, PE header
information, string values, and dynamic actions,
such as process activities, file operations,
storage operations, and network activities. This
method makes it possible to identify new
malware and classify it according to its static
characteristics.

Kolosnjaji et al. proposed an improved
semi-supervised malware detection approach
that incorporates both dynamic and static
malware analysis results to improve the
performance of categorization and classification

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

30 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

[41]. During the processing of extract
characteristics of dynamic and static analysis,
various methods were employed, which are
distinct from prior malware detection
approaches. To categorize static findings, the
semi-supervised propagation method has been
utilized and the dynamic reports, which found
hidden semanticized characteristics in malware
files, have been statistically modeled. Above all,
it provides an online dynamic malware
classification system for non-parametric
techniques. Damodaran et al. proposed a hybrid
approach for training a classifier, in which an
Opcode sequence or an API request was utilized
to train the classifier in parallel [114]. Like
earlier hybrid techniques, binary data is used to
extract both static and dynamic features from it.
The Hidden Markov technique was then used in
the classification process, both dynamically and
statically. This approach only produced good
results for a few malware types. Current
methods of obscuring may also avoid the static
analytical procedure of malware identification
using malware tactics. Pfeffer et al. suggested
MAAGI for malware detection (Malware
Analysis and Attributed using Genetic
Information) [115]. In this context, the genetic
algorithm has been used to the comparability
features of malware. Malicious samples are
processed in static and dynamic sandboxes to
collect malware features. Static analysis was
carried out using PEid and IDA pro tools while
dynamic analysis tools were utilized on Symon
and Introvert. The foundation of the MAAGI is
founded on the notion that biological behavior
and malware behavior share a great deal. The
outcome was the creation of the malware
detection framework using the artificial
intelligence algorithm, which showed
promising results. It is expected that it will
improve collaboration between cyber defense

and artificial intelligence groups in the long run.
Huda et al. suggested a semi-supervised
machine learning method that would automate
information regarding unknown malware in the
sensing system using previously tagged and
unlisted data, which would be implemented in a
sensor network [89]. Other techniques do not
have the advantage of automatically updating
the database of the detection system, which
makes this one stands out since it does not need
external help. This technology makes use of
k-means clustering with reverse document
frequency as the distance metric, word
frequency as the distance metric, and the
Support vector machine technique to categorize
binaries to extract cluster information, all of
which are used to extract cluster information.
Huda et al. [116] proposed a hybrid method that
combines the inclusion of wrapper filters with
the selection of characteristics to get the best
possible results. The author has selected the
maximum and minimum characteristics in this
research After that, several MR+SVM,
MRED+SVM and Fisher+SVM machine
learning methods were employed to train the
model that provided 99,49 % precision utilizing.
Table 9 offers a comprehensive summary of the
updated techniques for hybrid malware
detection, as well as their advantages and
disadvantages. It also presents the results of the
investigation into hybrid malware ratings. Huda
et al [116] achieved the highest accuracy in
malware detection with a 99.49 % detection
rate. These methods were proposed as a means
of bridging the gap between static and dynamic
malware detection by integrating the benefits of
both approaches.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

31Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

Table 9: A complete analysis of the hybrid malware detection approaches
Author(s) Input Data sources / No. of samples Results
Mangialardo [109]

Application programing
interface call sequences

131073-Malware Files /
Virus Share Malware Dataset

Precision-95.75%

Shijo [110] Printable strings
information
(PSI) and Application
programing interface
calls

997-Malware and 490-Benign Files Precision -98.7%
(SVM),
97.68% (RF)

Edem [111] Signature and Window
Application programing
interface calls

1143-Malware Files / 1143-Malware /
Malware Sample taken from
MWanalysis.org

Okane [120] System Application
programing interface calls

350-Malware, 300-Benign /
Vx heaven Malware repository

Precision -86.3%

Nauman [113] System Calls UNM Application Dataset Precision -92.51%
Kolosnjaji [41] Portable Executable

Header Information and
2000-Labelled Malware and
15000-Unlabelled Malware Files /
Virus total Dataset

Precision-90%

Application programing
interface Calls

Damodaran [121] Portable Executable
information,
Application programing
interface Calls

745-Malware and 40-Benign Files /
Vx heaven Dataset

Precision -98%

Pfeffer [115] Application programing
interface calls

8336-Malware and 128-Benign Files /
MIT Lincoln Lab Malware Dataset

Precision -86%

Huda [89] Printable Strings,
Imports,
Procedure Call Graph
(PCG)

967-Malware Files /
CA Technologies VET Zoo Malware
Dataset

Precision -93.83%,
FPR-0.144%

Huda [116] Runtime activities 2000-Malware and 1500-Benign Files /
Malware sample from CA
Technologies
VET, ZOO, Offensivecomputing.net
and Vx heaven Repositories

Precision 99.49%

5. Discussion and analysis of proposed malware detection techniques

Authors Type ML Algorithm Features

SA DA DT

SVM KNN NB LR ANN RF ADA MN PEH AC PSI RC IM RTF

Ali [67]
Gavrilut [69]
Ghafir [100]
Ghiasi [87]
Huda [89]
Huda [116]
Huda [78]
Ki [118]
Kim [77]
Kolosnjaji [41]
Le [97]
Liu [19]
Mangialardo
[109]

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

32 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

The statistical examination of ML revealing
techniques is covered in this part of the paper.
Because there are three different types of
malware detection techniques. These methods
may be classified into a variety of categories,
including analytical approaches, conventional
or machine-based learning systems, deep
learning systems, computer technologies, and
mobile malware detection technique. We have
examined the strategies of malware detection
designed for Computer malware. Table 10
summarizes research into methods of malware
detection based upon algorithms and the
features of input. It shows which algorithms
have been greatly utilized and employed in past
and present and which characteristics are static
and dynamic.

• Static Analysis- (SA)
• Dynamic Analysis- (DA)
• API Calls, Imports, DLL Import- (AC)
• Image Representation of binary file- (IM)

• Register Content- (RC)
• Portable Executable Header- (PEH)
• Runtime features (FILE, Network)- (RTF)

In addition to the analytical category and the
machine learning systems, malware types are
the important thing in malware detection. For
example, hash values, specific string data,
opcodes, n-bytes, and registry changes, practice
activities, system operations, and other system
data. As exposed in the Table 10, most of
authors used single-feature sets while many
others used multiple different features for the
classification of malware. Moreover, it affects
malware detection performance how the
characteristics are handled and displayed. Many
techniques, such as API calls, runtime functions,
opcodes, and n-grams, among others, have been
tried; nevertheless, the processing and
application of different methods have formed
superior outcomes overall. Fig. 5 expressions
the accuracy contrast to various static malware

Table 10: Analyzing three kinds of malware revealing methods: ML algorithms and malware characteristics

Raff [42]
Searles [117]
Shabtai [72]
Shijo [110]
Srndic [76]
Stiborek [99]
Veeramani
[26]

Wagner [95]
Wang [80]

Mao [119]
Markel [43]
Mohaisen [81]
Nagano and
Uda [79]

Narra [3]
Nauman [113]
Nayaranan
[92]

Okane [120]
Pan [88]
Pfeffer [115]
Pirscoveanu
[65]

revealing techniques. The greatest accuracy of
99 % was obtained by [117] the authors in [77],
and [27] using the SVM classification methods.
Fig. 6 exhibits dynamic malware classifier’s
accuracy. The authors in [4], [104],and [17]
some researchers have reached more than 99 %
accuracy. The authors [116] generated the
highest precision of 99. 49%, as shown in Fig. 7,
utilizing MR+SVM and MRED+SVM systems.
From the previous work we can elaborate that
static and dynamic technology can produce a
more precise malware revealing system with
machine learning. Likewise, for constructing a
model employing different malware traits a
single classification technique is not suitable.
However, SVM did better in static analysis than
other systems. The algorithms of the dynamic
examination collective also worked effectively.
Some significant research problems arise after
the analysis of different malware detection
methods. There are several advantages and
disadvantages to each method. For instance,
signature-based malware detection methods
may identify only known malware that has

previously recorded its signature in the detector
database. Malware detection systems based on a
signature can be readily avoided by obscure
methods. Malware detection technology that is
based on behaviour may be used to remedy
flaws of signature-based detection technique.
However, behavioral methods require far more
time and have a larger false positive rate than
signature-based techniques. The identification
of malware is an infinite process. By the day, it's
becoming harder. More attackers create
advanced malware which is rigid to identify
though the number of computer users is
growing. In addition to the intricacy of malware,
malware is also a huge difficulty in stopping
malware attacks. Therefore, as improvement
increases, the fight between malware
developers and security analyzers never ends. In
the following part, we proposed a framework
for addressing these malware detection
challenges. It would not be a strengthen, but the
maximal virus detection dimensions are
included in this technique.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

The statistical examination of ML revealing
techniques is covered in this part of the paper.
Because there are three different types of
malware detection techniques. These methods
may be classified into a variety of categories,
including analytical approaches, conventional
or machine-based learning systems, deep
learning systems, computer technologies, and
mobile malware detection technique. We have
examined the strategies of malware detection
designed for Computer malware. Table 10
summarizes research into methods of malware
detection based upon algorithms and the
features of input. It shows which algorithms
have been greatly utilized and employed in past
and present and which characteristics are static
and dynamic.

• Static Analysis- (SA)
• Dynamic Analysis- (DA)
• API Calls, Imports, DLL Import- (AC)
• Image Representation of binary file- (IM)

• Register Content- (RC)
• Portable Executable Header- (PEH)
• Runtime features (FILE, Network)- (RTF)

In addition to the analytical category and the
machine learning systems, malware types are
the important thing in malware detection. For
example, hash values, specific string data,
opcodes, n-bytes, and registry changes, practice
activities, system operations, and other system
data. As exposed in the Table 10, most of
authors used single-feature sets while many
others used multiple different features for the
classification of malware. Moreover, it affects
malware detection performance how the
characteristics are handled and displayed. Many
techniques, such as API calls, runtime functions,
opcodes, and n-grams, among others, have been
tried; nevertheless, the processing and
application of different methods have formed
superior outcomes overall. Fig. 5 expressions
the accuracy contrast to various static malware

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

33Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

revealing techniques. The greatest accuracy of
99 % was obtained by [117] the authors in [77],
and [27] using the SVM classification methods.
Fig. 6 exhibits dynamic malware classifier’s
accuracy. The authors in [4], [104],and [17]
some researchers have reached more than 99 %
accuracy. The authors [116] generated the
highest precision of 99. 49%, as shown in Fig. 7,
utilizing MR+SVM and MRED+SVM systems.
From the previous work we can elaborate that
static and dynamic technology can produce a
more precise malware revealing system with
machine learning. Likewise, for constructing a
model employing different malware traits a
single classification technique is not suitable.
However, SVM did better in static analysis than
other systems. The algorithms of the dynamic
examination collective also worked effectively.
Some significant research problems arise after
the analysis of different malware detection
methods. There are several advantages and
disadvantages to each method. For instance,
signature-based malware detection methods
may identify only known malware that has

previously recorded its signature in the detector
database. Malware detection systems based on a
signature can be readily avoided by obscure
methods. Malware detection technology that is
based on behaviour may be used to remedy
flaws of signature-based detection technique.
However, behavioral methods require far more
time and have a larger false positive rate than
signature-based techniques. The identification
of malware is an infinite process. By the day, it's
becoming harder. More attackers create
advanced malware which is rigid to identify
though the number of computer users is
growing. In addition to the intricacy of malware,
malware is also a huge difficulty in stopping
malware attacks. Therefore, as improvement
increases, the fight between malware
developers and security analyzers never ends. In
the following part, we proposed a framework
for addressing these malware detection
challenges. It would not be a strengthen, but the
maximal virus detection dimensions are
included in this technique.

Fig. 5. Chart showing the accuracy contrast of static malware revealing methods

75

80

85

90

95

100

105

Accuracy

Series1 Series2

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

The statistical examination of ML revealing
techniques is covered in this part of the paper.
Because there are three different types of
malware detection techniques. These methods
may be classified into a variety of categories,
including analytical approaches, conventional
or machine-based learning systems, deep
learning systems, computer technologies, and
mobile malware detection technique. We have
examined the strategies of malware detection
designed for Computer malware. Table 10
summarizes research into methods of malware
detection based upon algorithms and the
features of input. It shows which algorithms
have been greatly utilized and employed in past
and present and which characteristics are static
and dynamic.

• Static Analysis- (SA)
• Dynamic Analysis- (DA)
• API Calls, Imports, DLL Import- (AC)
• Image Representation of binary file- (IM)

• Register Content- (RC)
• Portable Executable Header- (PEH)
• Runtime features (FILE, Network)- (RTF)

In addition to the analytical category and the
machine learning systems, malware types are
the important thing in malware detection. For
example, hash values, specific string data,
opcodes, n-bytes, and registry changes, practice
activities, system operations, and other system
data. As exposed in the Table 10, most of
authors used single-feature sets while many
others used multiple different features for the
classification of malware. Moreover, it affects
malware detection performance how the
characteristics are handled and displayed. Many
techniques, such as API calls, runtime functions,
opcodes, and n-grams, among others, have been
tried; nevertheless, the processing and
application of different methods have formed
superior outcomes overall. Fig. 5 expressions
the accuracy contrast to various static malware

revealing techniques. The greatest accuracy of
99 % was obtained by [117] the authors in [77],
and [27] using the SVM classification methods.
Fig. 6 exhibits dynamic malware classifier’s
accuracy. The authors in [4], [104],and [17]
some researchers have reached more than 99 %
accuracy. The authors [116] generated the
highest precision of 99. 49%, as shown in Fig. 7,
utilizing MR+SVM and MRED+SVM systems.
From the previous work we can elaborate that
static and dynamic technology can produce a
more precise malware revealing system with
machine learning. Likewise, for constructing a
model employing different malware traits a
single classification technique is not suitable.
However, SVM did better in static analysis than
other systems. The algorithms of the dynamic
examination collective also worked effectively.
Some significant research problems arise after
the analysis of different malware detection
methods. There are several advantages and
disadvantages to each method. For instance,
signature-based malware detection methods
may identify only known malware that has

previously recorded its signature in the detector
database. Malware detection systems based on a
signature can be readily avoided by obscure
methods. Malware detection technology that is
based on behaviour may be used to remedy
flaws of signature-based detection technique.
However, behavioral methods require far more
time and have a larger false positive rate than
signature-based techniques. The identification
of malware is an infinite process. By the day, it's
becoming harder. More attackers create
advanced malware which is rigid to identify
though the number of computer users is
growing. In addition to the intricacy of malware,
malware is also a huge difficulty in stopping
malware attacks. Therefore, as improvement
increases, the fight between malware
developers and security analyzers never ends. In
the following part, we proposed a framework
for addressing these malware detection
challenges. It would not be a strengthen, but the
maximal virus detection dimensions are
included in this technique.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

34 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

Fig. 6. Comparison Graph of Dynamic Malware Detection Techniques for Accuracy.

75

80

85

90

95

100

105

Accurucy
Series1 Series2

Fig. 7. Comparison Graph of Hybrid Malware Detection Techniques for Accuracy

80
82
84
86
88
90
92
94
96
98

100
102

Accurucy

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

35Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

36 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

37Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

Fig. 8. The Proposed schematics of Hybrid Malware Detection Technique.

7. CONCLUSION

This study helps to identify malwares using
runtime characteristics. It provides the knowl-
edge fraction for harmful software analysis and
detection procedures through machine learning
algorithms. Malware is now well-known to be
highly sophisticated and rapidly changing.
Today, it is not only used to disturb users, steal
information, and destroy user data but also to
enforce its objectives for businesses and
nations. The protection of data and resources is
a key component in information technology.
This is essential because computers or embed-
ded digital devices in every area are utilized to
execute activities more quickly and precisely
without human involvement. The computer

system is more susceptible to hacking because
of its wide range of applications. This study
covers the development of malware, present
status, and techniques of detection. Two
malware analysis techniques exist signature
based, and behavior based. Signature-based
technology has two major flaws that must be
addressed. For the time being, signature-based
techniques will not be able to identify new or
previously unknown malware. Second, different
types of malwares may readily outwit the
system's detection mechanisms. Behavior-based
technique can identify new variants of malware,
dynamic techniques in malware-based methods
are more robust than signature-based methods.
The actual application of dynamic methods
nevertheless remains rigid and time-intensive,
whereas signature technology is quicker and

more efficacious than dynamic techniques in
identifying known malware. We spoke about
malware methods that were suggested for
machine learning to train the classification of
malware in this research. This is because it
includes a huge number of algorithms that may
be used for a variety of malware features. In
addition to its accessibility, machine learning
algorithms provide many benefits over conven-
tional malware classifications, such as the
capacity to get information from file samples,
rapidly detect, unexpected changes, and
minimize the human work and time spent
analyzing malware. In this article, malware
detection methods are classified according to
analytical methodologies such as static, dynam-
ic, and hybrid techniques. Each method has
advantages and disadvantages. These methods,
however, produced encouraging results in the
categorization of malware in a certain scenario.
For example, static methods are quicker, with a
reduced false-positive rate, but it is difficult to
cope with the obfuscation technique while
collecting static characteristics. In this respect,
on the contrary, dynamic methods offer a
beneficial although implementation in real-time
is inconvenient. Finally, we addressed the
two-layer malware detection framework with
static and dynamic functions that can effectively
and reliably detect the new and known malware.

REFERENCES

[1] H. Weijie, X. Jingfeng, W. Yong, H.
Lu, K. Zixiao and M. Limin, “MalDAE:
Detecting and explaining malware
based on correlation and fusion of static
and dynamic characteristics”, Comput-
ers and Security, vol. 83, pp. 208-233,
2019.

[2] B. Pete, F. Richard, T. Frederick and J.

Kevin, “Malware classification using
self organising feature maps and
machine activity data”, Computers and
Security, vol. 73, pp. 399-410, 2018.

[3] N. Usha, T. F. Di, C. V. Aaron, A.
Thomas and S. Mark, “Clustering versus
SVM for malware detection”, Journal of
Computer Virology and Hacking
Techniques, vol. 12, pp. 213-224, 2016.

[4] J. A. Namavar, H. Sattar, D. Ali and C.
R. Kim kwang, “An improved two-hid-
den-layer extreme learning machine for
malware hunting”, Computers and Secu-
rity, vol. 89, pp. 10-16, 2020.

[5] F. Massimo and P. F. Leaf, “An
open-source cybersecurity training
platform for realistic edge-IoT scenari-
os”, Journal of Systems Architecture,
vol. 97, pp. 107-129, 2020.

[6] K. Afreen, Z. Swaleha and Al. S.
Muaadhabdo, “An improved pre-pro-
cessing machine learning approach for
cross-sectional imaging of demented
older adults”, International Conference
of Intelligent Computing and Engineer-
ing (ICOICE), IEEE, pp. 1-7, 2019.

[7] P. Jakub, N. Q. Anh, B. Adrian, G.
Jonathan and L. Y. Kubo, “a framework
for automated efficacy testing of anti-vi-
rus behavioral detection with proce-
dure-based malware emulation”, In
Proceedings of the 13th International
Workshop on Automating Test Case
Design, Selection and Evaluation, pp.
37-44, 2022.

[8] B. Andrew, “How deception can change
cyber security defenses”, Computer
Fraud & Security, vol.5, no.1, pp. 12-14,
2019.

 [9] G. Ekta, B. Divya and S. Sanjeev, “Mal-
ware analysis and classification: A

survey”, Journal of Information Securi-
ty, vol. 6, 2014.

[10] M. S. Mariam, S. M. Ali, Z. Si-Jing and
Y. Hong-Ji, “Conceivable security risks
and authentication techniques for smart
devices: A comparative evaluation of
security practices”, International journal
of Automation and Computing, vol. 13,
pp. 350-363, 2016.

[11] B. Kang, F. Liu, Z. Yun and Y. Liang,
“Design of an Internet of Things-based
smart home system”, International
Conference on Intelligent Control and
Information Processing, IEEE, vol. 2,
pp. 921-924, 2011.

[12] A. Shahid, H, R. Nigel, T. Issa and S.
Ibrahim, “A framework for metamor-
phic malware analysis and real-time
detection”, Computers and Security, vol.
48, pp. 212-233, 2015.

[13] H. Xin, “Large-scale malware analysis,
detection, and signature generation”,
Doctoral dissertation, University of
Michigan, 2011.

[14] R. Kalpika, A. R. Vasudevan, “Detection
of Zeus Bot Based on Host and Network
Activities”, Communications in Com-
puter and Information Science, vol. 746,
pp. 978-981, 2017.

[15] E. Nabeil, E. Rashad, H. Alzubair and L.
Fagen, “A blockchain-based
attribute-based signcryption scheme to
secure data sharing in the cloud”,
Journal of Systems Architecture, vol.
102, pp. 10-16, 2020.

[16] J. Daehee, J. Yunjong , L Sungman , P.
Minjoon, K. Kuenhwan , K. Donguk and
K. B. Byunghoon, “Rethinking anti-em-
ulation techniques for large-scale
software deployment”, Computers and
Security, vol. 83, pp. 182-200, 2019.

[17] M. Samaneh and G. Ali A, “Application
of deep learning to cybersecurity: A
survey”, Neurocomputing, vol. 347, pp.
149-176, 2019.

[18] Z. Weizhe, W. Huanran, H. Hui and L.
Peng,” DAMBA: detecting android
malware by ORGB analysis”, IEEE
Transactions on Reliability, vol.69, no.1,
pp. 55-69, 2020.

[19] L. Liu, W. Bao-sheng, Y. Bo and Z.
Qiu-xi, “Automatic malware classifica-
tion and new malware detection using
machine learning”, Frontiers of Infor-
mation Technology & Electronic
Engineering, vol. 18, no. 9, pp.
1336-1347, 2017.

[20] K. Ratinder and M. Singh, “Hybrid
real-time zero-day malware analysis and
reporting system”, International Journal
of Information Technology and Comput-
er Sciences, vol. 8, pp. 63-73, 2016.

[21] M. Jelena, M. Miroslaw and F. Alberto,
“Time, accuracy and power consump-
tion tradeoff in mobile malware detec-
tion systems”, Computers and Security,
vol. 82, pp. 314-328, 2019.

[22] S. Hudan, S. Ferdous and P. Christian,
“A survey on forensic investigation of
operating system logs”, Digital Investi-
gation, vol. 29, pp. 1-20, 2019.

[23] N. Bruce, K. K. Hwan, K. Y. Jin, K.H.
Ho, K. T. Yong and L. H. Jae,
“Cross-method-based analysis and
classification of malicious behavior by
api calls extraction”, Applied Sciences,
vol. 9, no.2, pp. 239, 2019.

[24] Z. Hanqi, X. Xi, M. Francesco, N.
Shiguang, M. Fabio and S. A. Kumar,
“Classification of ransomware families
with machine learning based on N-gram
of opcodes”, Future Generation Com-

puter Systems, vol. 90, pp. 211-221,
2019.

[25] N. Jose, P. Araujo, P. Donald M and R.
C. Ghedini, “MULTS: A multi-cloud
fault-tolerant architecture to manage
transient servers in cloud computing”,
Journal of Systems Architecture, vol.
101, pp. 101-108, 2019.

[26] R. Veeramani and R. Nitin, “Windows
api based malware detection and frame-
work analysis”, In International Confer-
ence on Networks and Cyber Security,
vol. 25, 2012.

[27] C. Mihai, J. Somesh, K. Johannes, K.
Stefan and V. Helmut, “Software trans-
formations to improve malware detec-
tion”, Journal in Computer Virology,
vol. 3, pp. 253-265, 2007.

[28] O. Yoshihiro, “Trends of anti-analysis
operations of malwares observed in API
call logs”, Journal of Computer Virology
and Hacking Techniques, vol. 14, no. 1,
pp. 69-85, 2018.

[29] C. Sibi S and V. V. Sangeetha, “A survey
on malware analysis and mitigation
techniques”, Computer Science Review,
vol. 32, pp. 1-23, 2019.

[30] D. Jaime, S. Igor, C. Xabier, P. Yoseba K
and B. Pablo G, “Automatic
behaviour-based analysis and classifica-
tion system for malware detection”,
International Conference on Enterprise
Information Systems, vol. 2, pp.
395-399, 2010.

[31] D. Yuxin, X. Xiaoling, C. Sheng and L.
Ye, “A malware detection method based
on family behavior graph”, Computers
and Security, vol. 73, pp. 73-86, 2018.

[32] S. Jagsir and S. Jaswinder, “A survey on
machine learning-based malware detec-

tion in executable files”, Journal of
Systems Architecture, vol. 112, pp.
10-18, 2021.

[33] R. Anusmita and N. Asoke, “Introduc-
tion to Malware and Malware Analysis:
A brief overview”, International Journal,
vol. 4, no.10, 2016.

[34] W. Huanran, H. Hui and Z. Weizhe,
“Demadroid: Object reference
graph-based malware detection in
Android”, Security and Communication
Networks, vol. 2018, 2018.

[35] B. Tao, T. Takeshi, G. Shanqing, I.
Daisuke and N. Koji, “Integration of
multi-modal features for android
malware detection using linear SVM”,
In 2016 11th Asia Joint Conference on
Information Security (Asia JCIS), IEEE,
pp. 141-146, 2016.

[36] B. Ulrich, K. Engin and K. Christopher,
“Improving the efficiency of dynamic
malware analysis”, In Proceedings of the
2010 ACM Symposium on Applied
Computing, pp. 1871-1878, 2010.

[37] W. Gerard, S. Radu and D. Alexandre,
“Malware behaviour analysis”, Journal
in Computer Virology, vol. 4, pp.
279-287, 2008.

[38] M. Asit and T. Shashikala, “Virtual
machine introspection: towards bridging
the semantic gap”, Journal of Cloud
Computing, vol. 3, no.1, pp. 1-14, 2014.

[39] V. Jiri and P. Martin, “Virtualization of
operating system using type-2 Hypervi-
sor”, In Software Engineering Perspec-
tives and Application in Intelligent
Systems: Proceedings of the 5th Com-
puter Science On-line Conference 2016
(CSOC2016), Springer International
Publishing, vol. 25, pp. 239-247, 2016.

[40] M. Andreas, K. Christopher and K.
Engin, “Exploring multiple execution
paths for malware analysis”, In 2007
IEEE Symposium on Security and
Privacy (SP'07), IEEE, pp.231-245,
2007.

[41] K. Bojan, Z. Apostolis, L. Tamas, W.
George and E. Claudia, “Adaptive
semantics-aware malware classifica-
tion”, In Detection of Intrusions and
Malware, and Vulnerability Assessment:
13th International Conference, DIMVA
2016, San Sebastián, Spain, Springer
International Publishing, vol. 13, pp.
419-439, 2016.

[42] R. Edward, Z. Richard, C. Russell, S.
Jared, Y. Paul, W. Rebecca, T. Anna, M.
Mark and N. Charles, “An investigation
of byte n-gram features for malware
classification”, Journal of Computer
Virology and Hacking Techniques, vol.
14, pp. 1-20, 2018.

[43] M. Zane and B. Michael, “Building a
machine learning classifier for malware
detection”, In 2014 second workshop on
anti-malware testing research (Water),
IEEE, pp. 1-4, 2014.

[44] S. Michael and H. Andrew, “A Practical
malware analysis: the hands-on guide to
dissecting malicious software”. Starch
Press, 2012.

[45] W. Tzu-Yen and W. Chin-Hsiung,
“Detection of packed executables using
support vector machines”, International
Conference on Machine Learning and
Cybernetics, IEEE, vol. 2, pp. 717-722,
2011.

[46] A. Satheesh and R. Kumaravelu, “A
mathematical model of HMST model on
malware static analysis”, International
Journal of Information Security and

Privacy, vol. 13, no. 2, pp. 86-103, 2019.

[47] A. Imad and L. Saiida, “A new classifi-
cation based model for malicious PE
files detection”, International Journal of
Computer Network and Information
Security, vol. 9, no.6, pp.1-7, 2019.

[48] L. Michael, A. Steven, H. Blake, R.
Matthew, “Malware Analyst's Cookbook
and DVD”, Wiley Publishing, 2011.

[49] L. Xiaojing, Y. Kan, W. XiaoFeng, L.
Zhou, X. Luyi and B. Raheem, “Acing
the ioc game: Toward automatic discov-
ery and analysis of open-source cyber
threat intelligence”, ACM SIGSAC
conference on computer and communi-
cations security, pp. 755-766, 2016.

[50] S. Sebastian and K. Stefan, “Code
obfuscation against static and dynamic
reverse engineering”, In Information
Hiding: 13th International Conference,
IH 2011, Prague, Czech Republic,
Revised Selected Papers, Springer
Berlin Heidelberg, vol. 13, pp. 270-284,
2011.

[51] C. Michael , “Scanning memory with
Yara”, Digital Investigation, vol. 20, pp.
34-38, 2017.

[52] S. Nikolaos, B. Chafika, A. Omar and A.
Ameer, “Forensic malware analysis: The
value of fuzzy hashing algorithms in
identifying similarities”, IEEE Trust-
com/ Big Data SE/ ISPA, IEEE, pp.
1782-1787, 2016.

[53] K. Abhishek, G. Suchandra and G.
Ratan, “Detecting obfuscated viruses
using cosine similarity analysis”, Asia
International Conference on Modelling
and Simulation (AMS'07), IEEE, pp.
165-170, 2007.

[54] B. Danilo, M. Lorenzo, M. Mattia,

“Code normalization for self-mutating
malware”, IEEE Security and Privacy,
vol. 5, no.2, pp. 46-54, 2007.

[55] Z. Boyun, Y. Jianping, H. Jingbo, Z.
Dingxing and W. Shulin, “Malicious
codes detection based on ensemble
learning”, In Autonomic and Trusted
Computing: 4th International Confer-
ence, ATC 2007, Hong Kong, China,
July 11-13, 2007. Proceedings 4, Spring-
er Berlin Heidelberg, pp. 468-477,
2007.

[56] M. Robert, F. Clint, T. Nir, B. Eugene,
G. Marina, D. Shlomi and E. Yuval,
“Unknown malcode detection using
opcode representation”, In Intelligence
and Security Informatics: First European
Conference, Euro ISI 2008, Esbjerg,
Denmark, Proceedings, Springer Berlin
Heidelberg, pp. 204-215, 2008.

[57] B. S. Mojtaba, J. Saeed and T. Asghar,
“PbMMD: A novel policy based
multi-process malware detection”,
Engineering Applications of Artificial
Intelligence, vol. 60, pp. 57-70, 2017.

[58] N. Vivens, X. Zhifeng, M. V. Rao, M. Ke
and X. Yang, “Network forensics analy-
sis using Wireshark”, International
Journal of Security and Networks, vol.
10, no.2, pp. 91-106, 2015.

[59] H. Nazrul, B. Monowar H, B. Ram
Charan, B. Dhruba K and K. Jugal K,
“Network attacks: Taxonomy, tools and
systems”, Journal of Network and Com-
puter Applications, vol. 40, pp. 307-324,
2014.

[60] E. Eldad, “Reversing: secrets of reverse
engineering”, John Wiley & Sons, 2011.

[61] G. Daniel, M. Carles and P. Jordi, “The
rise of machine learning for detection
and classification of malware: Research

developments, trends and challenges”,
Journal of Network and Computer
Applications, vol. 153, pp. 102526,
2020.

[62] R. Chathuranga and J. Aruna, “An
efficient approach for advanced
malware analysis using memory foren-
sic technique”, In 2017 IEEE Trustcom/
Big Data SE/ ICESS, IEEE, pp.
1145-1150, 2017.

[63] K. Ilker, “A basic malware analysis
method”, Computer Fraud and Security,
vol. 2019, no. 6, pp. 11-19, 2019.

[64] K. Joakim, “Fundamentals of Digital
Forensics”, Springer International
Publishing, 2020.

[65] P. Radu, H. Steven, L. Thor, S. Matija, P.
Jens and C. Alexandre, “Analysis of
malware behavior: Type classification
using machine learning”, International
conference on cyber situational aware-
ness, data analytics and assessment
(Cyber SA), IEEE, pp. 1-7, 2015.

[66] A. Omer and S. Refik, “Investigation of
possibilities to detect malware using
existing tools”, 14th International
Conference on Computer Systems and
Applications. IEEE, pp. 1277-1284,
2017.

[67] M. Q. Ali, A. Irfan and Y. Muhammad,
“Cloud Intell: An intelligent malware
detection system”, Future Generation
Computer Systems, vol. 86, pp.
1042-1053, 2018.

[68] G. Kent, S. Scott, H. Xin and C. Tzi-ck-
er, “Automatic generation of string
signatures for malware detection”,
Recent Advances in Intrusion Detection:
12th International Symposium, RAID
2009, Saint-Malo, France, Proceedings,
Springer Berlin Heidelberg, vol. 12, pp.

101-120, 2009.

[69] G. Dragoş, C. Mihai, A. Dan and C.
Liviu, “Malware detection using
machine learning”, International multi-
conference on computer science and
information technology, IEEE, pp.
735-741, 2009.

[70] B. Philippe, G. Isabelle and M. Jean-Yves,
“Behavior abstraction in malware analy-
sis”, In Runtime Verification: First
International Conference, RV 2010,
Proceedings, Springer Berlin Heidel-
berg, vol. 1, pp. 168-182, 2010.

[71] C. Sang Kil, M. Iulian, J. Jiyong, T.
John, B. David and A. David G, “Split
Screen: Enabling efficient, distributed
malware detection”, Journal of Commu-
nications and Networks, vol. 13, no.2,
pp. 187-200, 2011.

[72] S. Asaf, M, Robert, F. Clint, D. Shlomi
and E. Yuval, “Detecting unknown
malicious code by applying classifica-
tion techniques on opcode patterns”,
Security Informatics, vol. 1, no.1, pp.
1-22, 2012.

[73] S. Asaf, M. Robert, E. Yuval and G.
Chanan, “Detection of malicious code
by applying machine learning classifiers
on static features: A state-of-the-art
survey”, Information Security Technical
Report, vol. 14, no.1, pp. 16-29, 2009.

[74] E. A. Ahmed E, M. M. Aizaini and B.
Bazara, “Improving the detection of
malware behaviour using simplified data
dependent API call graph”, International
Journal of Security and its Applications,
vol. 7, no. 5, pp. 29-42, 2013.

[75] P. Bassir, J. M. Vafaie and J. Mehrdad,
“Malware detection using hidden
Markov model based on Markov blanket
feature selection method”. International

congress on technology, communication
and knowledge, IEEE, pp. 558-563,
2015.

[76] S. Nedim and L. Pavel, “Hidost: a static
machine-learning-based detector of
malicious files”. EURASIP Journal on
Information Security, vol. 2016, pp.
1-20, 2016.

[77] K. Dong Hee, W. Sang Uk, L. Dong Kyu
and C. Tai Myoung, “Static detection of
malware and benign executable using
machine learning algorithm”. Eighth
International Conference on Evolving
Internet, pp. 14-19, 2016.

[78] H. Shamsul, A. Jemal, A. Mamoun, A.
Mali, I. Rafiqul and Y. John, “Hybrids of
support vector machine wrapper and
filter based framework for malware
detection”. Future Generation Computer
Systems, vol. 55, pp. 376-390, 2016.

[79] N. Yuta and U. Ryuya, “Static analysis
with paragraph vector for malware
detection”. In Proceedings of the 11th
International Conference on Ubiquitous
Information Management and Commu-
nication, pp. 1-7, 2017.

[80] W. Cheng, Q. Zheng, Z. Jixin and Y.
Hui, “A malware variants detection
methodology with an opcode based
feature method and a fast density based
clustering algorithm”. 12th International
Conference on Natural Computation,
Fuzzy Systems and Knowledge Discov-
ery (ICNC-FSKD), IEEE, pp. 481-487,
2016.

[81] M. Aziz, A. Omar and M. Manar,
“AMAL: high-fidelity, behavior-based
automated malware analysis and classi-
fication”. Computers and Security, vol.
52, pp. 251-266, 2015.

[82] Y. Yanfang, W. Dingding, L. Tao, Y.

Dongyi and J. Qingshan, “An intelligent
PE-malware detection system based on
association mining”, Journal in comput-
er virology, vol. 4, pp. 323-334, 2008.

[83] B. Michael, O. Jon, A. Jon, M. Z.
Morley, J. Farnam and N. Jose, “Auto-
mated classification and analysis of
internet malware”, Recent Advances in
Intrusion Detection: 10th International
Symposium, RAID, vol. 10, pp.
178-197, 2007.

[84] R. Konrad, T. Philipp, W. Carsten and H.
Thorsten, “Automatic analysis of
malware behavior using machine learn-
ing”, Journal of Computer Security, vol.
19, no.4, pp. 639-668, 2011.

[85] V. Mihai, G. Laura and T. Nicolae,
“Practical malware analysis based on
sandboxing”, Ro Edu Net Conference
13th Edition: Networking in Education
and Research Joint Event RENAM 8th
Conference, IEEE, pp. 1-6, 2014.

[86] H. Jozsef, M. Yoan, I. Alexander and L.
Amaury, “Methodology for behavior-
al-based malware analysis and detection
using random projections and k-nearest
neighbors classifiers”, International
Conference on Computational Intelli-
gence and Security, IEEE, pp.
1016-1023, 2011.

[87] G. Mahboobe, S. Ashkan and S. Zahra,
“Dynamic VSA: a framework for
malware detection based on register
contents”, Engineering Applications of
Artificial Intelligence, vol. 44, pp.
111-122, 2015.

[88] P. Zhi-Peng, F. Chao and T. Chao-Jing,
“Malware classification based on the
behavior analysis and back propagation
neural network”. In ITM Web of Confer-
ences, EDP Sciences, vol.7, pp. 20-28,

Nov. 2016.

[89] H. Shamsul, M. Suruz, H. M. Mehedi, I.
Rafiqul, Y. John, A. Majed and A.
Ahmad, “Defending unknown attacks
on cyber-physical systems by semi-su-
pervised approach and available
unlabeled data”, Information Sciences,
vol. 379, pp. 211-228, 2017.

[90] M. Fahad, H. Wei and B. Antony,
“Novel malware detection methods by
using LCS and LCSS”, 22nd Interna-
tional Conference on Automation and
Computing (ICAC), IEEE, pp. 554-559,
2016.

[91] H. Eduardo, M. Rubén S and L. Ignacio
M, “Evaluating the reliability of compu-
tational grids from the end user’s point
of view”, Journal of Systems Architec-
ture, vol. 52, no. 12, pp. 727-736, 2006.

[92] N. B. Narayanan, D. Ouboti and K.
Temesguen, “Performance analysis of
machine learning and pattern recogni-
tion algorithms for malware classifica-
tion”, IEEE national aerospace and
electronics conference (NAECON) and
ohio innovation summit (OIS), IEEE,
pp. 338-342, 2016.

[93] C. In Kyeom, K. T. Guen, S. Y. Jin, R.
Minsoo and I. E. Gyu, “Malware analy-
sis and classification using sequence
alignments”, Intelligent Automation and
Soft Computing, vol. 22, no.3, pp.
371-377, 2016.

[94] M. Jiang, X. Zhi, L. Pengwei, W. Ding-
hao, L. Peng and M. Bing, “Impeding
behavior-based malware analysis via
replacement attacks to malware specifi-
cations”, Journal of Computer Virology
and Hacking Techniques, vol. 13,
pp.193-207, 2017.

[95] W. Markus, R. Alexander, T. Niklas and

A. Wolfgang, “A knowledge-assisted
visual malware analysis system: Design,
validation, and reflection of KAMAS”,
Computers and Security, vol. 67, pp.
1-15, 2017.

[96] N. Stavros D and P, Iosif, “A
graph-based model for malware detec-
tion and classification using system-call
groups”, Journal of Computer Virology
and Hacking Techniques, vol. 13, no.1,
pp. 29-46, 2017.

[97] L. Quan, B. Oisin, M. N. Brian and S.
Mark, “Deep learning at the shallow
end: Malware classification for non-do-
main experts”, Digital Investigation,
vol. 26, pp. S118-S126, 2018.

[98] P. Abdurrahman and A. Tankut, “Classi-
fication of malware families based on
runtime behaviors”, Journal of informa-
tion security and applications, vol. 37,
pp. 91-100, 2017.

[99] S. Jan, P. Tomás and R. Martin, “Multi-
ple instance learning for malware classi-
fication”, Expert Systems with Applica-
tions, vol. 93, pp. 346-357, 2018.

[100] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

 [101] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

[102] X. Lu, F. Jiang, X. Zhou, S. Yi and J. Sha
and L. Pietro, “ASSCA: API sequence

and statistics features combined archi-
tecture for malware detection”, Comput-
er Networks, vol. 157, pp. 99-111,
2019.

[103] D. Arivudainambi, K.A. Varun Kumar
and P. Visu, “Malware traffic classifica-
tion using principal component analysis
and artificial neural network for extreme
surveillance”, Computer Communica-
tions, vol. 147, pp. 50-57, 2019.

[104] Y. Cagatay and K. Ahmet, “Imaging and
evaluating the memory access for
malware”, Forensic Science Internation-
al: Digital Investigation, vol. 32, pp.
20-27, 2020.

[105] R. Mahdi, W. Yong Li, K. Reza, J.
Hamed, Z. Ruxin and H. Peng, “A
hybrid machine learning approach for
malicious behaviour detection and
recognition in cloud computing”,
Journal of Network and Computer
Applications, vol. 151, pp. 12-19, 2020.

[106] E. A. Ahmed E, M. M. Aizaini, B.
Bazara- IA and H. Hentabli, “Enhancing
the detection of metamorphic malware
using call graphs”, Computers and Secu-
rity, vol. 46, pp. 62-78, 2014.

[107] R. Jesse C, K. Roger I, L. Scott M and C.
Robert K, “Detection of injected,
dynamically generated, and obfuscated
malicious code”, ACM workshop on
Rapid malcode, pp. 76-82, 2003.

[108] C. Michael, “A protocol graph based
anomaly detection system”, Doctoral
dissertation, Carnegie Mellon Universi-
ty, 2008.

[109] M. R. Jose and D. J. Cesar, “Integrating
static and dynamic malware analysis
using machine learning”, IEEE Latin
America Transactions, vol. 13, no. 9, pp.
3080-3087, 2015.

[110] S. PV and S. AJPCS, “Integrated static
and dynamic analysis for malware
detection”, Procedia Computer Science,
vol. 46, pp. 804-811, 2015.

[111] E. E. Inang, B. Chafika, A. Ameer and
W. Paul, “Analysis of malware
behaviour: Using data mining clustering
techniques to support forensics investi-
gation”, Fifth Cybercrime and Trust-
worthy Computing Conference, IEEE,
pp. 54-63, 2014.

[112] W. Ahsan, I. Azhar, L. Jahanzaib, N.
Ahsan and B. Anas, “A novel approach
of unprivileged keylogger detection”,
2nd International Conference on Com-
puting, Mathematics and Engineering
Technologies (iCoMET), IEEE, pp. 1-6,
2019.

[113] N. Mohammad, A. Nouman and Y. Jing
Tao, “A three-way decision making
approach to malware analysis using
probabilistic rough sets”, Information
Sciences, vol. 37, no. 4, pp. 193-209,
2016.

[114] N. Mohammad, A. Nouman and Y. Jing
Tao, “Detecting malware evolution
using support vector machines”, Expert
Systems with Applications, vol. 143, pp.
113022, 2020.

[115] P. Avi, R. Brian, K. Lee, H. Michael, C.
Catherine, O. Alison, T. Glenn, R. S.
Neal, P. Terry, and T. Jason, “Artificial
intelligence based malware analysis”,
arXiv preprint, pp.16-23, 2017.

[116] H. Shamsul, I. Rafiqul, A. Jemal, Y.
John, H. M. Mehedi and F. Giancarlo,
“A hybrid-multi filter-wrapper frame-
work to identify run-time behaviour for
fast malware detection”, Future Genera-
tion Computer Systems, vol. 1, no. 83,
pp. 193-207, 2018.

[117] S. Robert, X. Lifan, K. William, V.
Tristan, F. Teague, H. John, P. Zachary,
S. Corey, S. Joshua and C. John, “Paral-
lelization of machine learning applied to
call graphs of binaries for malware
detection”, 25th Euromicro International
Conference on Parallel, Distributed and
Network-based Processing (PDP),
IEEE, pp. 69-77, 2017.

[118] K. Youngjoon, K. Eunjin and K. Huy
Kang, “A novel approach to detect
malware based on API call sequence
analysis”, International Journal of
Distributed Sensor Networks, vol. 11,
no.6, pp. 659101, 2015.

[119] M. Weixuan, C. Zhongmin, T. Don, F.
Qian and G. Xiaohong, “Security impor-
tance assessment for system objects and
malware detection”, Computers and
Security, vol. 68, pp. 47-68, 2017.

[120] O. Philip, S. Sezer, and K. McLaughlin,
“Detecting obfuscated malware using
reduced opcode set and optimised
runtime trace”, Security Informatics,
vol. 5, pp. 1-12, 2016.

[121] D. Anusha, T. Fabio Di, V. C. Aaron, A.
Thomas H and S. Mark, “A comparison
of static, dynamic, and hybrid analysis
for malware detection”, Journal of Com-
puter Virology and Hacking Techniques,
vol. 13, pp. 1-12, 2017.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

38 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

Table 11: Types of Malwares
Types of
malwares

Description Examples

Virus More technologically speaking, a computer virus is a harmful code
or software intended to alter the way a computer function and to
propagate it from one computer to the next. A virus inserts or
attaches to a legitimate application or document supporting macros
to run its code. A virus may have unintentional or negative
consequences in this process by corrupting or deleting
information, such as damaging system software.

Common warrior,
Creeper, Eliza, Elk cloner,
and the Chernobyl Virus.

Worm A computer worm is a kind of malware, which can be copied and
extended across computers. Without human involvement, a worm
may reproduce itself and does not need an association with a
software application to do damage.

The Storm worm, SQL
slammer, The Morris
worm, Jerusalem worm,
Dabber, and the Code Red
II.

Trojan Horse A Trojan horse is a kind of malware that masquerades as legitimate
software, and it is also known as a trojan horse. Hackers and cyber
thieves may enter a computer system from Trojans. Social
engineering is sometimes used to convince people on their
computers to download and execute Trojans.

I love you, Code red,
Melissa, Sasser, Zeus, and
Conficker.

Spyware Spyware refers to a kind of software that is designed to steal
personal or business information. It is done by performing a
sequence of actions without the required user rights, and in certain
cases, even in plain view of the user. Advertising, data collection,
and changing the computer's user configuration settings are all
common actions performed by spyware.

Coolwebsearch (CWS),
Gator, Transponder,
BlazeFind, Hot as Hell,
and ISTbar.

Rootkit A rootkit is hidden computer software that retains privileged
computer access while shielding the presence of a machine. The
phrase 'rootkit' consists of the combination of the term’s 'root' and
'kit.' A rootkit was originally a collection of tools that enabled
administrators to manage a computer or network.

Soni BMG Copy
protection Rootkit, NT
Rootkit.

Adware Adware is a program that shows unwanted ads or advertising-
supported applications. When pop-up advertisements are shown,
your browser's homepage is altered, Spyware is installed, and pop-
up advertisements are blasted, Adware programs will bombard
your device with advertising. Adware is a term used to describe
potentially harmful software.

1080 Solution Assistant,
Altnet, Cool web search,
Ads by Game Vance,

Bot A malicious is a kind of harmful malware that infects the host
system and establishes a connection with a central server. The
server is used as a command and the control center is a botnet or
network of infected computers and other devices.

Earth link spammer, cut
wail, Storm, Grum,
Kraken.

Ransomware Ransomware is a malware kind that encrypts victims' data. In
return for restoring access to data, the attacker then demands a
ransom from the victim.

Wannacry, Bad Rabbit,
Ryuk, Troldesh, Jigsaw.

Table 12: A chronological examination of several well-known malwares

Year Malware Attacks
1986 First IBM-PC brain Sector Virus W
1987 The Jerusalem virus was found in Jerusalem and all executables on computers were infected and

destroyed after it had just begun Friday the 13th.
1988 A virus of Ping Pong Boot sector was founded at Turin University in Italy.

 1989 There is a Trojan AIDS. It requested urgent payment to be dropped.
1990 The chameleon virus was the first polymorphic virus to be created.

7. CONCLUSION

This study helps to identify malwares using
runtime characteristics. It provides the knowl-
edge fraction for harmful software analysis and
detection procedures through machine learning
algorithms. Malware is now well-known to be
highly sophisticated and rapidly changing.
Today, it is not only used to disturb users, steal
information, and destroy user data but also to
enforce its objectives for businesses and
nations. The protection of data and resources is
a key component in information technology.
This is essential because computers or embed-
ded digital devices in every area are utilized to
execute activities more quickly and precisely
without human involvement. The computer

system is more susceptible to hacking because
of its wide range of applications. This study
covers the development of malware, present
status, and techniques of detection. Two
malware analysis techniques exist signature
based, and behavior based. Signature-based
technology has two major flaws that must be
addressed. For the time being, signature-based
techniques will not be able to identify new or
previously unknown malware. Second, different
types of malwares may readily outwit the
system's detection mechanisms. Behavior-based
technique can identify new variants of malware,
dynamic techniques in malware-based methods
are more robust than signature-based methods.
The actual application of dynamic methods
nevertheless remains rigid and time-intensive,
whereas signature technology is quicker and

more efficacious than dynamic techniques in
identifying known malware. We spoke about
malware methods that were suggested for
machine learning to train the classification of
malware in this research. This is because it
includes a huge number of algorithms that may
be used for a variety of malware features. In
addition to its accessibility, machine learning
algorithms provide many benefits over conven-
tional malware classifications, such as the
capacity to get information from file samples,
rapidly detect, unexpected changes, and
minimize the human work and time spent
analyzing malware. In this article, malware
detection methods are classified according to
analytical methodologies such as static, dynam-
ic, and hybrid techniques. Each method has
advantages and disadvantages. These methods,
however, produced encouraging results in the
categorization of malware in a certain scenario.
For example, static methods are quicker, with a
reduced false-positive rate, but it is difficult to
cope with the obfuscation technique while
collecting static characteristics. In this respect,
on the contrary, dynamic methods offer a
beneficial although implementation in real-time
is inconvenient. Finally, we addressed the
two-layer malware detection framework with
static and dynamic functions that can effectively
and reliably detect the new and known malware.

REFERENCES

[1] H. Weijie, X. Jingfeng, W. Yong, H.
Lu, K. Zixiao and M. Limin, “MalDAE:
Detecting and explaining malware
based on correlation and fusion of static
and dynamic characteristics”, Comput-
ers and Security, vol. 83, pp. 208-233,
2019.

[2] B. Pete, F. Richard, T. Frederick and J.

Kevin, “Malware classification using
self organising feature maps and
machine activity data”, Computers and
Security, vol. 73, pp. 399-410, 2018.

[3] N. Usha, T. F. Di, C. V. Aaron, A.
Thomas and S. Mark, “Clustering versus
SVM for malware detection”, Journal of
Computer Virology and Hacking
Techniques, vol. 12, pp. 213-224, 2016.

[4] J. A. Namavar, H. Sattar, D. Ali and C.
R. Kim kwang, “An improved two-hid-
den-layer extreme learning machine for
malware hunting”, Computers and Secu-
rity, vol. 89, pp. 10-16, 2020.

[5] F. Massimo and P. F. Leaf, “An
open-source cybersecurity training
platform for realistic edge-IoT scenari-
os”, Journal of Systems Architecture,
vol. 97, pp. 107-129, 2020.

[6] K. Afreen, Z. Swaleha and Al. S.
Muaadhabdo, “An improved pre-pro-
cessing machine learning approach for
cross-sectional imaging of demented
older adults”, International Conference
of Intelligent Computing and Engineer-
ing (ICOICE), IEEE, pp. 1-7, 2019.

[7] P. Jakub, N. Q. Anh, B. Adrian, G.
Jonathan and L. Y. Kubo, “a framework
for automated efficacy testing of anti-vi-
rus behavioral detection with proce-
dure-based malware emulation”, In
Proceedings of the 13th International
Workshop on Automating Test Case
Design, Selection and Evaluation, pp.
37-44, 2022.

[8] B. Andrew, “How deception can change
cyber security defenses”, Computer
Fraud & Security, vol.5, no.1, pp. 12-14,
2019.

 [9] G. Ekta, B. Divya and S. Sanjeev, “Mal-
ware analysis and classification: A

survey”, Journal of Information Securi-
ty, vol. 6, 2014.

[10] M. S. Mariam, S. M. Ali, Z. Si-Jing and
Y. Hong-Ji, “Conceivable security risks
and authentication techniques for smart
devices: A comparative evaluation of
security practices”, International journal
of Automation and Computing, vol. 13,
pp. 350-363, 2016.

[11] B. Kang, F. Liu, Z. Yun and Y. Liang,
“Design of an Internet of Things-based
smart home system”, International
Conference on Intelligent Control and
Information Processing, IEEE, vol. 2,
pp. 921-924, 2011.

[12] A. Shahid, H, R. Nigel, T. Issa and S.
Ibrahim, “A framework for metamor-
phic malware analysis and real-time
detection”, Computers and Security, vol.
48, pp. 212-233, 2015.

[13] H. Xin, “Large-scale malware analysis,
detection, and signature generation”,
Doctoral dissertation, University of
Michigan, 2011.

[14] R. Kalpika, A. R. Vasudevan, “Detection
of Zeus Bot Based on Host and Network
Activities”, Communications in Com-
puter and Information Science, vol. 746,
pp. 978-981, 2017.

[15] E. Nabeil, E. Rashad, H. Alzubair and L.
Fagen, “A blockchain-based
attribute-based signcryption scheme to
secure data sharing in the cloud”,
Journal of Systems Architecture, vol.
102, pp. 10-16, 2020.

[16] J. Daehee, J. Yunjong , L Sungman , P.
Minjoon, K. Kuenhwan , K. Donguk and
K. B. Byunghoon, “Rethinking anti-em-
ulation techniques for large-scale
software deployment”, Computers and
Security, vol. 83, pp. 182-200, 2019.

[17] M. Samaneh and G. Ali A, “Application
of deep learning to cybersecurity: A
survey”, Neurocomputing, vol. 347, pp.
149-176, 2019.

[18] Z. Weizhe, W. Huanran, H. Hui and L.
Peng,” DAMBA: detecting android
malware by ORGB analysis”, IEEE
Transactions on Reliability, vol.69, no.1,
pp. 55-69, 2020.

[19] L. Liu, W. Bao-sheng, Y. Bo and Z.
Qiu-xi, “Automatic malware classifica-
tion and new malware detection using
machine learning”, Frontiers of Infor-
mation Technology & Electronic
Engineering, vol. 18, no. 9, pp.
1336-1347, 2017.

[20] K. Ratinder and M. Singh, “Hybrid
real-time zero-day malware analysis and
reporting system”, International Journal
of Information Technology and Comput-
er Sciences, vol. 8, pp. 63-73, 2016.

[21] M. Jelena, M. Miroslaw and F. Alberto,
“Time, accuracy and power consump-
tion tradeoff in mobile malware detec-
tion systems”, Computers and Security,
vol. 82, pp. 314-328, 2019.

[22] S. Hudan, S. Ferdous and P. Christian,
“A survey on forensic investigation of
operating system logs”, Digital Investi-
gation, vol. 29, pp. 1-20, 2019.

[23] N. Bruce, K. K. Hwan, K. Y. Jin, K.H.
Ho, K. T. Yong and L. H. Jae,
“Cross-method-based analysis and
classification of malicious behavior by
api calls extraction”, Applied Sciences,
vol. 9, no.2, pp. 239, 2019.

[24] Z. Hanqi, X. Xi, M. Francesco, N.
Shiguang, M. Fabio and S. A. Kumar,
“Classification of ransomware families
with machine learning based on N-gram
of opcodes”, Future Generation Com-

puter Systems, vol. 90, pp. 211-221,
2019.

[25] N. Jose, P. Araujo, P. Donald M and R.
C. Ghedini, “MULTS: A multi-cloud
fault-tolerant architecture to manage
transient servers in cloud computing”,
Journal of Systems Architecture, vol.
101, pp. 101-108, 2019.

[26] R. Veeramani and R. Nitin, “Windows
api based malware detection and frame-
work analysis”, In International Confer-
ence on Networks and Cyber Security,
vol. 25, 2012.

[27] C. Mihai, J. Somesh, K. Johannes, K.
Stefan and V. Helmut, “Software trans-
formations to improve malware detec-
tion”, Journal in Computer Virology,
vol. 3, pp. 253-265, 2007.

[28] O. Yoshihiro, “Trends of anti-analysis
operations of malwares observed in API
call logs”, Journal of Computer Virology
and Hacking Techniques, vol. 14, no. 1,
pp. 69-85, 2018.

[29] C. Sibi S and V. V. Sangeetha, “A survey
on malware analysis and mitigation
techniques”, Computer Science Review,
vol. 32, pp. 1-23, 2019.

[30] D. Jaime, S. Igor, C. Xabier, P. Yoseba K
and B. Pablo G, “Automatic
behaviour-based analysis and classifica-
tion system for malware detection”,
International Conference on Enterprise
Information Systems, vol. 2, pp.
395-399, 2010.

[31] D. Yuxin, X. Xiaoling, C. Sheng and L.
Ye, “A malware detection method based
on family behavior graph”, Computers
and Security, vol. 73, pp. 73-86, 2018.

[32] S. Jagsir and S. Jaswinder, “A survey on
machine learning-based malware detec-

tion in executable files”, Journal of
Systems Architecture, vol. 112, pp.
10-18, 2021.

[33] R. Anusmita and N. Asoke, “Introduc-
tion to Malware and Malware Analysis:
A brief overview”, International Journal,
vol. 4, no.10, 2016.

[34] W. Huanran, H. Hui and Z. Weizhe,
“Demadroid: Object reference
graph-based malware detection in
Android”, Security and Communication
Networks, vol. 2018, 2018.

[35] B. Tao, T. Takeshi, G. Shanqing, I.
Daisuke and N. Koji, “Integration of
multi-modal features for android
malware detection using linear SVM”,
In 2016 11th Asia Joint Conference on
Information Security (Asia JCIS), IEEE,
pp. 141-146, 2016.

[36] B. Ulrich, K. Engin and K. Christopher,
“Improving the efficiency of dynamic
malware analysis”, In Proceedings of the
2010 ACM Symposium on Applied
Computing, pp. 1871-1878, 2010.

[37] W. Gerard, S. Radu and D. Alexandre,
“Malware behaviour analysis”, Journal
in Computer Virology, vol. 4, pp.
279-287, 2008.

[38] M. Asit and T. Shashikala, “Virtual
machine introspection: towards bridging
the semantic gap”, Journal of Cloud
Computing, vol. 3, no.1, pp. 1-14, 2014.

[39] V. Jiri and P. Martin, “Virtualization of
operating system using type-2 Hypervi-
sor”, In Software Engineering Perspec-
tives and Application in Intelligent
Systems: Proceedings of the 5th Com-
puter Science On-line Conference 2016
(CSOC2016), Springer International
Publishing, vol. 25, pp. 239-247, 2016.

[40] M. Andreas, K. Christopher and K.
Engin, “Exploring multiple execution
paths for malware analysis”, In 2007
IEEE Symposium on Security and
Privacy (SP'07), IEEE, pp.231-245,
2007.

[41] K. Bojan, Z. Apostolis, L. Tamas, W.
George and E. Claudia, “Adaptive
semantics-aware malware classifica-
tion”, In Detection of Intrusions and
Malware, and Vulnerability Assessment:
13th International Conference, DIMVA
2016, San Sebastián, Spain, Springer
International Publishing, vol. 13, pp.
419-439, 2016.

[42] R. Edward, Z. Richard, C. Russell, S.
Jared, Y. Paul, W. Rebecca, T. Anna, M.
Mark and N. Charles, “An investigation
of byte n-gram features for malware
classification”, Journal of Computer
Virology and Hacking Techniques, vol.
14, pp. 1-20, 2018.

[43] M. Zane and B. Michael, “Building a
machine learning classifier for malware
detection”, In 2014 second workshop on
anti-malware testing research (Water),
IEEE, pp. 1-4, 2014.

[44] S. Michael and H. Andrew, “A Practical
malware analysis: the hands-on guide to
dissecting malicious software”. Starch
Press, 2012.

[45] W. Tzu-Yen and W. Chin-Hsiung,
“Detection of packed executables using
support vector machines”, International
Conference on Machine Learning and
Cybernetics, IEEE, vol. 2, pp. 717-722,
2011.

[46] A. Satheesh and R. Kumaravelu, “A
mathematical model of HMST model on
malware static analysis”, International
Journal of Information Security and

Privacy, vol. 13, no. 2, pp. 86-103, 2019.

[47] A. Imad and L. Saiida, “A new classifi-
cation based model for malicious PE
files detection”, International Journal of
Computer Network and Information
Security, vol. 9, no.6, pp.1-7, 2019.

[48] L. Michael, A. Steven, H. Blake, R.
Matthew, “Malware Analyst's Cookbook
and DVD”, Wiley Publishing, 2011.

[49] L. Xiaojing, Y. Kan, W. XiaoFeng, L.
Zhou, X. Luyi and B. Raheem, “Acing
the ioc game: Toward automatic discov-
ery and analysis of open-source cyber
threat intelligence”, ACM SIGSAC
conference on computer and communi-
cations security, pp. 755-766, 2016.

[50] S. Sebastian and K. Stefan, “Code
obfuscation against static and dynamic
reverse engineering”, In Information
Hiding: 13th International Conference,
IH 2011, Prague, Czech Republic,
Revised Selected Papers, Springer
Berlin Heidelberg, vol. 13, pp. 270-284,
2011.

[51] C. Michael , “Scanning memory with
Yara”, Digital Investigation, vol. 20, pp.
34-38, 2017.

[52] S. Nikolaos, B. Chafika, A. Omar and A.
Ameer, “Forensic malware analysis: The
value of fuzzy hashing algorithms in
identifying similarities”, IEEE Trust-
com/ Big Data SE/ ISPA, IEEE, pp.
1782-1787, 2016.

[53] K. Abhishek, G. Suchandra and G.
Ratan, “Detecting obfuscated viruses
using cosine similarity analysis”, Asia
International Conference on Modelling
and Simulation (AMS'07), IEEE, pp.
165-170, 2007.

[54] B. Danilo, M. Lorenzo, M. Mattia,

“Code normalization for self-mutating
malware”, IEEE Security and Privacy,
vol. 5, no.2, pp. 46-54, 2007.

[55] Z. Boyun, Y. Jianping, H. Jingbo, Z.
Dingxing and W. Shulin, “Malicious
codes detection based on ensemble
learning”, In Autonomic and Trusted
Computing: 4th International Confer-
ence, ATC 2007, Hong Kong, China,
July 11-13, 2007. Proceedings 4, Spring-
er Berlin Heidelberg, pp. 468-477,
2007.

[56] M. Robert, F. Clint, T. Nir, B. Eugene,
G. Marina, D. Shlomi and E. Yuval,
“Unknown malcode detection using
opcode representation”, In Intelligence
and Security Informatics: First European
Conference, Euro ISI 2008, Esbjerg,
Denmark, Proceedings, Springer Berlin
Heidelberg, pp. 204-215, 2008.

[57] B. S. Mojtaba, J. Saeed and T. Asghar,
“PbMMD: A novel policy based
multi-process malware detection”,
Engineering Applications of Artificial
Intelligence, vol. 60, pp. 57-70, 2017.

[58] N. Vivens, X. Zhifeng, M. V. Rao, M. Ke
and X. Yang, “Network forensics analy-
sis using Wireshark”, International
Journal of Security and Networks, vol.
10, no.2, pp. 91-106, 2015.

[59] H. Nazrul, B. Monowar H, B. Ram
Charan, B. Dhruba K and K. Jugal K,
“Network attacks: Taxonomy, tools and
systems”, Journal of Network and Com-
puter Applications, vol. 40, pp. 307-324,
2014.

[60] E. Eldad, “Reversing: secrets of reverse
engineering”, John Wiley & Sons, 2011.

[61] G. Daniel, M. Carles and P. Jordi, “The
rise of machine learning for detection
and classification of malware: Research

developments, trends and challenges”,
Journal of Network and Computer
Applications, vol. 153, pp. 102526,
2020.

[62] R. Chathuranga and J. Aruna, “An
efficient approach for advanced
malware analysis using memory foren-
sic technique”, In 2017 IEEE Trustcom/
Big Data SE/ ICESS, IEEE, pp.
1145-1150, 2017.

[63] K. Ilker, “A basic malware analysis
method”, Computer Fraud and Security,
vol. 2019, no. 6, pp. 11-19, 2019.

[64] K. Joakim, “Fundamentals of Digital
Forensics”, Springer International
Publishing, 2020.

[65] P. Radu, H. Steven, L. Thor, S. Matija, P.
Jens and C. Alexandre, “Analysis of
malware behavior: Type classification
using machine learning”, International
conference on cyber situational aware-
ness, data analytics and assessment
(Cyber SA), IEEE, pp. 1-7, 2015.

[66] A. Omer and S. Refik, “Investigation of
possibilities to detect malware using
existing tools”, 14th International
Conference on Computer Systems and
Applications. IEEE, pp. 1277-1284,
2017.

[67] M. Q. Ali, A. Irfan and Y. Muhammad,
“Cloud Intell: An intelligent malware
detection system”, Future Generation
Computer Systems, vol. 86, pp.
1042-1053, 2018.

[68] G. Kent, S. Scott, H. Xin and C. Tzi-ck-
er, “Automatic generation of string
signatures for malware detection”,
Recent Advances in Intrusion Detection:
12th International Symposium, RAID
2009, Saint-Malo, France, Proceedings,
Springer Berlin Heidelberg, vol. 12, pp.

101-120, 2009.

[69] G. Dragoş, C. Mihai, A. Dan and C.
Liviu, “Malware detection using
machine learning”, International multi-
conference on computer science and
information technology, IEEE, pp.
735-741, 2009.

[70] B. Philippe, G. Isabelle and M. Jean-Yves,
“Behavior abstraction in malware analy-
sis”, In Runtime Verification: First
International Conference, RV 2010,
Proceedings, Springer Berlin Heidel-
berg, vol. 1, pp. 168-182, 2010.

[71] C. Sang Kil, M. Iulian, J. Jiyong, T.
John, B. David and A. David G, “Split
Screen: Enabling efficient, distributed
malware detection”, Journal of Commu-
nications and Networks, vol. 13, no.2,
pp. 187-200, 2011.

[72] S. Asaf, M, Robert, F. Clint, D. Shlomi
and E. Yuval, “Detecting unknown
malicious code by applying classifica-
tion techniques on opcode patterns”,
Security Informatics, vol. 1, no.1, pp.
1-22, 2012.

[73] S. Asaf, M. Robert, E. Yuval and G.
Chanan, “Detection of malicious code
by applying machine learning classifiers
on static features: A state-of-the-art
survey”, Information Security Technical
Report, vol. 14, no.1, pp. 16-29, 2009.

[74] E. A. Ahmed E, M. M. Aizaini and B.
Bazara, “Improving the detection of
malware behaviour using simplified data
dependent API call graph”, International
Journal of Security and its Applications,
vol. 7, no. 5, pp. 29-42, 2013.

[75] P. Bassir, J. M. Vafaie and J. Mehrdad,
“Malware detection using hidden
Markov model based on Markov blanket
feature selection method”. International

congress on technology, communication
and knowledge, IEEE, pp. 558-563,
2015.

[76] S. Nedim and L. Pavel, “Hidost: a static
machine-learning-based detector of
malicious files”. EURASIP Journal on
Information Security, vol. 2016, pp.
1-20, 2016.

[77] K. Dong Hee, W. Sang Uk, L. Dong Kyu
and C. Tai Myoung, “Static detection of
malware and benign executable using
machine learning algorithm”. Eighth
International Conference on Evolving
Internet, pp. 14-19, 2016.

[78] H. Shamsul, A. Jemal, A. Mamoun, A.
Mali, I. Rafiqul and Y. John, “Hybrids of
support vector machine wrapper and
filter based framework for malware
detection”. Future Generation Computer
Systems, vol. 55, pp. 376-390, 2016.

[79] N. Yuta and U. Ryuya, “Static analysis
with paragraph vector for malware
detection”. In Proceedings of the 11th
International Conference on Ubiquitous
Information Management and Commu-
nication, pp. 1-7, 2017.

[80] W. Cheng, Q. Zheng, Z. Jixin and Y.
Hui, “A malware variants detection
methodology with an opcode based
feature method and a fast density based
clustering algorithm”. 12th International
Conference on Natural Computation,
Fuzzy Systems and Knowledge Discov-
ery (ICNC-FSKD), IEEE, pp. 481-487,
2016.

[81] M. Aziz, A. Omar and M. Manar,
“AMAL: high-fidelity, behavior-based
automated malware analysis and classi-
fication”. Computers and Security, vol.
52, pp. 251-266, 2015.

[82] Y. Yanfang, W. Dingding, L. Tao, Y.

Dongyi and J. Qingshan, “An intelligent
PE-malware detection system based on
association mining”, Journal in comput-
er virology, vol. 4, pp. 323-334, 2008.

[83] B. Michael, O. Jon, A. Jon, M. Z.
Morley, J. Farnam and N. Jose, “Auto-
mated classification and analysis of
internet malware”, Recent Advances in
Intrusion Detection: 10th International
Symposium, RAID, vol. 10, pp.
178-197, 2007.

[84] R. Konrad, T. Philipp, W. Carsten and H.
Thorsten, “Automatic analysis of
malware behavior using machine learn-
ing”, Journal of Computer Security, vol.
19, no.4, pp. 639-668, 2011.

[85] V. Mihai, G. Laura and T. Nicolae,
“Practical malware analysis based on
sandboxing”, Ro Edu Net Conference
13th Edition: Networking in Education
and Research Joint Event RENAM 8th
Conference, IEEE, pp. 1-6, 2014.

[86] H. Jozsef, M. Yoan, I. Alexander and L.
Amaury, “Methodology for behavior-
al-based malware analysis and detection
using random projections and k-nearest
neighbors classifiers”, International
Conference on Computational Intelli-
gence and Security, IEEE, pp.
1016-1023, 2011.

[87] G. Mahboobe, S. Ashkan and S. Zahra,
“Dynamic VSA: a framework for
malware detection based on register
contents”, Engineering Applications of
Artificial Intelligence, vol. 44, pp.
111-122, 2015.

[88] P. Zhi-Peng, F. Chao and T. Chao-Jing,
“Malware classification based on the
behavior analysis and back propagation
neural network”. In ITM Web of Confer-
ences, EDP Sciences, vol.7, pp. 20-28,

Nov. 2016.

[89] H. Shamsul, M. Suruz, H. M. Mehedi, I.
Rafiqul, Y. John, A. Majed and A.
Ahmad, “Defending unknown attacks
on cyber-physical systems by semi-su-
pervised approach and available
unlabeled data”, Information Sciences,
vol. 379, pp. 211-228, 2017.

[90] M. Fahad, H. Wei and B. Antony,
“Novel malware detection methods by
using LCS and LCSS”, 22nd Interna-
tional Conference on Automation and
Computing (ICAC), IEEE, pp. 554-559,
2016.

[91] H. Eduardo, M. Rubén S and L. Ignacio
M, “Evaluating the reliability of compu-
tational grids from the end user’s point
of view”, Journal of Systems Architec-
ture, vol. 52, no. 12, pp. 727-736, 2006.

[92] N. B. Narayanan, D. Ouboti and K.
Temesguen, “Performance analysis of
machine learning and pattern recogni-
tion algorithms for malware classifica-
tion”, IEEE national aerospace and
electronics conference (NAECON) and
ohio innovation summit (OIS), IEEE,
pp. 338-342, 2016.

[93] C. In Kyeom, K. T. Guen, S. Y. Jin, R.
Minsoo and I. E. Gyu, “Malware analy-
sis and classification using sequence
alignments”, Intelligent Automation and
Soft Computing, vol. 22, no.3, pp.
371-377, 2016.

[94] M. Jiang, X. Zhi, L. Pengwei, W. Ding-
hao, L. Peng and M. Bing, “Impeding
behavior-based malware analysis via
replacement attacks to malware specifi-
cations”, Journal of Computer Virology
and Hacking Techniques, vol. 13,
pp.193-207, 2017.

[95] W. Markus, R. Alexander, T. Niklas and

A. Wolfgang, “A knowledge-assisted
visual malware analysis system: Design,
validation, and reflection of KAMAS”,
Computers and Security, vol. 67, pp.
1-15, 2017.

[96] N. Stavros D and P, Iosif, “A
graph-based model for malware detec-
tion and classification using system-call
groups”, Journal of Computer Virology
and Hacking Techniques, vol. 13, no.1,
pp. 29-46, 2017.

[97] L. Quan, B. Oisin, M. N. Brian and S.
Mark, “Deep learning at the shallow
end: Malware classification for non-do-
main experts”, Digital Investigation,
vol. 26, pp. S118-S126, 2018.

[98] P. Abdurrahman and A. Tankut, “Classi-
fication of malware families based on
runtime behaviors”, Journal of informa-
tion security and applications, vol. 37,
pp. 91-100, 2017.

[99] S. Jan, P. Tomás and R. Martin, “Multi-
ple instance learning for malware classi-
fication”, Expert Systems with Applica-
tions, vol. 93, pp. 346-357, 2018.

[100] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

 [101] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

[102] X. Lu, F. Jiang, X. Zhou, S. Yi and J. Sha
and L. Pietro, “ASSCA: API sequence

and statistics features combined archi-
tecture for malware detection”, Comput-
er Networks, vol. 157, pp. 99-111,
2019.

[103] D. Arivudainambi, K.A. Varun Kumar
and P. Visu, “Malware traffic classifica-
tion using principal component analysis
and artificial neural network for extreme
surveillance”, Computer Communica-
tions, vol. 147, pp. 50-57, 2019.

[104] Y. Cagatay and K. Ahmet, “Imaging and
evaluating the memory access for
malware”, Forensic Science Internation-
al: Digital Investigation, vol. 32, pp.
20-27, 2020.

[105] R. Mahdi, W. Yong Li, K. Reza, J.
Hamed, Z. Ruxin and H. Peng, “A
hybrid machine learning approach for
malicious behaviour detection and
recognition in cloud computing”,
Journal of Network and Computer
Applications, vol. 151, pp. 12-19, 2020.

[106] E. A. Ahmed E, M. M. Aizaini, B.
Bazara- IA and H. Hentabli, “Enhancing
the detection of metamorphic malware
using call graphs”, Computers and Secu-
rity, vol. 46, pp. 62-78, 2014.

[107] R. Jesse C, K. Roger I, L. Scott M and C.
Robert K, “Detection of injected,
dynamically generated, and obfuscated
malicious code”, ACM workshop on
Rapid malcode, pp. 76-82, 2003.

[108] C. Michael, “A protocol graph based
anomaly detection system”, Doctoral
dissertation, Carnegie Mellon Universi-
ty, 2008.

[109] M. R. Jose and D. J. Cesar, “Integrating
static and dynamic malware analysis
using machine learning”, IEEE Latin
America Transactions, vol. 13, no. 9, pp.
3080-3087, 2015.

[110] S. PV and S. AJPCS, “Integrated static
and dynamic analysis for malware
detection”, Procedia Computer Science,
vol. 46, pp. 804-811, 2015.

[111] E. E. Inang, B. Chafika, A. Ameer and
W. Paul, “Analysis of malware
behaviour: Using data mining clustering
techniques to support forensics investi-
gation”, Fifth Cybercrime and Trust-
worthy Computing Conference, IEEE,
pp. 54-63, 2014.

[112] W. Ahsan, I. Azhar, L. Jahanzaib, N.
Ahsan and B. Anas, “A novel approach
of unprivileged keylogger detection”,
2nd International Conference on Com-
puting, Mathematics and Engineering
Technologies (iCoMET), IEEE, pp. 1-6,
2019.

[113] N. Mohammad, A. Nouman and Y. Jing
Tao, “A three-way decision making
approach to malware analysis using
probabilistic rough sets”, Information
Sciences, vol. 37, no. 4, pp. 193-209,
2016.

[114] N. Mohammad, A. Nouman and Y. Jing
Tao, “Detecting malware evolution
using support vector machines”, Expert
Systems with Applications, vol. 143, pp.
113022, 2020.

[115] P. Avi, R. Brian, K. Lee, H. Michael, C.
Catherine, O. Alison, T. Glenn, R. S.
Neal, P. Terry, and T. Jason, “Artificial
intelligence based malware analysis”,
arXiv preprint, pp.16-23, 2017.

[116] H. Shamsul, I. Rafiqul, A. Jemal, Y.
John, H. M. Mehedi and F. Giancarlo,
“A hybrid-multi filter-wrapper frame-
work to identify run-time behaviour for
fast malware detection”, Future Genera-
tion Computer Systems, vol. 1, no. 83,
pp. 193-207, 2018.

[117] S. Robert, X. Lifan, K. William, V.
Tristan, F. Teague, H. John, P. Zachary,
S. Corey, S. Joshua and C. John, “Paral-
lelization of machine learning applied to
call graphs of binaries for malware
detection”, 25th Euromicro International
Conference on Parallel, Distributed and
Network-based Processing (PDP),
IEEE, pp. 69-77, 2017.

[118] K. Youngjoon, K. Eunjin and K. Huy
Kang, “A novel approach to detect
malware based on API call sequence
analysis”, International Journal of
Distributed Sensor Networks, vol. 11,
no.6, pp. 659101, 2015.

[119] M. Weixuan, C. Zhongmin, T. Don, F.
Qian and G. Xiaohong, “Security impor-
tance assessment for system objects and
malware detection”, Computers and
Security, vol. 68, pp. 47-68, 2017.

[120] O. Philip, S. Sezer, and K. McLaughlin,
“Detecting obfuscated malware using
reduced opcode set and optimised
runtime trace”, Security Informatics,
vol. 5, pp. 1-12, 2016.

[121] D. Anusha, T. Fabio Di, V. C. Aaron, A.
Thomas H and S. Mark, “A comparison
of static, dynamic, and hybrid analysis
for malware detection”, Journal of Com-
puter Virology and Hacking Techniques,
vol. 13, pp. 1-12, 2017.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

1999 An e-mail worm known as Happy99 emerges, hides modifications, and wants the computer user a good
New Year. A new version is available. Outlook Express and Internet Explorer were impacted by
Windows 95 and 98.

2000 More than a million PCs were infected with "I love you" dubbed as a love bug.
2001 Bad Trans was created to steal credit card information as well as passwords.
2003 Microsoft defects make spreading simple for Agobot and Bolgimo computer worms.
2004 Hacks may access the hard drive of the infected machines using the MyDoom (also Novang), the

fastest mail and file-sharing computer worm.
2005 Cellular phone virus, Commwarrior-A propagated via text messages from mobile phones to mobile

phones.
2006 The first malware to attack Mac OS X arrived as the low-threat Trojan called OSX/Leap-A.
2007 A Trojan horse called Zeus used a method called keystroke logging to steal bank sensitive information.
2008 The Koobface virus targets people who use MySpace and Facebook.
2009 In the United States and South Korea W32.Dozer Follows a serious cyber-attack.
2010 A Kenzero virus spreads the history of the browser online.
2011 Zeus and SpyEye have joined together to create a new method of attacking mobile phones to collect

financial information.
2013 Cryptolocker one of the early ransomware programs crypto lockers had a large global impact and

contributed to the rise of ransomware.
2014 Backoff malware infiltrates POS systems to steal information from credit cards.
2016 Cerber One of the most powerful ransomware threats. It's also one of the most common forms of crypto

malware. Cerber infected more enterprise PCs than any other ransomware family at one point, according
to Microsoft.

2017 WannaCry ransomware almost affec ted 150 countries including hospitals, banks, warehouses,
telecommunication companies, and many other industries.

2018-
2020

During that time, many crypto miners and ransomware, such as the COVID19 RAT, the Samsam
ransomware, the cyborg ransomware, and the clop ransomware, were developed.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

39Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

7. CONCLUSION

This study helps to identify malwares using
runtime characteristics. It provides the knowl-
edge fraction for harmful software analysis and
detection procedures through machine learning
algorithms. Malware is now well-known to be
highly sophisticated and rapidly changing.
Today, it is not only used to disturb users, steal
information, and destroy user data but also to
enforce its objectives for businesses and
nations. The protection of data and resources is
a key component in information technology.
This is essential because computers or embed-
ded digital devices in every area are utilized to
execute activities more quickly and precisely
without human involvement. The computer

system is more susceptible to hacking because
of its wide range of applications. This study
covers the development of malware, present
status, and techniques of detection. Two
malware analysis techniques exist signature
based, and behavior based. Signature-based
technology has two major flaws that must be
addressed. For the time being, signature-based
techniques will not be able to identify new or
previously unknown malware. Second, different
types of malwares may readily outwit the
system's detection mechanisms. Behavior-based
technique can identify new variants of malware,
dynamic techniques in malware-based methods
are more robust than signature-based methods.
The actual application of dynamic methods
nevertheless remains rigid and time-intensive,
whereas signature technology is quicker and

more efficacious than dynamic techniques in
identifying known malware. We spoke about
malware methods that were suggested for
machine learning to train the classification of
malware in this research. This is because it
includes a huge number of algorithms that may
be used for a variety of malware features. In
addition to its accessibility, machine learning
algorithms provide many benefits over conven-
tional malware classifications, such as the
capacity to get information from file samples,
rapidly detect, unexpected changes, and
minimize the human work and time spent
analyzing malware. In this article, malware
detection methods are classified according to
analytical methodologies such as static, dynam-
ic, and hybrid techniques. Each method has
advantages and disadvantages. These methods,
however, produced encouraging results in the
categorization of malware in a certain scenario.
For example, static methods are quicker, with a
reduced false-positive rate, but it is difficult to
cope with the obfuscation technique while
collecting static characteristics. In this respect,
on the contrary, dynamic methods offer a
beneficial although implementation in real-time
is inconvenient. Finally, we addressed the
two-layer malware detection framework with
static and dynamic functions that can effectively
and reliably detect the new and known malware.

REFERENCES

[1] H. Weijie, X. Jingfeng, W. Yong, H.
Lu, K. Zixiao and M. Limin, “MalDAE:
Detecting and explaining malware
based on correlation and fusion of static
and dynamic characteristics”, Comput-
ers and Security, vol. 83, pp. 208-233,
2019.

[2] B. Pete, F. Richard, T. Frederick and J.

Kevin, “Malware classification using
self organising feature maps and
machine activity data”, Computers and
Security, vol. 73, pp. 399-410, 2018.

[3] N. Usha, T. F. Di, C. V. Aaron, A.
Thomas and S. Mark, “Clustering versus
SVM for malware detection”, Journal of
Computer Virology and Hacking
Techniques, vol. 12, pp. 213-224, 2016.

[4] J. A. Namavar, H. Sattar, D. Ali and C.
R. Kim kwang, “An improved two-hid-
den-layer extreme learning machine for
malware hunting”, Computers and Secu-
rity, vol. 89, pp. 10-16, 2020.

[5] F. Massimo and P. F. Leaf, “An
open-source cybersecurity training
platform for realistic edge-IoT scenari-
os”, Journal of Systems Architecture,
vol. 97, pp. 107-129, 2020.

[6] K. Afreen, Z. Swaleha and Al. S.
Muaadhabdo, “An improved pre-pro-
cessing machine learning approach for
cross-sectional imaging of demented
older adults”, International Conference
of Intelligent Computing and Engineer-
ing (ICOICE), IEEE, pp. 1-7, 2019.

[7] P. Jakub, N. Q. Anh, B. Adrian, G.
Jonathan and L. Y. Kubo, “a framework
for automated efficacy testing of anti-vi-
rus behavioral detection with proce-
dure-based malware emulation”, In
Proceedings of the 13th International
Workshop on Automating Test Case
Design, Selection and Evaluation, pp.
37-44, 2022.

[8] B. Andrew, “How deception can change
cyber security defenses”, Computer
Fraud & Security, vol.5, no.1, pp. 12-14,
2019.

 [9] G. Ekta, B. Divya and S. Sanjeev, “Mal-
ware analysis and classification: A

survey”, Journal of Information Securi-
ty, vol. 6, 2014.

[10] M. S. Mariam, S. M. Ali, Z. Si-Jing and
Y. Hong-Ji, “Conceivable security risks
and authentication techniques for smart
devices: A comparative evaluation of
security practices”, International journal
of Automation and Computing, vol. 13,
pp. 350-363, 2016.

[11] B. Kang, F. Liu, Z. Yun and Y. Liang,
“Design of an Internet of Things-based
smart home system”, International
Conference on Intelligent Control and
Information Processing, IEEE, vol. 2,
pp. 921-924, 2011.

[12] A. Shahid, H, R. Nigel, T. Issa and S.
Ibrahim, “A framework for metamor-
phic malware analysis and real-time
detection”, Computers and Security, vol.
48, pp. 212-233, 2015.

[13] H. Xin, “Large-scale malware analysis,
detection, and signature generation”,
Doctoral dissertation, University of
Michigan, 2011.

[14] R. Kalpika, A. R. Vasudevan, “Detection
of Zeus Bot Based on Host and Network
Activities”, Communications in Com-
puter and Information Science, vol. 746,
pp. 978-981, 2017.

[15] E. Nabeil, E. Rashad, H. Alzubair and L.
Fagen, “A blockchain-based
attribute-based signcryption scheme to
secure data sharing in the cloud”,
Journal of Systems Architecture, vol.
102, pp. 10-16, 2020.

[16] J. Daehee, J. Yunjong , L Sungman , P.
Minjoon, K. Kuenhwan , K. Donguk and
K. B. Byunghoon, “Rethinking anti-em-
ulation techniques for large-scale
software deployment”, Computers and
Security, vol. 83, pp. 182-200, 2019.

[17] M. Samaneh and G. Ali A, “Application
of deep learning to cybersecurity: A
survey”, Neurocomputing, vol. 347, pp.
149-176, 2019.

[18] Z. Weizhe, W. Huanran, H. Hui and L.
Peng,” DAMBA: detecting android
malware by ORGB analysis”, IEEE
Transactions on Reliability, vol.69, no.1,
pp. 55-69, 2020.

[19] L. Liu, W. Bao-sheng, Y. Bo and Z.
Qiu-xi, “Automatic malware classifica-
tion and new malware detection using
machine learning”, Frontiers of Infor-
mation Technology & Electronic
Engineering, vol. 18, no. 9, pp.
1336-1347, 2017.

[20] K. Ratinder and M. Singh, “Hybrid
real-time zero-day malware analysis and
reporting system”, International Journal
of Information Technology and Comput-
er Sciences, vol. 8, pp. 63-73, 2016.

[21] M. Jelena, M. Miroslaw and F. Alberto,
“Time, accuracy and power consump-
tion tradeoff in mobile malware detec-
tion systems”, Computers and Security,
vol. 82, pp. 314-328, 2019.

[22] S. Hudan, S. Ferdous and P. Christian,
“A survey on forensic investigation of
operating system logs”, Digital Investi-
gation, vol. 29, pp. 1-20, 2019.

[23] N. Bruce, K. K. Hwan, K. Y. Jin, K.H.
Ho, K. T. Yong and L. H. Jae,
“Cross-method-based analysis and
classification of malicious behavior by
api calls extraction”, Applied Sciences,
vol. 9, no.2, pp. 239, 2019.

[24] Z. Hanqi, X. Xi, M. Francesco, N.
Shiguang, M. Fabio and S. A. Kumar,
“Classification of ransomware families
with machine learning based on N-gram
of opcodes”, Future Generation Com-

puter Systems, vol. 90, pp. 211-221,
2019.

[25] N. Jose, P. Araujo, P. Donald M and R.
C. Ghedini, “MULTS: A multi-cloud
fault-tolerant architecture to manage
transient servers in cloud computing”,
Journal of Systems Architecture, vol.
101, pp. 101-108, 2019.

[26] R. Veeramani and R. Nitin, “Windows
api based malware detection and frame-
work analysis”, In International Confer-
ence on Networks and Cyber Security,
vol. 25, 2012.

[27] C. Mihai, J. Somesh, K. Johannes, K.
Stefan and V. Helmut, “Software trans-
formations to improve malware detec-
tion”, Journal in Computer Virology,
vol. 3, pp. 253-265, 2007.

[28] O. Yoshihiro, “Trends of anti-analysis
operations of malwares observed in API
call logs”, Journal of Computer Virology
and Hacking Techniques, vol. 14, no. 1,
pp. 69-85, 2018.

[29] C. Sibi S and V. V. Sangeetha, “A survey
on malware analysis and mitigation
techniques”, Computer Science Review,
vol. 32, pp. 1-23, 2019.

[30] D. Jaime, S. Igor, C. Xabier, P. Yoseba K
and B. Pablo G, “Automatic
behaviour-based analysis and classifica-
tion system for malware detection”,
International Conference on Enterprise
Information Systems, vol. 2, pp.
395-399, 2010.

[31] D. Yuxin, X. Xiaoling, C. Sheng and L.
Ye, “A malware detection method based
on family behavior graph”, Computers
and Security, vol. 73, pp. 73-86, 2018.

[32] S. Jagsir and S. Jaswinder, “A survey on
machine learning-based malware detec-

tion in executable files”, Journal of
Systems Architecture, vol. 112, pp.
10-18, 2021.

[33] R. Anusmita and N. Asoke, “Introduc-
tion to Malware and Malware Analysis:
A brief overview”, International Journal,
vol. 4, no.10, 2016.

[34] W. Huanran, H. Hui and Z. Weizhe,
“Demadroid: Object reference
graph-based malware detection in
Android”, Security and Communication
Networks, vol. 2018, 2018.

[35] B. Tao, T. Takeshi, G. Shanqing, I.
Daisuke and N. Koji, “Integration of
multi-modal features for android
malware detection using linear SVM”,
In 2016 11th Asia Joint Conference on
Information Security (Asia JCIS), IEEE,
pp. 141-146, 2016.

[36] B. Ulrich, K. Engin and K. Christopher,
“Improving the efficiency of dynamic
malware analysis”, In Proceedings of the
2010 ACM Symposium on Applied
Computing, pp. 1871-1878, 2010.

[37] W. Gerard, S. Radu and D. Alexandre,
“Malware behaviour analysis”, Journal
in Computer Virology, vol. 4, pp.
279-287, 2008.

[38] M. Asit and T. Shashikala, “Virtual
machine introspection: towards bridging
the semantic gap”, Journal of Cloud
Computing, vol. 3, no.1, pp. 1-14, 2014.

[39] V. Jiri and P. Martin, “Virtualization of
operating system using type-2 Hypervi-
sor”, In Software Engineering Perspec-
tives and Application in Intelligent
Systems: Proceedings of the 5th Com-
puter Science On-line Conference 2016
(CSOC2016), Springer International
Publishing, vol. 25, pp. 239-247, 2016.

[40] M. Andreas, K. Christopher and K.
Engin, “Exploring multiple execution
paths for malware analysis”, In 2007
IEEE Symposium on Security and
Privacy (SP'07), IEEE, pp.231-245,
2007.

[41] K. Bojan, Z. Apostolis, L. Tamas, W.
George and E. Claudia, “Adaptive
semantics-aware malware classifica-
tion”, In Detection of Intrusions and
Malware, and Vulnerability Assessment:
13th International Conference, DIMVA
2016, San Sebastián, Spain, Springer
International Publishing, vol. 13, pp.
419-439, 2016.

[42] R. Edward, Z. Richard, C. Russell, S.
Jared, Y. Paul, W. Rebecca, T. Anna, M.
Mark and N. Charles, “An investigation
of byte n-gram features for malware
classification”, Journal of Computer
Virology and Hacking Techniques, vol.
14, pp. 1-20, 2018.

[43] M. Zane and B. Michael, “Building a
machine learning classifier for malware
detection”, In 2014 second workshop on
anti-malware testing research (Water),
IEEE, pp. 1-4, 2014.

[44] S. Michael and H. Andrew, “A Practical
malware analysis: the hands-on guide to
dissecting malicious software”. Starch
Press, 2012.

[45] W. Tzu-Yen and W. Chin-Hsiung,
“Detection of packed executables using
support vector machines”, International
Conference on Machine Learning and
Cybernetics, IEEE, vol. 2, pp. 717-722,
2011.

[46] A. Satheesh and R. Kumaravelu, “A
mathematical model of HMST model on
malware static analysis”, International
Journal of Information Security and

Privacy, vol. 13, no. 2, pp. 86-103, 2019.

[47] A. Imad and L. Saiida, “A new classifi-
cation based model for malicious PE
files detection”, International Journal of
Computer Network and Information
Security, vol. 9, no.6, pp.1-7, 2019.

[48] L. Michael, A. Steven, H. Blake, R.
Matthew, “Malware Analyst's Cookbook
and DVD”, Wiley Publishing, 2011.

[49] L. Xiaojing, Y. Kan, W. XiaoFeng, L.
Zhou, X. Luyi and B. Raheem, “Acing
the ioc game: Toward automatic discov-
ery and analysis of open-source cyber
threat intelligence”, ACM SIGSAC
conference on computer and communi-
cations security, pp. 755-766, 2016.

[50] S. Sebastian and K. Stefan, “Code
obfuscation against static and dynamic
reverse engineering”, In Information
Hiding: 13th International Conference,
IH 2011, Prague, Czech Republic,
Revised Selected Papers, Springer
Berlin Heidelberg, vol. 13, pp. 270-284,
2011.

[51] C. Michael , “Scanning memory with
Yara”, Digital Investigation, vol. 20, pp.
34-38, 2017.

[52] S. Nikolaos, B. Chafika, A. Omar and A.
Ameer, “Forensic malware analysis: The
value of fuzzy hashing algorithms in
identifying similarities”, IEEE Trust-
com/ Big Data SE/ ISPA, IEEE, pp.
1782-1787, 2016.

[53] K. Abhishek, G. Suchandra and G.
Ratan, “Detecting obfuscated viruses
using cosine similarity analysis”, Asia
International Conference on Modelling
and Simulation (AMS'07), IEEE, pp.
165-170, 2007.

[54] B. Danilo, M. Lorenzo, M. Mattia,

“Code normalization for self-mutating
malware”, IEEE Security and Privacy,
vol. 5, no.2, pp. 46-54, 2007.

[55] Z. Boyun, Y. Jianping, H. Jingbo, Z.
Dingxing and W. Shulin, “Malicious
codes detection based on ensemble
learning”, In Autonomic and Trusted
Computing: 4th International Confer-
ence, ATC 2007, Hong Kong, China,
July 11-13, 2007. Proceedings 4, Spring-
er Berlin Heidelberg, pp. 468-477,
2007.

[56] M. Robert, F. Clint, T. Nir, B. Eugene,
G. Marina, D. Shlomi and E. Yuval,
“Unknown malcode detection using
opcode representation”, In Intelligence
and Security Informatics: First European
Conference, Euro ISI 2008, Esbjerg,
Denmark, Proceedings, Springer Berlin
Heidelberg, pp. 204-215, 2008.

[57] B. S. Mojtaba, J. Saeed and T. Asghar,
“PbMMD: A novel policy based
multi-process malware detection”,
Engineering Applications of Artificial
Intelligence, vol. 60, pp. 57-70, 2017.

[58] N. Vivens, X. Zhifeng, M. V. Rao, M. Ke
and X. Yang, “Network forensics analy-
sis using Wireshark”, International
Journal of Security and Networks, vol.
10, no.2, pp. 91-106, 2015.

[59] H. Nazrul, B. Monowar H, B. Ram
Charan, B. Dhruba K and K. Jugal K,
“Network attacks: Taxonomy, tools and
systems”, Journal of Network and Com-
puter Applications, vol. 40, pp. 307-324,
2014.

[60] E. Eldad, “Reversing: secrets of reverse
engineering”, John Wiley & Sons, 2011.

[61] G. Daniel, M. Carles and P. Jordi, “The
rise of machine learning for detection
and classification of malware: Research

developments, trends and challenges”,
Journal of Network and Computer
Applications, vol. 153, pp. 102526,
2020.

[62] R. Chathuranga and J. Aruna, “An
efficient approach for advanced
malware analysis using memory foren-
sic technique”, In 2017 IEEE Trustcom/
Big Data SE/ ICESS, IEEE, pp.
1145-1150, 2017.

[63] K. Ilker, “A basic malware analysis
method”, Computer Fraud and Security,
vol. 2019, no. 6, pp. 11-19, 2019.

[64] K. Joakim, “Fundamentals of Digital
Forensics”, Springer International
Publishing, 2020.

[65] P. Radu, H. Steven, L. Thor, S. Matija, P.
Jens and C. Alexandre, “Analysis of
malware behavior: Type classification
using machine learning”, International
conference on cyber situational aware-
ness, data analytics and assessment
(Cyber SA), IEEE, pp. 1-7, 2015.

[66] A. Omer and S. Refik, “Investigation of
possibilities to detect malware using
existing tools”, 14th International
Conference on Computer Systems and
Applications. IEEE, pp. 1277-1284,
2017.

[67] M. Q. Ali, A. Irfan and Y. Muhammad,
“Cloud Intell: An intelligent malware
detection system”, Future Generation
Computer Systems, vol. 86, pp.
1042-1053, 2018.

[68] G. Kent, S. Scott, H. Xin and C. Tzi-ck-
er, “Automatic generation of string
signatures for malware detection”,
Recent Advances in Intrusion Detection:
12th International Symposium, RAID
2009, Saint-Malo, France, Proceedings,
Springer Berlin Heidelberg, vol. 12, pp.

101-120, 2009.

[69] G. Dragoş, C. Mihai, A. Dan and C.
Liviu, “Malware detection using
machine learning”, International multi-
conference on computer science and
information technology, IEEE, pp.
735-741, 2009.

[70] B. Philippe, G. Isabelle and M. Jean-Yves,
“Behavior abstraction in malware analy-
sis”, In Runtime Verification: First
International Conference, RV 2010,
Proceedings, Springer Berlin Heidel-
berg, vol. 1, pp. 168-182, 2010.

[71] C. Sang Kil, M. Iulian, J. Jiyong, T.
John, B. David and A. David G, “Split
Screen: Enabling efficient, distributed
malware detection”, Journal of Commu-
nications and Networks, vol. 13, no.2,
pp. 187-200, 2011.

[72] S. Asaf, M, Robert, F. Clint, D. Shlomi
and E. Yuval, “Detecting unknown
malicious code by applying classifica-
tion techniques on opcode patterns”,
Security Informatics, vol. 1, no.1, pp.
1-22, 2012.

[73] S. Asaf, M. Robert, E. Yuval and G.
Chanan, “Detection of malicious code
by applying machine learning classifiers
on static features: A state-of-the-art
survey”, Information Security Technical
Report, vol. 14, no.1, pp. 16-29, 2009.

[74] E. A. Ahmed E, M. M. Aizaini and B.
Bazara, “Improving the detection of
malware behaviour using simplified data
dependent API call graph”, International
Journal of Security and its Applications,
vol. 7, no. 5, pp. 29-42, 2013.

[75] P. Bassir, J. M. Vafaie and J. Mehrdad,
“Malware detection using hidden
Markov model based on Markov blanket
feature selection method”. International

congress on technology, communication
and knowledge, IEEE, pp. 558-563,
2015.

[76] S. Nedim and L. Pavel, “Hidost: a static
machine-learning-based detector of
malicious files”. EURASIP Journal on
Information Security, vol. 2016, pp.
1-20, 2016.

[77] K. Dong Hee, W. Sang Uk, L. Dong Kyu
and C. Tai Myoung, “Static detection of
malware and benign executable using
machine learning algorithm”. Eighth
International Conference on Evolving
Internet, pp. 14-19, 2016.

[78] H. Shamsul, A. Jemal, A. Mamoun, A.
Mali, I. Rafiqul and Y. John, “Hybrids of
support vector machine wrapper and
filter based framework for malware
detection”. Future Generation Computer
Systems, vol. 55, pp. 376-390, 2016.

[79] N. Yuta and U. Ryuya, “Static analysis
with paragraph vector for malware
detection”. In Proceedings of the 11th
International Conference on Ubiquitous
Information Management and Commu-
nication, pp. 1-7, 2017.

[80] W. Cheng, Q. Zheng, Z. Jixin and Y.
Hui, “A malware variants detection
methodology with an opcode based
feature method and a fast density based
clustering algorithm”. 12th International
Conference on Natural Computation,
Fuzzy Systems and Knowledge Discov-
ery (ICNC-FSKD), IEEE, pp. 481-487,
2016.

[81] M. Aziz, A. Omar and M. Manar,
“AMAL: high-fidelity, behavior-based
automated malware analysis and classi-
fication”. Computers and Security, vol.
52, pp. 251-266, 2015.

[82] Y. Yanfang, W. Dingding, L. Tao, Y.

Dongyi and J. Qingshan, “An intelligent
PE-malware detection system based on
association mining”, Journal in comput-
er virology, vol. 4, pp. 323-334, 2008.

[83] B. Michael, O. Jon, A. Jon, M. Z.
Morley, J. Farnam and N. Jose, “Auto-
mated classification and analysis of
internet malware”, Recent Advances in
Intrusion Detection: 10th International
Symposium, RAID, vol. 10, pp.
178-197, 2007.

[84] R. Konrad, T. Philipp, W. Carsten and H.
Thorsten, “Automatic analysis of
malware behavior using machine learn-
ing”, Journal of Computer Security, vol.
19, no.4, pp. 639-668, 2011.

[85] V. Mihai, G. Laura and T. Nicolae,
“Practical malware analysis based on
sandboxing”, Ro Edu Net Conference
13th Edition: Networking in Education
and Research Joint Event RENAM 8th
Conference, IEEE, pp. 1-6, 2014.

[86] H. Jozsef, M. Yoan, I. Alexander and L.
Amaury, “Methodology for behavior-
al-based malware analysis and detection
using random projections and k-nearest
neighbors classifiers”, International
Conference on Computational Intelli-
gence and Security, IEEE, pp.
1016-1023, 2011.

[87] G. Mahboobe, S. Ashkan and S. Zahra,
“Dynamic VSA: a framework for
malware detection based on register
contents”, Engineering Applications of
Artificial Intelligence, vol. 44, pp.
111-122, 2015.

[88] P. Zhi-Peng, F. Chao and T. Chao-Jing,
“Malware classification based on the
behavior analysis and back propagation
neural network”. In ITM Web of Confer-
ences, EDP Sciences, vol.7, pp. 20-28,

Nov. 2016.

[89] H. Shamsul, M. Suruz, H. M. Mehedi, I.
Rafiqul, Y. John, A. Majed and A.
Ahmad, “Defending unknown attacks
on cyber-physical systems by semi-su-
pervised approach and available
unlabeled data”, Information Sciences,
vol. 379, pp. 211-228, 2017.

[90] M. Fahad, H. Wei and B. Antony,
“Novel malware detection methods by
using LCS and LCSS”, 22nd Interna-
tional Conference on Automation and
Computing (ICAC), IEEE, pp. 554-559,
2016.

[91] H. Eduardo, M. Rubén S and L. Ignacio
M, “Evaluating the reliability of compu-
tational grids from the end user’s point
of view”, Journal of Systems Architec-
ture, vol. 52, no. 12, pp. 727-736, 2006.

[92] N. B. Narayanan, D. Ouboti and K.
Temesguen, “Performance analysis of
machine learning and pattern recogni-
tion algorithms for malware classifica-
tion”, IEEE national aerospace and
electronics conference (NAECON) and
ohio innovation summit (OIS), IEEE,
pp. 338-342, 2016.

[93] C. In Kyeom, K. T. Guen, S. Y. Jin, R.
Minsoo and I. E. Gyu, “Malware analy-
sis and classification using sequence
alignments”, Intelligent Automation and
Soft Computing, vol. 22, no.3, pp.
371-377, 2016.

[94] M. Jiang, X. Zhi, L. Pengwei, W. Ding-
hao, L. Peng and M. Bing, “Impeding
behavior-based malware analysis via
replacement attacks to malware specifi-
cations”, Journal of Computer Virology
and Hacking Techniques, vol. 13,
pp.193-207, 2017.

[95] W. Markus, R. Alexander, T. Niklas and

A. Wolfgang, “A knowledge-assisted
visual malware analysis system: Design,
validation, and reflection of KAMAS”,
Computers and Security, vol. 67, pp.
1-15, 2017.

[96] N. Stavros D and P, Iosif, “A
graph-based model for malware detec-
tion and classification using system-call
groups”, Journal of Computer Virology
and Hacking Techniques, vol. 13, no.1,
pp. 29-46, 2017.

[97] L. Quan, B. Oisin, M. N. Brian and S.
Mark, “Deep learning at the shallow
end: Malware classification for non-do-
main experts”, Digital Investigation,
vol. 26, pp. S118-S126, 2018.

[98] P. Abdurrahman and A. Tankut, “Classi-
fication of malware families based on
runtime behaviors”, Journal of informa-
tion security and applications, vol. 37,
pp. 91-100, 2017.

[99] S. Jan, P. Tomás and R. Martin, “Multi-
ple instance learning for malware classi-
fication”, Expert Systems with Applica-
tions, vol. 93, pp. 346-357, 2018.

[100] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

 [101] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

[102] X. Lu, F. Jiang, X. Zhou, S. Yi and J. Sha
and L. Pietro, “ASSCA: API sequence

and statistics features combined archi-
tecture for malware detection”, Comput-
er Networks, vol. 157, pp. 99-111,
2019.

[103] D. Arivudainambi, K.A. Varun Kumar
and P. Visu, “Malware traffic classifica-
tion using principal component analysis
and artificial neural network for extreme
surveillance”, Computer Communica-
tions, vol. 147, pp. 50-57, 2019.

[104] Y. Cagatay and K. Ahmet, “Imaging and
evaluating the memory access for
malware”, Forensic Science Internation-
al: Digital Investigation, vol. 32, pp.
20-27, 2020.

[105] R. Mahdi, W. Yong Li, K. Reza, J.
Hamed, Z. Ruxin and H. Peng, “A
hybrid machine learning approach for
malicious behaviour detection and
recognition in cloud computing”,
Journal of Network and Computer
Applications, vol. 151, pp. 12-19, 2020.

[106] E. A. Ahmed E, M. M. Aizaini, B.
Bazara- IA and H. Hentabli, “Enhancing
the detection of metamorphic malware
using call graphs”, Computers and Secu-
rity, vol. 46, pp. 62-78, 2014.

[107] R. Jesse C, K. Roger I, L. Scott M and C.
Robert K, “Detection of injected,
dynamically generated, and obfuscated
malicious code”, ACM workshop on
Rapid malcode, pp. 76-82, 2003.

[108] C. Michael, “A protocol graph based
anomaly detection system”, Doctoral
dissertation, Carnegie Mellon Universi-
ty, 2008.

[109] M. R. Jose and D. J. Cesar, “Integrating
static and dynamic malware analysis
using machine learning”, IEEE Latin
America Transactions, vol. 13, no. 9, pp.
3080-3087, 2015.

[110] S. PV and S. AJPCS, “Integrated static
and dynamic analysis for malware
detection”, Procedia Computer Science,
vol. 46, pp. 804-811, 2015.

[111] E. E. Inang, B. Chafika, A. Ameer and
W. Paul, “Analysis of malware
behaviour: Using data mining clustering
techniques to support forensics investi-
gation”, Fifth Cybercrime and Trust-
worthy Computing Conference, IEEE,
pp. 54-63, 2014.

[112] W. Ahsan, I. Azhar, L. Jahanzaib, N.
Ahsan and B. Anas, “A novel approach
of unprivileged keylogger detection”,
2nd International Conference on Com-
puting, Mathematics and Engineering
Technologies (iCoMET), IEEE, pp. 1-6,
2019.

[113] N. Mohammad, A. Nouman and Y. Jing
Tao, “A three-way decision making
approach to malware analysis using
probabilistic rough sets”, Information
Sciences, vol. 37, no. 4, pp. 193-209,
2016.

[114] N. Mohammad, A. Nouman and Y. Jing
Tao, “Detecting malware evolution
using support vector machines”, Expert
Systems with Applications, vol. 143, pp.
113022, 2020.

[115] P. Avi, R. Brian, K. Lee, H. Michael, C.
Catherine, O. Alison, T. Glenn, R. S.
Neal, P. Terry, and T. Jason, “Artificial
intelligence based malware analysis”,
arXiv preprint, pp.16-23, 2017.

[116] H. Shamsul, I. Rafiqul, A. Jemal, Y.
John, H. M. Mehedi and F. Giancarlo,
“A hybrid-multi filter-wrapper frame-
work to identify run-time behaviour for
fast malware detection”, Future Genera-
tion Computer Systems, vol. 1, no. 83,
pp. 193-207, 2018.

[117] S. Robert, X. Lifan, K. William, V.
Tristan, F. Teague, H. John, P. Zachary,
S. Corey, S. Joshua and C. John, “Paral-
lelization of machine learning applied to
call graphs of binaries for malware
detection”, 25th Euromicro International
Conference on Parallel, Distributed and
Network-based Processing (PDP),
IEEE, pp. 69-77, 2017.

[118] K. Youngjoon, K. Eunjin and K. Huy
Kang, “A novel approach to detect
malware based on API call sequence
analysis”, International Journal of
Distributed Sensor Networks, vol. 11,
no.6, pp. 659101, 2015.

[119] M. Weixuan, C. Zhongmin, T. Don, F.
Qian and G. Xiaohong, “Security impor-
tance assessment for system objects and
malware detection”, Computers and
Security, vol. 68, pp. 47-68, 2017.

[120] O. Philip, S. Sezer, and K. McLaughlin,
“Detecting obfuscated malware using
reduced opcode set and optimised
runtime trace”, Security Informatics,
vol. 5, pp. 1-12, 2016.

[121] D. Anusha, T. Fabio Di, V. C. Aaron, A.
Thomas H and S. Mark, “A comparison
of static, dynamic, and hybrid analysis
for malware detection”, Journal of Com-
puter Virology and Hacking Techniques,
vol. 13, pp. 1-12, 2017.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

7. CONCLUSION

This study helps to identify malwares using
runtime characteristics. It provides the knowl-
edge fraction for harmful software analysis and
detection procedures through machine learning
algorithms. Malware is now well-known to be
highly sophisticated and rapidly changing.
Today, it is not only used to disturb users, steal
information, and destroy user data but also to
enforce its objectives for businesses and
nations. The protection of data and resources is
a key component in information technology.
This is essential because computers or embed-
ded digital devices in every area are utilized to
execute activities more quickly and precisely
without human involvement. The computer

system is more susceptible to hacking because
of its wide range of applications. This study
covers the development of malware, present
status, and techniques of detection. Two
malware analysis techniques exist signature
based, and behavior based. Signature-based
technology has two major flaws that must be
addressed. For the time being, signature-based
techniques will not be able to identify new or
previously unknown malware. Second, different
types of malwares may readily outwit the
system's detection mechanisms. Behavior-based
technique can identify new variants of malware,
dynamic techniques in malware-based methods
are more robust than signature-based methods.
The actual application of dynamic methods
nevertheless remains rigid and time-intensive,
whereas signature technology is quicker and

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

40 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

more efficacious than dynamic techniques in
identifying known malware. We spoke about
malware methods that were suggested for
machine learning to train the classification of
malware in this research. This is because it
includes a huge number of algorithms that may
be used for a variety of malware features. In
addition to its accessibility, machine learning
algorithms provide many benefits over conven-
tional malware classifications, such as the
capacity to get information from file samples,
rapidly detect, unexpected changes, and
minimize the human work and time spent
analyzing malware. In this article, malware
detection methods are classified according to
analytical methodologies such as static, dynam-
ic, and hybrid techniques. Each method has
advantages and disadvantages. These methods,
however, produced encouraging results in the
categorization of malware in a certain scenario.
For example, static methods are quicker, with a
reduced false-positive rate, but it is difficult to
cope with the obfuscation technique while
collecting static characteristics. In this respect,
on the contrary, dynamic methods offer a
beneficial although implementation in real-time
is inconvenient. Finally, we addressed the
two-layer malware detection framework with
static and dynamic functions that can effectively
and reliably detect the new and known malware.

REFERENCES

[1] H. Weijie, X. Jingfeng, W. Yong, H.
Lu, K. Zixiao and M. Limin, “MalDAE:
Detecting and explaining malware
based on correlation and fusion of static
and dynamic characteristics”, Comput-
ers and Security, vol. 83, pp. 208-233,
2019.

[2] B. Pete, F. Richard, T. Frederick and J.

Kevin, “Malware classification using
self organising feature maps and
machine activity data”, Computers and
Security, vol. 73, pp. 399-410, 2018.

[3] N. Usha, T. F. Di, C. V. Aaron, A.
Thomas and S. Mark, “Clustering versus
SVM for malware detection”, Journal of
Computer Virology and Hacking
Techniques, vol. 12, pp. 213-224, 2016.

[4] J. A. Namavar, H. Sattar, D. Ali and C.
R. Kim kwang, “An improved two-hid-
den-layer extreme learning machine for
malware hunting”, Computers and Secu-
rity, vol. 89, pp. 10-16, 2020.

[5] F. Massimo and P. F. Leaf, “An
open-source cybersecurity training
platform for realistic edge-IoT scenari-
os”, Journal of Systems Architecture,
vol. 97, pp. 107-129, 2020.

[6] K. Afreen, Z. Swaleha and Al. S.
Muaadhabdo, “An improved pre-pro-
cessing machine learning approach for
cross-sectional imaging of demented
older adults”, International Conference
of Intelligent Computing and Engineer-
ing (ICOICE), IEEE, pp. 1-7, 2019.

[7] P. Jakub, N. Q. Anh, B. Adrian, G.
Jonathan and L. Y. Kubo, “a framework
for automated efficacy testing of anti-vi-
rus behavioral detection with proce-
dure-based malware emulation”, In
Proceedings of the 13th International
Workshop on Automating Test Case
Design, Selection and Evaluation, pp.
37-44, 2022.

[8] B. Andrew, “How deception can change
cyber security defenses”, Computer
Fraud & Security, vol.5, no.1, pp. 12-14,
2019.

 [9] G. Ekta, B. Divya and S. Sanjeev, “Mal-
ware analysis and classification: A

survey”, Journal of Information Securi-
ty, vol. 6, 2014.

[10] M. S. Mariam, S. M. Ali, Z. Si-Jing and
Y. Hong-Ji, “Conceivable security risks
and authentication techniques for smart
devices: A comparative evaluation of
security practices”, International journal
of Automation and Computing, vol. 13,
pp. 350-363, 2016.

[11] B. Kang, F. Liu, Z. Yun and Y. Liang,
“Design of an Internet of Things-based
smart home system”, International
Conference on Intelligent Control and
Information Processing, IEEE, vol. 2,
pp. 921-924, 2011.

[12] A. Shahid, H, R. Nigel, T. Issa and S.
Ibrahim, “A framework for metamor-
phic malware analysis and real-time
detection”, Computers and Security, vol.
48, pp. 212-233, 2015.

[13] H. Xin, “Large-scale malware analysis,
detection, and signature generation”,
Doctoral dissertation, University of
Michigan, 2011.

[14] R. Kalpika, A. R. Vasudevan, “Detection
of Zeus Bot Based on Host and Network
Activities”, Communications in Com-
puter and Information Science, vol. 746,
pp. 978-981, 2017.

[15] E. Nabeil, E. Rashad, H. Alzubair and L.
Fagen, “A blockchain-based
attribute-based signcryption scheme to
secure data sharing in the cloud”,
Journal of Systems Architecture, vol.
102, pp. 10-16, 2020.

[16] J. Daehee, J. Yunjong , L Sungman , P.
Minjoon, K. Kuenhwan , K. Donguk and
K. B. Byunghoon, “Rethinking anti-em-
ulation techniques for large-scale
software deployment”, Computers and
Security, vol. 83, pp. 182-200, 2019.

[17] M. Samaneh and G. Ali A, “Application
of deep learning to cybersecurity: A
survey”, Neurocomputing, vol. 347, pp.
149-176, 2019.

[18] Z. Weizhe, W. Huanran, H. Hui and L.
Peng,” DAMBA: detecting android
malware by ORGB analysis”, IEEE
Transactions on Reliability, vol.69, no.1,
pp. 55-69, 2020.

[19] L. Liu, W. Bao-sheng, Y. Bo and Z.
Qiu-xi, “Automatic malware classifica-
tion and new malware detection using
machine learning”, Frontiers of Infor-
mation Technology & Electronic
Engineering, vol. 18, no. 9, pp.
1336-1347, 2017.

[20] K. Ratinder and M. Singh, “Hybrid
real-time zero-day malware analysis and
reporting system”, International Journal
of Information Technology and Comput-
er Sciences, vol. 8, pp. 63-73, 2016.

[21] M. Jelena, M. Miroslaw and F. Alberto,
“Time, accuracy and power consump-
tion tradeoff in mobile malware detec-
tion systems”, Computers and Security,
vol. 82, pp. 314-328, 2019.

[22] S. Hudan, S. Ferdous and P. Christian,
“A survey on forensic investigation of
operating system logs”, Digital Investi-
gation, vol. 29, pp. 1-20, 2019.

[23] N. Bruce, K. K. Hwan, K. Y. Jin, K.H.
Ho, K. T. Yong and L. H. Jae,
“Cross-method-based analysis and
classification of malicious behavior by
api calls extraction”, Applied Sciences,
vol. 9, no.2, pp. 239, 2019.

[24] Z. Hanqi, X. Xi, M. Francesco, N.
Shiguang, M. Fabio and S. A. Kumar,
“Classification of ransomware families
with machine learning based on N-gram
of opcodes”, Future Generation Com-

puter Systems, vol. 90, pp. 211-221,
2019.

[25] N. Jose, P. Araujo, P. Donald M and R.
C. Ghedini, “MULTS: A multi-cloud
fault-tolerant architecture to manage
transient servers in cloud computing”,
Journal of Systems Architecture, vol.
101, pp. 101-108, 2019.

[26] R. Veeramani and R. Nitin, “Windows
api based malware detection and frame-
work analysis”, In International Confer-
ence on Networks and Cyber Security,
vol. 25, 2012.

[27] C. Mihai, J. Somesh, K. Johannes, K.
Stefan and V. Helmut, “Software trans-
formations to improve malware detec-
tion”, Journal in Computer Virology,
vol. 3, pp. 253-265, 2007.

[28] O. Yoshihiro, “Trends of anti-analysis
operations of malwares observed in API
call logs”, Journal of Computer Virology
and Hacking Techniques, vol. 14, no. 1,
pp. 69-85, 2018.

[29] C. Sibi S and V. V. Sangeetha, “A survey
on malware analysis and mitigation
techniques”, Computer Science Review,
vol. 32, pp. 1-23, 2019.

[30] D. Jaime, S. Igor, C. Xabier, P. Yoseba K
and B. Pablo G, “Automatic
behaviour-based analysis and classifica-
tion system for malware detection”,
International Conference on Enterprise
Information Systems, vol. 2, pp.
395-399, 2010.

[31] D. Yuxin, X. Xiaoling, C. Sheng and L.
Ye, “A malware detection method based
on family behavior graph”, Computers
and Security, vol. 73, pp. 73-86, 2018.

[32] S. Jagsir and S. Jaswinder, “A survey on
machine learning-based malware detec-

tion in executable files”, Journal of
Systems Architecture, vol. 112, pp.
10-18, 2021.

[33] R. Anusmita and N. Asoke, “Introduc-
tion to Malware and Malware Analysis:
A brief overview”, International Journal,
vol. 4, no.10, 2016.

[34] W. Huanran, H. Hui and Z. Weizhe,
“Demadroid: Object reference
graph-based malware detection in
Android”, Security and Communication
Networks, vol. 2018, 2018.

[35] B. Tao, T. Takeshi, G. Shanqing, I.
Daisuke and N. Koji, “Integration of
multi-modal features for android
malware detection using linear SVM”,
In 2016 11th Asia Joint Conference on
Information Security (Asia JCIS), IEEE,
pp. 141-146, 2016.

[36] B. Ulrich, K. Engin and K. Christopher,
“Improving the efficiency of dynamic
malware analysis”, In Proceedings of the
2010 ACM Symposium on Applied
Computing, pp. 1871-1878, 2010.

[37] W. Gerard, S. Radu and D. Alexandre,
“Malware behaviour analysis”, Journal
in Computer Virology, vol. 4, pp.
279-287, 2008.

[38] M. Asit and T. Shashikala, “Virtual
machine introspection: towards bridging
the semantic gap”, Journal of Cloud
Computing, vol. 3, no.1, pp. 1-14, 2014.

[39] V. Jiri and P. Martin, “Virtualization of
operating system using type-2 Hypervi-
sor”, In Software Engineering Perspec-
tives and Application in Intelligent
Systems: Proceedings of the 5th Com-
puter Science On-line Conference 2016
(CSOC2016), Springer International
Publishing, vol. 25, pp. 239-247, 2016.

[40] M. Andreas, K. Christopher and K.
Engin, “Exploring multiple execution
paths for malware analysis”, In 2007
IEEE Symposium on Security and
Privacy (SP'07), IEEE, pp.231-245,
2007.

[41] K. Bojan, Z. Apostolis, L. Tamas, W.
George and E. Claudia, “Adaptive
semantics-aware malware classifica-
tion”, In Detection of Intrusions and
Malware, and Vulnerability Assessment:
13th International Conference, DIMVA
2016, San Sebastián, Spain, Springer
International Publishing, vol. 13, pp.
419-439, 2016.

[42] R. Edward, Z. Richard, C. Russell, S.
Jared, Y. Paul, W. Rebecca, T. Anna, M.
Mark and N. Charles, “An investigation
of byte n-gram features for malware
classification”, Journal of Computer
Virology and Hacking Techniques, vol.
14, pp. 1-20, 2018.

[43] M. Zane and B. Michael, “Building a
machine learning classifier for malware
detection”, In 2014 second workshop on
anti-malware testing research (Water),
IEEE, pp. 1-4, 2014.

[44] S. Michael and H. Andrew, “A Practical
malware analysis: the hands-on guide to
dissecting malicious software”. Starch
Press, 2012.

[45] W. Tzu-Yen and W. Chin-Hsiung,
“Detection of packed executables using
support vector machines”, International
Conference on Machine Learning and
Cybernetics, IEEE, vol. 2, pp. 717-722,
2011.

[46] A. Satheesh and R. Kumaravelu, “A
mathematical model of HMST model on
malware static analysis”, International
Journal of Information Security and

Privacy, vol. 13, no. 2, pp. 86-103, 2019.

[47] A. Imad and L. Saiida, “A new classifi-
cation based model for malicious PE
files detection”, International Journal of
Computer Network and Information
Security, vol. 9, no.6, pp.1-7, 2019.

[48] L. Michael, A. Steven, H. Blake, R.
Matthew, “Malware Analyst's Cookbook
and DVD”, Wiley Publishing, 2011.

[49] L. Xiaojing, Y. Kan, W. XiaoFeng, L.
Zhou, X. Luyi and B. Raheem, “Acing
the ioc game: Toward automatic discov-
ery and analysis of open-source cyber
threat intelligence”, ACM SIGSAC
conference on computer and communi-
cations security, pp. 755-766, 2016.

[50] S. Sebastian and K. Stefan, “Code
obfuscation against static and dynamic
reverse engineering”, In Information
Hiding: 13th International Conference,
IH 2011, Prague, Czech Republic,
Revised Selected Papers, Springer
Berlin Heidelberg, vol. 13, pp. 270-284,
2011.

[51] C. Michael , “Scanning memory with
Yara”, Digital Investigation, vol. 20, pp.
34-38, 2017.

[52] S. Nikolaos, B. Chafika, A. Omar and A.
Ameer, “Forensic malware analysis: The
value of fuzzy hashing algorithms in
identifying similarities”, IEEE Trust-
com/ Big Data SE/ ISPA, IEEE, pp.
1782-1787, 2016.

[53] K. Abhishek, G. Suchandra and G.
Ratan, “Detecting obfuscated viruses
using cosine similarity analysis”, Asia
International Conference on Modelling
and Simulation (AMS'07), IEEE, pp.
165-170, 2007.

[54] B. Danilo, M. Lorenzo, M. Mattia,

“Code normalization for self-mutating
malware”, IEEE Security and Privacy,
vol. 5, no.2, pp. 46-54, 2007.

[55] Z. Boyun, Y. Jianping, H. Jingbo, Z.
Dingxing and W. Shulin, “Malicious
codes detection based on ensemble
learning”, In Autonomic and Trusted
Computing: 4th International Confer-
ence, ATC 2007, Hong Kong, China,
July 11-13, 2007. Proceedings 4, Spring-
er Berlin Heidelberg, pp. 468-477,
2007.

[56] M. Robert, F. Clint, T. Nir, B. Eugene,
G. Marina, D. Shlomi and E. Yuval,
“Unknown malcode detection using
opcode representation”, In Intelligence
and Security Informatics: First European
Conference, Euro ISI 2008, Esbjerg,
Denmark, Proceedings, Springer Berlin
Heidelberg, pp. 204-215, 2008.

[57] B. S. Mojtaba, J. Saeed and T. Asghar,
“PbMMD: A novel policy based
multi-process malware detection”,
Engineering Applications of Artificial
Intelligence, vol. 60, pp. 57-70, 2017.

[58] N. Vivens, X. Zhifeng, M. V. Rao, M. Ke
and X. Yang, “Network forensics analy-
sis using Wireshark”, International
Journal of Security and Networks, vol.
10, no.2, pp. 91-106, 2015.

[59] H. Nazrul, B. Monowar H, B. Ram
Charan, B. Dhruba K and K. Jugal K,
“Network attacks: Taxonomy, tools and
systems”, Journal of Network and Com-
puter Applications, vol. 40, pp. 307-324,
2014.

[60] E. Eldad, “Reversing: secrets of reverse
engineering”, John Wiley & Sons, 2011.

[61] G. Daniel, M. Carles and P. Jordi, “The
rise of machine learning for detection
and classification of malware: Research

developments, trends and challenges”,
Journal of Network and Computer
Applications, vol. 153, pp. 102526,
2020.

[62] R. Chathuranga and J. Aruna, “An
efficient approach for advanced
malware analysis using memory foren-
sic technique”, In 2017 IEEE Trustcom/
Big Data SE/ ICESS, IEEE, pp.
1145-1150, 2017.

[63] K. Ilker, “A basic malware analysis
method”, Computer Fraud and Security,
vol. 2019, no. 6, pp. 11-19, 2019.

[64] K. Joakim, “Fundamentals of Digital
Forensics”, Springer International
Publishing, 2020.

[65] P. Radu, H. Steven, L. Thor, S. Matija, P.
Jens and C. Alexandre, “Analysis of
malware behavior: Type classification
using machine learning”, International
conference on cyber situational aware-
ness, data analytics and assessment
(Cyber SA), IEEE, pp. 1-7, 2015.

[66] A. Omer and S. Refik, “Investigation of
possibilities to detect malware using
existing tools”, 14th International
Conference on Computer Systems and
Applications. IEEE, pp. 1277-1284,
2017.

[67] M. Q. Ali, A. Irfan and Y. Muhammad,
“Cloud Intell: An intelligent malware
detection system”, Future Generation
Computer Systems, vol. 86, pp.
1042-1053, 2018.

[68] G. Kent, S. Scott, H. Xin and C. Tzi-ck-
er, “Automatic generation of string
signatures for malware detection”,
Recent Advances in Intrusion Detection:
12th International Symposium, RAID
2009, Saint-Malo, France, Proceedings,
Springer Berlin Heidelberg, vol. 12, pp.

101-120, 2009.

[69] G. Dragoş, C. Mihai, A. Dan and C.
Liviu, “Malware detection using
machine learning”, International multi-
conference on computer science and
information technology, IEEE, pp.
735-741, 2009.

[70] B. Philippe, G. Isabelle and M. Jean-Yves,
“Behavior abstraction in malware analy-
sis”, In Runtime Verification: First
International Conference, RV 2010,
Proceedings, Springer Berlin Heidel-
berg, vol. 1, pp. 168-182, 2010.

[71] C. Sang Kil, M. Iulian, J. Jiyong, T.
John, B. David and A. David G, “Split
Screen: Enabling efficient, distributed
malware detection”, Journal of Commu-
nications and Networks, vol. 13, no.2,
pp. 187-200, 2011.

[72] S. Asaf, M, Robert, F. Clint, D. Shlomi
and E. Yuval, “Detecting unknown
malicious code by applying classifica-
tion techniques on opcode patterns”,
Security Informatics, vol. 1, no.1, pp.
1-22, 2012.

[73] S. Asaf, M. Robert, E. Yuval and G.
Chanan, “Detection of malicious code
by applying machine learning classifiers
on static features: A state-of-the-art
survey”, Information Security Technical
Report, vol. 14, no.1, pp. 16-29, 2009.

[74] E. A. Ahmed E, M. M. Aizaini and B.
Bazara, “Improving the detection of
malware behaviour using simplified data
dependent API call graph”, International
Journal of Security and its Applications,
vol. 7, no. 5, pp. 29-42, 2013.

[75] P. Bassir, J. M. Vafaie and J. Mehrdad,
“Malware detection using hidden
Markov model based on Markov blanket
feature selection method”. International

congress on technology, communication
and knowledge, IEEE, pp. 558-563,
2015.

[76] S. Nedim and L. Pavel, “Hidost: a static
machine-learning-based detector of
malicious files”. EURASIP Journal on
Information Security, vol. 2016, pp.
1-20, 2016.

[77] K. Dong Hee, W. Sang Uk, L. Dong Kyu
and C. Tai Myoung, “Static detection of
malware and benign executable using
machine learning algorithm”. Eighth
International Conference on Evolving
Internet, pp. 14-19, 2016.

[78] H. Shamsul, A. Jemal, A. Mamoun, A.
Mali, I. Rafiqul and Y. John, “Hybrids of
support vector machine wrapper and
filter based framework for malware
detection”. Future Generation Computer
Systems, vol. 55, pp. 376-390, 2016.

[79] N. Yuta and U. Ryuya, “Static analysis
with paragraph vector for malware
detection”. In Proceedings of the 11th
International Conference on Ubiquitous
Information Management and Commu-
nication, pp. 1-7, 2017.

[80] W. Cheng, Q. Zheng, Z. Jixin and Y.
Hui, “A malware variants detection
methodology with an opcode based
feature method and a fast density based
clustering algorithm”. 12th International
Conference on Natural Computation,
Fuzzy Systems and Knowledge Discov-
ery (ICNC-FSKD), IEEE, pp. 481-487,
2016.

[81] M. Aziz, A. Omar and M. Manar,
“AMAL: high-fidelity, behavior-based
automated malware analysis and classi-
fication”. Computers and Security, vol.
52, pp. 251-266, 2015.

[82] Y. Yanfang, W. Dingding, L. Tao, Y.

Dongyi and J. Qingshan, “An intelligent
PE-malware detection system based on
association mining”, Journal in comput-
er virology, vol. 4, pp. 323-334, 2008.

[83] B. Michael, O. Jon, A. Jon, M. Z.
Morley, J. Farnam and N. Jose, “Auto-
mated classification and analysis of
internet malware”, Recent Advances in
Intrusion Detection: 10th International
Symposium, RAID, vol. 10, pp.
178-197, 2007.

[84] R. Konrad, T. Philipp, W. Carsten and H.
Thorsten, “Automatic analysis of
malware behavior using machine learn-
ing”, Journal of Computer Security, vol.
19, no.4, pp. 639-668, 2011.

[85] V. Mihai, G. Laura and T. Nicolae,
“Practical malware analysis based on
sandboxing”, Ro Edu Net Conference
13th Edition: Networking in Education
and Research Joint Event RENAM 8th
Conference, IEEE, pp. 1-6, 2014.

[86] H. Jozsef, M. Yoan, I. Alexander and L.
Amaury, “Methodology for behavior-
al-based malware analysis and detection
using random projections and k-nearest
neighbors classifiers”, International
Conference on Computational Intelli-
gence and Security, IEEE, pp.
1016-1023, 2011.

[87] G. Mahboobe, S. Ashkan and S. Zahra,
“Dynamic VSA: a framework for
malware detection based on register
contents”, Engineering Applications of
Artificial Intelligence, vol. 44, pp.
111-122, 2015.

[88] P. Zhi-Peng, F. Chao and T. Chao-Jing,
“Malware classification based on the
behavior analysis and back propagation
neural network”. In ITM Web of Confer-
ences, EDP Sciences, vol.7, pp. 20-28,

Nov. 2016.

[89] H. Shamsul, M. Suruz, H. M. Mehedi, I.
Rafiqul, Y. John, A. Majed and A.
Ahmad, “Defending unknown attacks
on cyber-physical systems by semi-su-
pervised approach and available
unlabeled data”, Information Sciences,
vol. 379, pp. 211-228, 2017.

[90] M. Fahad, H. Wei and B. Antony,
“Novel malware detection methods by
using LCS and LCSS”, 22nd Interna-
tional Conference on Automation and
Computing (ICAC), IEEE, pp. 554-559,
2016.

[91] H. Eduardo, M. Rubén S and L. Ignacio
M, “Evaluating the reliability of compu-
tational grids from the end user’s point
of view”, Journal of Systems Architec-
ture, vol. 52, no. 12, pp. 727-736, 2006.

[92] N. B. Narayanan, D. Ouboti and K.
Temesguen, “Performance analysis of
machine learning and pattern recogni-
tion algorithms for malware classifica-
tion”, IEEE national aerospace and
electronics conference (NAECON) and
ohio innovation summit (OIS), IEEE,
pp. 338-342, 2016.

[93] C. In Kyeom, K. T. Guen, S. Y. Jin, R.
Minsoo and I. E. Gyu, “Malware analy-
sis and classification using sequence
alignments”, Intelligent Automation and
Soft Computing, vol. 22, no.3, pp.
371-377, 2016.

[94] M. Jiang, X. Zhi, L. Pengwei, W. Ding-
hao, L. Peng and M. Bing, “Impeding
behavior-based malware analysis via
replacement attacks to malware specifi-
cations”, Journal of Computer Virology
and Hacking Techniques, vol. 13,
pp.193-207, 2017.

[95] W. Markus, R. Alexander, T. Niklas and

A. Wolfgang, “A knowledge-assisted
visual malware analysis system: Design,
validation, and reflection of KAMAS”,
Computers and Security, vol. 67, pp.
1-15, 2017.

[96] N. Stavros D and P, Iosif, “A
graph-based model for malware detec-
tion and classification using system-call
groups”, Journal of Computer Virology
and Hacking Techniques, vol. 13, no.1,
pp. 29-46, 2017.

[97] L. Quan, B. Oisin, M. N. Brian and S.
Mark, “Deep learning at the shallow
end: Malware classification for non-do-
main experts”, Digital Investigation,
vol. 26, pp. S118-S126, 2018.

[98] P. Abdurrahman and A. Tankut, “Classi-
fication of malware families based on
runtime behaviors”, Journal of informa-
tion security and applications, vol. 37,
pp. 91-100, 2017.

[99] S. Jan, P. Tomás and R. Martin, “Multi-
ple instance learning for malware classi-
fication”, Expert Systems with Applica-
tions, vol. 93, pp. 346-357, 2018.

[100] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

 [101] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

[102] X. Lu, F. Jiang, X. Zhou, S. Yi and J. Sha
and L. Pietro, “ASSCA: API sequence

and statistics features combined archi-
tecture for malware detection”, Comput-
er Networks, vol. 157, pp. 99-111,
2019.

[103] D. Arivudainambi, K.A. Varun Kumar
and P. Visu, “Malware traffic classifica-
tion using principal component analysis
and artificial neural network for extreme
surveillance”, Computer Communica-
tions, vol. 147, pp. 50-57, 2019.

[104] Y. Cagatay and K. Ahmet, “Imaging and
evaluating the memory access for
malware”, Forensic Science Internation-
al: Digital Investigation, vol. 32, pp.
20-27, 2020.

[105] R. Mahdi, W. Yong Li, K. Reza, J.
Hamed, Z. Ruxin and H. Peng, “A
hybrid machine learning approach for
malicious behaviour detection and
recognition in cloud computing”,
Journal of Network and Computer
Applications, vol. 151, pp. 12-19, 2020.

[106] E. A. Ahmed E, M. M. Aizaini, B.
Bazara- IA and H. Hentabli, “Enhancing
the detection of metamorphic malware
using call graphs”, Computers and Secu-
rity, vol. 46, pp. 62-78, 2014.

[107] R. Jesse C, K. Roger I, L. Scott M and C.
Robert K, “Detection of injected,
dynamically generated, and obfuscated
malicious code”, ACM workshop on
Rapid malcode, pp. 76-82, 2003.

[108] C. Michael, “A protocol graph based
anomaly detection system”, Doctoral
dissertation, Carnegie Mellon Universi-
ty, 2008.

[109] M. R. Jose and D. J. Cesar, “Integrating
static and dynamic malware analysis
using machine learning”, IEEE Latin
America Transactions, vol. 13, no. 9, pp.
3080-3087, 2015.

[110] S. PV and S. AJPCS, “Integrated static
and dynamic analysis for malware
detection”, Procedia Computer Science,
vol. 46, pp. 804-811, 2015.

[111] E. E. Inang, B. Chafika, A. Ameer and
W. Paul, “Analysis of malware
behaviour: Using data mining clustering
techniques to support forensics investi-
gation”, Fifth Cybercrime and Trust-
worthy Computing Conference, IEEE,
pp. 54-63, 2014.

[112] W. Ahsan, I. Azhar, L. Jahanzaib, N.
Ahsan and B. Anas, “A novel approach
of unprivileged keylogger detection”,
2nd International Conference on Com-
puting, Mathematics and Engineering
Technologies (iCoMET), IEEE, pp. 1-6,
2019.

[113] N. Mohammad, A. Nouman and Y. Jing
Tao, “A three-way decision making
approach to malware analysis using
probabilistic rough sets”, Information
Sciences, vol. 37, no. 4, pp. 193-209,
2016.

[114] N. Mohammad, A. Nouman and Y. Jing
Tao, “Detecting malware evolution
using support vector machines”, Expert
Systems with Applications, vol. 143, pp.
113022, 2020.

[115] P. Avi, R. Brian, K. Lee, H. Michael, C.
Catherine, O. Alison, T. Glenn, R. S.
Neal, P. Terry, and T. Jason, “Artificial
intelligence based malware analysis”,
arXiv preprint, pp.16-23, 2017.

[116] H. Shamsul, I. Rafiqul, A. Jemal, Y.
John, H. M. Mehedi and F. Giancarlo,
“A hybrid-multi filter-wrapper frame-
work to identify run-time behaviour for
fast malware detection”, Future Genera-
tion Computer Systems, vol. 1, no. 83,
pp. 193-207, 2018.

[117] S. Robert, X. Lifan, K. William, V.
Tristan, F. Teague, H. John, P. Zachary,
S. Corey, S. Joshua and C. John, “Paral-
lelization of machine learning applied to
call graphs of binaries for malware
detection”, 25th Euromicro International
Conference on Parallel, Distributed and
Network-based Processing (PDP),
IEEE, pp. 69-77, 2017.

[118] K. Youngjoon, K. Eunjin and K. Huy
Kang, “A novel approach to detect
malware based on API call sequence
analysis”, International Journal of
Distributed Sensor Networks, vol. 11,
no.6, pp. 659101, 2015.

[119] M. Weixuan, C. Zhongmin, T. Don, F.
Qian and G. Xiaohong, “Security impor-
tance assessment for system objects and
malware detection”, Computers and
Security, vol. 68, pp. 47-68, 2017.

[120] O. Philip, S. Sezer, and K. McLaughlin,
“Detecting obfuscated malware using
reduced opcode set and optimised
runtime trace”, Security Informatics,
vol. 5, pp. 1-12, 2016.

[121] D. Anusha, T. Fabio Di, V. C. Aaron, A.
Thomas H and S. Mark, “A comparison
of static, dynamic, and hybrid analysis
for malware detection”, Journal of Com-
puter Virology and Hacking Techniques,
vol. 13, pp. 1-12, 2017.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

7. CONCLUSION

This study helps to identify malwares using
runtime characteristics. It provides the knowl-
edge fraction for harmful software analysis and
detection procedures through machine learning
algorithms. Malware is now well-known to be
highly sophisticated and rapidly changing.
Today, it is not only used to disturb users, steal
information, and destroy user data but also to
enforce its objectives for businesses and
nations. The protection of data and resources is
a key component in information technology.
This is essential because computers or embed-
ded digital devices in every area are utilized to
execute activities more quickly and precisely
without human involvement. The computer

system is more susceptible to hacking because
of its wide range of applications. This study
covers the development of malware, present
status, and techniques of detection. Two
malware analysis techniques exist signature
based, and behavior based. Signature-based
technology has two major flaws that must be
addressed. For the time being, signature-based
techniques will not be able to identify new or
previously unknown malware. Second, different
types of malwares may readily outwit the
system's detection mechanisms. Behavior-based
technique can identify new variants of malware,
dynamic techniques in malware-based methods
are more robust than signature-based methods.
The actual application of dynamic methods
nevertheless remains rigid and time-intensive,
whereas signature technology is quicker and

more efficacious than dynamic techniques in
identifying known malware. We spoke about
malware methods that were suggested for
machine learning to train the classification of
malware in this research. This is because it
includes a huge number of algorithms that may
be used for a variety of malware features. In
addition to its accessibility, machine learning
algorithms provide many benefits over conven-
tional malware classifications, such as the
capacity to get information from file samples,
rapidly detect, unexpected changes, and
minimize the human work and time spent
analyzing malware. In this article, malware
detection methods are classified according to
analytical methodologies such as static, dynam-
ic, and hybrid techniques. Each method has
advantages and disadvantages. These methods,
however, produced encouraging results in the
categorization of malware in a certain scenario.
For example, static methods are quicker, with a
reduced false-positive rate, but it is difficult to
cope with the obfuscation technique while
collecting static characteristics. In this respect,
on the contrary, dynamic methods offer a
beneficial although implementation in real-time
is inconvenient. Finally, we addressed the
two-layer malware detection framework with
static and dynamic functions that can effectively
and reliably detect the new and known malware.

REFERENCES

[1] H. Weijie, X. Jingfeng, W. Yong, H.
Lu, K. Zixiao and M. Limin, “MalDAE:
Detecting and explaining malware
based on correlation and fusion of static
and dynamic characteristics”, Comput-
ers and Security, vol. 83, pp. 208-233,
2019.

[2] B. Pete, F. Richard, T. Frederick and J.

Kevin, “Malware classification using
self organising feature maps and
machine activity data”, Computers and
Security, vol. 73, pp. 399-410, 2018.

[3] N. Usha, T. F. Di, C. V. Aaron, A.
Thomas and S. Mark, “Clustering versus
SVM for malware detection”, Journal of
Computer Virology and Hacking
Techniques, vol. 12, pp. 213-224, 2016.

[4] J. A. Namavar, H. Sattar, D. Ali and C.
R. Kim kwang, “An improved two-hid-
den-layer extreme learning machine for
malware hunting”, Computers and Secu-
rity, vol. 89, pp. 10-16, 2020.

[5] F. Massimo and P. F. Leaf, “An
open-source cybersecurity training
platform for realistic edge-IoT scenari-
os”, Journal of Systems Architecture,
vol. 97, pp. 107-129, 2020.

[6] K. Afreen, Z. Swaleha and Al. S.
Muaadhabdo, “An improved pre-pro-
cessing machine learning approach for
cross-sectional imaging of demented
older adults”, International Conference
of Intelligent Computing and Engineer-
ing (ICOICE), IEEE, pp. 1-7, 2019.

[7] P. Jakub, N. Q. Anh, B. Adrian, G.
Jonathan and L. Y. Kubo, “a framework
for automated efficacy testing of anti-vi-
rus behavioral detection with proce-
dure-based malware emulation”, In
Proceedings of the 13th International
Workshop on Automating Test Case
Design, Selection and Evaluation, pp.
37-44, 2022.

[8] B. Andrew, “How deception can change
cyber security defenses”, Computer
Fraud & Security, vol.5, no.1, pp. 12-14,
2019.

 [9] G. Ekta, B. Divya and S. Sanjeev, “Mal-
ware analysis and classification: A

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

41Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

survey”, Journal of Information Securi-
ty, vol. 6, 2014.

[10] M. S. Mariam, S. M. Ali, Z. Si-Jing and
Y. Hong-Ji, “Conceivable security risks
and authentication techniques for smart
devices: A comparative evaluation of
security practices”, International journal
of Automation and Computing, vol. 13,
pp. 350-363, 2016.

[11] B. Kang, F. Liu, Z. Yun and Y. Liang,
“Design of an Internet of Things-based
smart home system”, International
Conference on Intelligent Control and
Information Processing, IEEE, vol. 2,
pp. 921-924, 2011.

[12] A. Shahid, H, R. Nigel, T. Issa and S.
Ibrahim, “A framework for metamor-
phic malware analysis and real-time
detection”, Computers and Security, vol.
48, pp. 212-233, 2015.

[13] H. Xin, “Large-scale malware analysis,
detection, and signature generation”,
Doctoral dissertation, University of
Michigan, 2011.

[14] R. Kalpika, A. R. Vasudevan, “Detection
of Zeus Bot Based on Host and Network
Activities”, Communications in Com-
puter and Information Science, vol. 746,
pp. 978-981, 2017.

[15] E. Nabeil, E. Rashad, H. Alzubair and L.
Fagen, “A blockchain-based
attribute-based signcryption scheme to
secure data sharing in the cloud”,
Journal of Systems Architecture, vol.
102, pp. 10-16, 2020.

[16] J. Daehee, J. Yunjong , L Sungman , P.
Minjoon, K. Kuenhwan , K. Donguk and
K. B. Byunghoon, “Rethinking anti-em-
ulation techniques for large-scale
software deployment”, Computers and
Security, vol. 83, pp. 182-200, 2019.

[17] M. Samaneh and G. Ali A, “Application
of deep learning to cybersecurity: A
survey”, Neurocomputing, vol. 347, pp.
149-176, 2019.

[18] Z. Weizhe, W. Huanran, H. Hui and L.
Peng,” DAMBA: detecting android
malware by ORGB analysis”, IEEE
Transactions on Reliability, vol.69, no.1,
pp. 55-69, 2020.

[19] L. Liu, W. Bao-sheng, Y. Bo and Z.
Qiu-xi, “Automatic malware classifica-
tion and new malware detection using
machine learning”, Frontiers of Infor-
mation Technology & Electronic
Engineering, vol. 18, no. 9, pp.
1336-1347, 2017.

[20] K. Ratinder and M. Singh, “Hybrid
real-time zero-day malware analysis and
reporting system”, International Journal
of Information Technology and Comput-
er Sciences, vol. 8, pp. 63-73, 2016.

[21] M. Jelena, M. Miroslaw and F. Alberto,
“Time, accuracy and power consump-
tion tradeoff in mobile malware detec-
tion systems”, Computers and Security,
vol. 82, pp. 314-328, 2019.

[22] S. Hudan, S. Ferdous and P. Christian,
“A survey on forensic investigation of
operating system logs”, Digital Investi-
gation, vol. 29, pp. 1-20, 2019.

[23] N. Bruce, K. K. Hwan, K. Y. Jin, K.H.
Ho, K. T. Yong and L. H. Jae,
“Cross-method-based analysis and
classification of malicious behavior by
api calls extraction”, Applied Sciences,
vol. 9, no.2, pp. 239, 2019.

[24] Z. Hanqi, X. Xi, M. Francesco, N.
Shiguang, M. Fabio and S. A. Kumar,
“Classification of ransomware families
with machine learning based on N-gram
of opcodes”, Future Generation Com-

puter Systems, vol. 90, pp. 211-221,
2019.

[25] N. Jose, P. Araujo, P. Donald M and R.
C. Ghedini, “MULTS: A multi-cloud
fault-tolerant architecture to manage
transient servers in cloud computing”,
Journal of Systems Architecture, vol.
101, pp. 101-108, 2019.

[26] R. Veeramani and R. Nitin, “Windows
api based malware detection and frame-
work analysis”, In International Confer-
ence on Networks and Cyber Security,
vol. 25, 2012.

[27] C. Mihai, J. Somesh, K. Johannes, K.
Stefan and V. Helmut, “Software trans-
formations to improve malware detec-
tion”, Journal in Computer Virology,
vol. 3, pp. 253-265, 2007.

[28] O. Yoshihiro, “Trends of anti-analysis
operations of malwares observed in API
call logs”, Journal of Computer Virology
and Hacking Techniques, vol. 14, no. 1,
pp. 69-85, 2018.

[29] C. Sibi S and V. V. Sangeetha, “A survey
on malware analysis and mitigation
techniques”, Computer Science Review,
vol. 32, pp. 1-23, 2019.

[30] D. Jaime, S. Igor, C. Xabier, P. Yoseba K
and B. Pablo G, “Automatic
behaviour-based analysis and classifica-
tion system for malware detection”,
International Conference on Enterprise
Information Systems, vol. 2, pp.
395-399, 2010.

[31] D. Yuxin, X. Xiaoling, C. Sheng and L.
Ye, “A malware detection method based
on family behavior graph”, Computers
and Security, vol. 73, pp. 73-86, 2018.

[32] S. Jagsir and S. Jaswinder, “A survey on
machine learning-based malware detec-

tion in executable files”, Journal of
Systems Architecture, vol. 112, pp.
10-18, 2021.

[33] R. Anusmita and N. Asoke, “Introduc-
tion to Malware and Malware Analysis:
A brief overview”, International Journal,
vol. 4, no.10, 2016.

[34] W. Huanran, H. Hui and Z. Weizhe,
“Demadroid: Object reference
graph-based malware detection in
Android”, Security and Communication
Networks, vol. 2018, 2018.

[35] B. Tao, T. Takeshi, G. Shanqing, I.
Daisuke and N. Koji, “Integration of
multi-modal features for android
malware detection using linear SVM”,
In 2016 11th Asia Joint Conference on
Information Security (Asia JCIS), IEEE,
pp. 141-146, 2016.

[36] B. Ulrich, K. Engin and K. Christopher,
“Improving the efficiency of dynamic
malware analysis”, In Proceedings of the
2010 ACM Symposium on Applied
Computing, pp. 1871-1878, 2010.

[37] W. Gerard, S. Radu and D. Alexandre,
“Malware behaviour analysis”, Journal
in Computer Virology, vol. 4, pp.
279-287, 2008.

[38] M. Asit and T. Shashikala, “Virtual
machine introspection: towards bridging
the semantic gap”, Journal of Cloud
Computing, vol. 3, no.1, pp. 1-14, 2014.

[39] V. Jiri and P. Martin, “Virtualization of
operating system using type-2 Hypervi-
sor”, In Software Engineering Perspec-
tives and Application in Intelligent
Systems: Proceedings of the 5th Com-
puter Science On-line Conference 2016
(CSOC2016), Springer International
Publishing, vol. 25, pp. 239-247, 2016.

[40] M. Andreas, K. Christopher and K.
Engin, “Exploring multiple execution
paths for malware analysis”, In 2007
IEEE Symposium on Security and
Privacy (SP'07), IEEE, pp.231-245,
2007.

[41] K. Bojan, Z. Apostolis, L. Tamas, W.
George and E. Claudia, “Adaptive
semantics-aware malware classifica-
tion”, In Detection of Intrusions and
Malware, and Vulnerability Assessment:
13th International Conference, DIMVA
2016, San Sebastián, Spain, Springer
International Publishing, vol. 13, pp.
419-439, 2016.

[42] R. Edward, Z. Richard, C. Russell, S.
Jared, Y. Paul, W. Rebecca, T. Anna, M.
Mark and N. Charles, “An investigation
of byte n-gram features for malware
classification”, Journal of Computer
Virology and Hacking Techniques, vol.
14, pp. 1-20, 2018.

[43] M. Zane and B. Michael, “Building a
machine learning classifier for malware
detection”, In 2014 second workshop on
anti-malware testing research (Water),
IEEE, pp. 1-4, 2014.

[44] S. Michael and H. Andrew, “A Practical
malware analysis: the hands-on guide to
dissecting malicious software”. Starch
Press, 2012.

[45] W. Tzu-Yen and W. Chin-Hsiung,
“Detection of packed executables using
support vector machines”, International
Conference on Machine Learning and
Cybernetics, IEEE, vol. 2, pp. 717-722,
2011.

[46] A. Satheesh and R. Kumaravelu, “A
mathematical model of HMST model on
malware static analysis”, International
Journal of Information Security and

Privacy, vol. 13, no. 2, pp. 86-103, 2019.

[47] A. Imad and L. Saiida, “A new classifi-
cation based model for malicious PE
files detection”, International Journal of
Computer Network and Information
Security, vol. 9, no.6, pp.1-7, 2019.

[48] L. Michael, A. Steven, H. Blake, R.
Matthew, “Malware Analyst's Cookbook
and DVD”, Wiley Publishing, 2011.

[49] L. Xiaojing, Y. Kan, W. XiaoFeng, L.
Zhou, X. Luyi and B. Raheem, “Acing
the ioc game: Toward automatic discov-
ery and analysis of open-source cyber
threat intelligence”, ACM SIGSAC
conference on computer and communi-
cations security, pp. 755-766, 2016.

[50] S. Sebastian and K. Stefan, “Code
obfuscation against static and dynamic
reverse engineering”, In Information
Hiding: 13th International Conference,
IH 2011, Prague, Czech Republic,
Revised Selected Papers, Springer
Berlin Heidelberg, vol. 13, pp. 270-284,
2011.

[51] C. Michael , “Scanning memory with
Yara”, Digital Investigation, vol. 20, pp.
34-38, 2017.

[52] S. Nikolaos, B. Chafika, A. Omar and A.
Ameer, “Forensic malware analysis: The
value of fuzzy hashing algorithms in
identifying similarities”, IEEE Trust-
com/ Big Data SE/ ISPA, IEEE, pp.
1782-1787, 2016.

[53] K. Abhishek, G. Suchandra and G.
Ratan, “Detecting obfuscated viruses
using cosine similarity analysis”, Asia
International Conference on Modelling
and Simulation (AMS'07), IEEE, pp.
165-170, 2007.

[54] B. Danilo, M. Lorenzo, M. Mattia,

“Code normalization for self-mutating
malware”, IEEE Security and Privacy,
vol. 5, no.2, pp. 46-54, 2007.

[55] Z. Boyun, Y. Jianping, H. Jingbo, Z.
Dingxing and W. Shulin, “Malicious
codes detection based on ensemble
learning”, In Autonomic and Trusted
Computing: 4th International Confer-
ence, ATC 2007, Hong Kong, China,
July 11-13, 2007. Proceedings 4, Spring-
er Berlin Heidelberg, pp. 468-477,
2007.

[56] M. Robert, F. Clint, T. Nir, B. Eugene,
G. Marina, D. Shlomi and E. Yuval,
“Unknown malcode detection using
opcode representation”, In Intelligence
and Security Informatics: First European
Conference, Euro ISI 2008, Esbjerg,
Denmark, Proceedings, Springer Berlin
Heidelberg, pp. 204-215, 2008.

[57] B. S. Mojtaba, J. Saeed and T. Asghar,
“PbMMD: A novel policy based
multi-process malware detection”,
Engineering Applications of Artificial
Intelligence, vol. 60, pp. 57-70, 2017.

[58] N. Vivens, X. Zhifeng, M. V. Rao, M. Ke
and X. Yang, “Network forensics analy-
sis using Wireshark”, International
Journal of Security and Networks, vol.
10, no.2, pp. 91-106, 2015.

[59] H. Nazrul, B. Monowar H, B. Ram
Charan, B. Dhruba K and K. Jugal K,
“Network attacks: Taxonomy, tools and
systems”, Journal of Network and Com-
puter Applications, vol. 40, pp. 307-324,
2014.

[60] E. Eldad, “Reversing: secrets of reverse
engineering”, John Wiley & Sons, 2011.

[61] G. Daniel, M. Carles and P. Jordi, “The
rise of machine learning for detection
and classification of malware: Research

developments, trends and challenges”,
Journal of Network and Computer
Applications, vol. 153, pp. 102526,
2020.

[62] R. Chathuranga and J. Aruna, “An
efficient approach for advanced
malware analysis using memory foren-
sic technique”, In 2017 IEEE Trustcom/
Big Data SE/ ICESS, IEEE, pp.
1145-1150, 2017.

[63] K. Ilker, “A basic malware analysis
method”, Computer Fraud and Security,
vol. 2019, no. 6, pp. 11-19, 2019.

[64] K. Joakim, “Fundamentals of Digital
Forensics”, Springer International
Publishing, 2020.

[65] P. Radu, H. Steven, L. Thor, S. Matija, P.
Jens and C. Alexandre, “Analysis of
malware behavior: Type classification
using machine learning”, International
conference on cyber situational aware-
ness, data analytics and assessment
(Cyber SA), IEEE, pp. 1-7, 2015.

[66] A. Omer and S. Refik, “Investigation of
possibilities to detect malware using
existing tools”, 14th International
Conference on Computer Systems and
Applications. IEEE, pp. 1277-1284,
2017.

[67] M. Q. Ali, A. Irfan and Y. Muhammad,
“Cloud Intell: An intelligent malware
detection system”, Future Generation
Computer Systems, vol. 86, pp.
1042-1053, 2018.

[68] G. Kent, S. Scott, H. Xin and C. Tzi-ck-
er, “Automatic generation of string
signatures for malware detection”,
Recent Advances in Intrusion Detection:
12th International Symposium, RAID
2009, Saint-Malo, France, Proceedings,
Springer Berlin Heidelberg, vol. 12, pp.

101-120, 2009.

[69] G. Dragoş, C. Mihai, A. Dan and C.
Liviu, “Malware detection using
machine learning”, International multi-
conference on computer science and
information technology, IEEE, pp.
735-741, 2009.

[70] B. Philippe, G. Isabelle and M. Jean-Yves,
“Behavior abstraction in malware analy-
sis”, In Runtime Verification: First
International Conference, RV 2010,
Proceedings, Springer Berlin Heidel-
berg, vol. 1, pp. 168-182, 2010.

[71] C. Sang Kil, M. Iulian, J. Jiyong, T.
John, B. David and A. David G, “Split
Screen: Enabling efficient, distributed
malware detection”, Journal of Commu-
nications and Networks, vol. 13, no.2,
pp. 187-200, 2011.

[72] S. Asaf, M, Robert, F. Clint, D. Shlomi
and E. Yuval, “Detecting unknown
malicious code by applying classifica-
tion techniques on opcode patterns”,
Security Informatics, vol. 1, no.1, pp.
1-22, 2012.

[73] S. Asaf, M. Robert, E. Yuval and G.
Chanan, “Detection of malicious code
by applying machine learning classifiers
on static features: A state-of-the-art
survey”, Information Security Technical
Report, vol. 14, no.1, pp. 16-29, 2009.

[74] E. A. Ahmed E, M. M. Aizaini and B.
Bazara, “Improving the detection of
malware behaviour using simplified data
dependent API call graph”, International
Journal of Security and its Applications,
vol. 7, no. 5, pp. 29-42, 2013.

[75] P. Bassir, J. M. Vafaie and J. Mehrdad,
“Malware detection using hidden
Markov model based on Markov blanket
feature selection method”. International

congress on technology, communication
and knowledge, IEEE, pp. 558-563,
2015.

[76] S. Nedim and L. Pavel, “Hidost: a static
machine-learning-based detector of
malicious files”. EURASIP Journal on
Information Security, vol. 2016, pp.
1-20, 2016.

[77] K. Dong Hee, W. Sang Uk, L. Dong Kyu
and C. Tai Myoung, “Static detection of
malware and benign executable using
machine learning algorithm”. Eighth
International Conference on Evolving
Internet, pp. 14-19, 2016.

[78] H. Shamsul, A. Jemal, A. Mamoun, A.
Mali, I. Rafiqul and Y. John, “Hybrids of
support vector machine wrapper and
filter based framework for malware
detection”. Future Generation Computer
Systems, vol. 55, pp. 376-390, 2016.

[79] N. Yuta and U. Ryuya, “Static analysis
with paragraph vector for malware
detection”. In Proceedings of the 11th
International Conference on Ubiquitous
Information Management and Commu-
nication, pp. 1-7, 2017.

[80] W. Cheng, Q. Zheng, Z. Jixin and Y.
Hui, “A malware variants detection
methodology with an opcode based
feature method and a fast density based
clustering algorithm”. 12th International
Conference on Natural Computation,
Fuzzy Systems and Knowledge Discov-
ery (ICNC-FSKD), IEEE, pp. 481-487,
2016.

[81] M. Aziz, A. Omar and M. Manar,
“AMAL: high-fidelity, behavior-based
automated malware analysis and classi-
fication”. Computers and Security, vol.
52, pp. 251-266, 2015.

[82] Y. Yanfang, W. Dingding, L. Tao, Y.

Dongyi and J. Qingshan, “An intelligent
PE-malware detection system based on
association mining”, Journal in comput-
er virology, vol. 4, pp. 323-334, 2008.

[83] B. Michael, O. Jon, A. Jon, M. Z.
Morley, J. Farnam and N. Jose, “Auto-
mated classification and analysis of
internet malware”, Recent Advances in
Intrusion Detection: 10th International
Symposium, RAID, vol. 10, pp.
178-197, 2007.

[84] R. Konrad, T. Philipp, W. Carsten and H.
Thorsten, “Automatic analysis of
malware behavior using machine learn-
ing”, Journal of Computer Security, vol.
19, no.4, pp. 639-668, 2011.

[85] V. Mihai, G. Laura and T. Nicolae,
“Practical malware analysis based on
sandboxing”, Ro Edu Net Conference
13th Edition: Networking in Education
and Research Joint Event RENAM 8th
Conference, IEEE, pp. 1-6, 2014.

[86] H. Jozsef, M. Yoan, I. Alexander and L.
Amaury, “Methodology for behavior-
al-based malware analysis and detection
using random projections and k-nearest
neighbors classifiers”, International
Conference on Computational Intelli-
gence and Security, IEEE, pp.
1016-1023, 2011.

[87] G. Mahboobe, S. Ashkan and S. Zahra,
“Dynamic VSA: a framework for
malware detection based on register
contents”, Engineering Applications of
Artificial Intelligence, vol. 44, pp.
111-122, 2015.

[88] P. Zhi-Peng, F. Chao and T. Chao-Jing,
“Malware classification based on the
behavior analysis and back propagation
neural network”. In ITM Web of Confer-
ences, EDP Sciences, vol.7, pp. 20-28,

Nov. 2016.

[89] H. Shamsul, M. Suruz, H. M. Mehedi, I.
Rafiqul, Y. John, A. Majed and A.
Ahmad, “Defending unknown attacks
on cyber-physical systems by semi-su-
pervised approach and available
unlabeled data”, Information Sciences,
vol. 379, pp. 211-228, 2017.

[90] M. Fahad, H. Wei and B. Antony,
“Novel malware detection methods by
using LCS and LCSS”, 22nd Interna-
tional Conference on Automation and
Computing (ICAC), IEEE, pp. 554-559,
2016.

[91] H. Eduardo, M. Rubén S and L. Ignacio
M, “Evaluating the reliability of compu-
tational grids from the end user’s point
of view”, Journal of Systems Architec-
ture, vol. 52, no. 12, pp. 727-736, 2006.

[92] N. B. Narayanan, D. Ouboti and K.
Temesguen, “Performance analysis of
machine learning and pattern recogni-
tion algorithms for malware classifica-
tion”, IEEE national aerospace and
electronics conference (NAECON) and
ohio innovation summit (OIS), IEEE,
pp. 338-342, 2016.

[93] C. In Kyeom, K. T. Guen, S. Y. Jin, R.
Minsoo and I. E. Gyu, “Malware analy-
sis and classification using sequence
alignments”, Intelligent Automation and
Soft Computing, vol. 22, no.3, pp.
371-377, 2016.

[94] M. Jiang, X. Zhi, L. Pengwei, W. Ding-
hao, L. Peng and M. Bing, “Impeding
behavior-based malware analysis via
replacement attacks to malware specifi-
cations”, Journal of Computer Virology
and Hacking Techniques, vol. 13,
pp.193-207, 2017.

[95] W. Markus, R. Alexander, T. Niklas and

A. Wolfgang, “A knowledge-assisted
visual malware analysis system: Design,
validation, and reflection of KAMAS”,
Computers and Security, vol. 67, pp.
1-15, 2017.

[96] N. Stavros D and P, Iosif, “A
graph-based model for malware detec-
tion and classification using system-call
groups”, Journal of Computer Virology
and Hacking Techniques, vol. 13, no.1,
pp. 29-46, 2017.

[97] L. Quan, B. Oisin, M. N. Brian and S.
Mark, “Deep learning at the shallow
end: Malware classification for non-do-
main experts”, Digital Investigation,
vol. 26, pp. S118-S126, 2018.

[98] P. Abdurrahman and A. Tankut, “Classi-
fication of malware families based on
runtime behaviors”, Journal of informa-
tion security and applications, vol. 37,
pp. 91-100, 2017.

[99] S. Jan, P. Tomás and R. Martin, “Multi-
ple instance learning for malware classi-
fication”, Expert Systems with Applica-
tions, vol. 93, pp. 346-357, 2018.

[100] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

 [101] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

[102] X. Lu, F. Jiang, X. Zhou, S. Yi and J. Sha
and L. Pietro, “ASSCA: API sequence

and statistics features combined archi-
tecture for malware detection”, Comput-
er Networks, vol. 157, pp. 99-111,
2019.

[103] D. Arivudainambi, K.A. Varun Kumar
and P. Visu, “Malware traffic classifica-
tion using principal component analysis
and artificial neural network for extreme
surveillance”, Computer Communica-
tions, vol. 147, pp. 50-57, 2019.

[104] Y. Cagatay and K. Ahmet, “Imaging and
evaluating the memory access for
malware”, Forensic Science Internation-
al: Digital Investigation, vol. 32, pp.
20-27, 2020.

[105] R. Mahdi, W. Yong Li, K. Reza, J.
Hamed, Z. Ruxin and H. Peng, “A
hybrid machine learning approach for
malicious behaviour detection and
recognition in cloud computing”,
Journal of Network and Computer
Applications, vol. 151, pp. 12-19, 2020.

[106] E. A. Ahmed E, M. M. Aizaini, B.
Bazara- IA and H. Hentabli, “Enhancing
the detection of metamorphic malware
using call graphs”, Computers and Secu-
rity, vol. 46, pp. 62-78, 2014.

[107] R. Jesse C, K. Roger I, L. Scott M and C.
Robert K, “Detection of injected,
dynamically generated, and obfuscated
malicious code”, ACM workshop on
Rapid malcode, pp. 76-82, 2003.

[108] C. Michael, “A protocol graph based
anomaly detection system”, Doctoral
dissertation, Carnegie Mellon Universi-
ty, 2008.

[109] M. R. Jose and D. J. Cesar, “Integrating
static and dynamic malware analysis
using machine learning”, IEEE Latin
America Transactions, vol. 13, no. 9, pp.
3080-3087, 2015.

[110] S. PV and S. AJPCS, “Integrated static
and dynamic analysis for malware
detection”, Procedia Computer Science,
vol. 46, pp. 804-811, 2015.

[111] E. E. Inang, B. Chafika, A. Ameer and
W. Paul, “Analysis of malware
behaviour: Using data mining clustering
techniques to support forensics investi-
gation”, Fifth Cybercrime and Trust-
worthy Computing Conference, IEEE,
pp. 54-63, 2014.

[112] W. Ahsan, I. Azhar, L. Jahanzaib, N.
Ahsan and B. Anas, “A novel approach
of unprivileged keylogger detection”,
2nd International Conference on Com-
puting, Mathematics and Engineering
Technologies (iCoMET), IEEE, pp. 1-6,
2019.

[113] N. Mohammad, A. Nouman and Y. Jing
Tao, “A three-way decision making
approach to malware analysis using
probabilistic rough sets”, Information
Sciences, vol. 37, no. 4, pp. 193-209,
2016.

[114] N. Mohammad, A. Nouman and Y. Jing
Tao, “Detecting malware evolution
using support vector machines”, Expert
Systems with Applications, vol. 143, pp.
113022, 2020.

[115] P. Avi, R. Brian, K. Lee, H. Michael, C.
Catherine, O. Alison, T. Glenn, R. S.
Neal, P. Terry, and T. Jason, “Artificial
intelligence based malware analysis”,
arXiv preprint, pp.16-23, 2017.

[116] H. Shamsul, I. Rafiqul, A. Jemal, Y.
John, H. M. Mehedi and F. Giancarlo,
“A hybrid-multi filter-wrapper frame-
work to identify run-time behaviour for
fast malware detection”, Future Genera-
tion Computer Systems, vol. 1, no. 83,
pp. 193-207, 2018.

[117] S. Robert, X. Lifan, K. William, V.
Tristan, F. Teague, H. John, P. Zachary,
S. Corey, S. Joshua and C. John, “Paral-
lelization of machine learning applied to
call graphs of binaries for malware
detection”, 25th Euromicro International
Conference on Parallel, Distributed and
Network-based Processing (PDP),
IEEE, pp. 69-77, 2017.

[118] K. Youngjoon, K. Eunjin and K. Huy
Kang, “A novel approach to detect
malware based on API call sequence
analysis”, International Journal of
Distributed Sensor Networks, vol. 11,
no.6, pp. 659101, 2015.

[119] M. Weixuan, C. Zhongmin, T. Don, F.
Qian and G. Xiaohong, “Security impor-
tance assessment for system objects and
malware detection”, Computers and
Security, vol. 68, pp. 47-68, 2017.

[120] O. Philip, S. Sezer, and K. McLaughlin,
“Detecting obfuscated malware using
reduced opcode set and optimised
runtime trace”, Security Informatics,
vol. 5, pp. 1-12, 2016.

[121] D. Anusha, T. Fabio Di, V. C. Aaron, A.
Thomas H and S. Mark, “A comparison
of static, dynamic, and hybrid analysis
for malware detection”, Journal of Com-
puter Virology and Hacking Techniques,
vol. 13, pp. 1-12, 2017.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

7. CONCLUSION

This study helps to identify malwares using
runtime characteristics. It provides the knowl-
edge fraction for harmful software analysis and
detection procedures through machine learning
algorithms. Malware is now well-known to be
highly sophisticated and rapidly changing.
Today, it is not only used to disturb users, steal
information, and destroy user data but also to
enforce its objectives for businesses and
nations. The protection of data and resources is
a key component in information technology.
This is essential because computers or embed-
ded digital devices in every area are utilized to
execute activities more quickly and precisely
without human involvement. The computer

system is more susceptible to hacking because
of its wide range of applications. This study
covers the development of malware, present
status, and techniques of detection. Two
malware analysis techniques exist signature
based, and behavior based. Signature-based
technology has two major flaws that must be
addressed. For the time being, signature-based
techniques will not be able to identify new or
previously unknown malware. Second, different
types of malwares may readily outwit the
system's detection mechanisms. Behavior-based
technique can identify new variants of malware,
dynamic techniques in malware-based methods
are more robust than signature-based methods.
The actual application of dynamic methods
nevertheless remains rigid and time-intensive,
whereas signature technology is quicker and

more efficacious than dynamic techniques in
identifying known malware. We spoke about
malware methods that were suggested for
machine learning to train the classification of
malware in this research. This is because it
includes a huge number of algorithms that may
be used for a variety of malware features. In
addition to its accessibility, machine learning
algorithms provide many benefits over conven-
tional malware classifications, such as the
capacity to get information from file samples,
rapidly detect, unexpected changes, and
minimize the human work and time spent
analyzing malware. In this article, malware
detection methods are classified according to
analytical methodologies such as static, dynam-
ic, and hybrid techniques. Each method has
advantages and disadvantages. These methods,
however, produced encouraging results in the
categorization of malware in a certain scenario.
For example, static methods are quicker, with a
reduced false-positive rate, but it is difficult to
cope with the obfuscation technique while
collecting static characteristics. In this respect,
on the contrary, dynamic methods offer a
beneficial although implementation in real-time
is inconvenient. Finally, we addressed the
two-layer malware detection framework with
static and dynamic functions that can effectively
and reliably detect the new and known malware.

REFERENCES

[1] H. Weijie, X. Jingfeng, W. Yong, H.
Lu, K. Zixiao and M. Limin, “MalDAE:
Detecting and explaining malware
based on correlation and fusion of static
and dynamic characteristics”, Comput-
ers and Security, vol. 83, pp. 208-233,
2019.

[2] B. Pete, F. Richard, T. Frederick and J.

Kevin, “Malware classification using
self organising feature maps and
machine activity data”, Computers and
Security, vol. 73, pp. 399-410, 2018.

[3] N. Usha, T. F. Di, C. V. Aaron, A.
Thomas and S. Mark, “Clustering versus
SVM for malware detection”, Journal of
Computer Virology and Hacking
Techniques, vol. 12, pp. 213-224, 2016.

[4] J. A. Namavar, H. Sattar, D. Ali and C.
R. Kim kwang, “An improved two-hid-
den-layer extreme learning machine for
malware hunting”, Computers and Secu-
rity, vol. 89, pp. 10-16, 2020.

[5] F. Massimo and P. F. Leaf, “An
open-source cybersecurity training
platform for realistic edge-IoT scenari-
os”, Journal of Systems Architecture,
vol. 97, pp. 107-129, 2020.

[6] K. Afreen, Z. Swaleha and Al. S.
Muaadhabdo, “An improved pre-pro-
cessing machine learning approach for
cross-sectional imaging of demented
older adults”, International Conference
of Intelligent Computing and Engineer-
ing (ICOICE), IEEE, pp. 1-7, 2019.

[7] P. Jakub, N. Q. Anh, B. Adrian, G.
Jonathan and L. Y. Kubo, “a framework
for automated efficacy testing of anti-vi-
rus behavioral detection with proce-
dure-based malware emulation”, In
Proceedings of the 13th International
Workshop on Automating Test Case
Design, Selection and Evaluation, pp.
37-44, 2022.

[8] B. Andrew, “How deception can change
cyber security defenses”, Computer
Fraud & Security, vol.5, no.1, pp. 12-14,
2019.

 [9] G. Ekta, B. Divya and S. Sanjeev, “Mal-
ware analysis and classification: A

survey”, Journal of Information Securi-
ty, vol. 6, 2014.

[10] M. S. Mariam, S. M. Ali, Z. Si-Jing and
Y. Hong-Ji, “Conceivable security risks
and authentication techniques for smart
devices: A comparative evaluation of
security practices”, International journal
of Automation and Computing, vol. 13,
pp. 350-363, 2016.

[11] B. Kang, F. Liu, Z. Yun and Y. Liang,
“Design of an Internet of Things-based
smart home system”, International
Conference on Intelligent Control and
Information Processing, IEEE, vol. 2,
pp. 921-924, 2011.

[12] A. Shahid, H, R. Nigel, T. Issa and S.
Ibrahim, “A framework for metamor-
phic malware analysis and real-time
detection”, Computers and Security, vol.
48, pp. 212-233, 2015.

[13] H. Xin, “Large-scale malware analysis,
detection, and signature generation”,
Doctoral dissertation, University of
Michigan, 2011.

[14] R. Kalpika, A. R. Vasudevan, “Detection
of Zeus Bot Based on Host and Network
Activities”, Communications in Com-
puter and Information Science, vol. 746,
pp. 978-981, 2017.

[15] E. Nabeil, E. Rashad, H. Alzubair and L.
Fagen, “A blockchain-based
attribute-based signcryption scheme to
secure data sharing in the cloud”,
Journal of Systems Architecture, vol.
102, pp. 10-16, 2020.

[16] J. Daehee, J. Yunjong , L Sungman , P.
Minjoon, K. Kuenhwan , K. Donguk and
K. B. Byunghoon, “Rethinking anti-em-
ulation techniques for large-scale
software deployment”, Computers and
Security, vol. 83, pp. 182-200, 2019.

[17] M. Samaneh and G. Ali A, “Application
of deep learning to cybersecurity: A
survey”, Neurocomputing, vol. 347, pp.
149-176, 2019.

[18] Z. Weizhe, W. Huanran, H. Hui and L.
Peng,” DAMBA: detecting android
malware by ORGB analysis”, IEEE
Transactions on Reliability, vol.69, no.1,
pp. 55-69, 2020.

[19] L. Liu, W. Bao-sheng, Y. Bo and Z.
Qiu-xi, “Automatic malware classifica-
tion and new malware detection using
machine learning”, Frontiers of Infor-
mation Technology & Electronic
Engineering, vol. 18, no. 9, pp.
1336-1347, 2017.

[20] K. Ratinder and M. Singh, “Hybrid
real-time zero-day malware analysis and
reporting system”, International Journal
of Information Technology and Comput-
er Sciences, vol. 8, pp. 63-73, 2016.

[21] M. Jelena, M. Miroslaw and F. Alberto,
“Time, accuracy and power consump-
tion tradeoff in mobile malware detec-
tion systems”, Computers and Security,
vol. 82, pp. 314-328, 2019.

[22] S. Hudan, S. Ferdous and P. Christian,
“A survey on forensic investigation of
operating system logs”, Digital Investi-
gation, vol. 29, pp. 1-20, 2019.

[23] N. Bruce, K. K. Hwan, K. Y. Jin, K.H.
Ho, K. T. Yong and L. H. Jae,
“Cross-method-based analysis and
classification of malicious behavior by
api calls extraction”, Applied Sciences,
vol. 9, no.2, pp. 239, 2019.

[24] Z. Hanqi, X. Xi, M. Francesco, N.
Shiguang, M. Fabio and S. A. Kumar,
“Classification of ransomware families
with machine learning based on N-gram
of opcodes”, Future Generation Com-

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

42 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

puter Systems, vol. 90, pp. 211-221,
2019.

[25] N. Jose, P. Araujo, P. Donald M and R.
C. Ghedini, “MULTS: A multi-cloud
fault-tolerant architecture to manage
transient servers in cloud computing”,
Journal of Systems Architecture, vol.
101, pp. 101-108, 2019.

[26] R. Veeramani and R. Nitin, “Windows
api based malware detection and frame-
work analysis”, In International Confer-
ence on Networks and Cyber Security,
vol. 25, 2012.

[27] C. Mihai, J. Somesh, K. Johannes, K.
Stefan and V. Helmut, “Software trans-
formations to improve malware detec-
tion”, Journal in Computer Virology,
vol. 3, pp. 253-265, 2007.

[28] O. Yoshihiro, “Trends of anti-analysis
operations of malwares observed in API
call logs”, Journal of Computer Virology
and Hacking Techniques, vol. 14, no. 1,
pp. 69-85, 2018.

[29] C. Sibi S and V. V. Sangeetha, “A survey
on malware analysis and mitigation
techniques”, Computer Science Review,
vol. 32, pp. 1-23, 2019.

[30] D. Jaime, S. Igor, C. Xabier, P. Yoseba K
and B. Pablo G, “Automatic
behaviour-based analysis and classifica-
tion system for malware detection”,
International Conference on Enterprise
Information Systems, vol. 2, pp.
395-399, 2010.

[31] D. Yuxin, X. Xiaoling, C. Sheng and L.
Ye, “A malware detection method based
on family behavior graph”, Computers
and Security, vol. 73, pp. 73-86, 2018.

[32] S. Jagsir and S. Jaswinder, “A survey on
machine learning-based malware detec-

tion in executable files”, Journal of
Systems Architecture, vol. 112, pp.
10-18, 2021.

[33] R. Anusmita and N. Asoke, “Introduc-
tion to Malware and Malware Analysis:
A brief overview”, International Journal,
vol. 4, no.10, 2016.

[34] W. Huanran, H. Hui and Z. Weizhe,
“Demadroid: Object reference
graph-based malware detection in
Android”, Security and Communication
Networks, vol. 2018, 2018.

[35] B. Tao, T. Takeshi, G. Shanqing, I.
Daisuke and N. Koji, “Integration of
multi-modal features for android
malware detection using linear SVM”,
In 2016 11th Asia Joint Conference on
Information Security (Asia JCIS), IEEE,
pp. 141-146, 2016.

[36] B. Ulrich, K. Engin and K. Christopher,
“Improving the efficiency of dynamic
malware analysis”, In Proceedings of the
2010 ACM Symposium on Applied
Computing, pp. 1871-1878, 2010.

[37] W. Gerard, S. Radu and D. Alexandre,
“Malware behaviour analysis”, Journal
in Computer Virology, vol. 4, pp.
279-287, 2008.

[38] M. Asit and T. Shashikala, “Virtual
machine introspection: towards bridging
the semantic gap”, Journal of Cloud
Computing, vol. 3, no.1, pp. 1-14, 2014.

[39] V. Jiri and P. Martin, “Virtualization of
operating system using type-2 Hypervi-
sor”, In Software Engineering Perspec-
tives and Application in Intelligent
Systems: Proceedings of the 5th Com-
puter Science On-line Conference 2016
(CSOC2016), Springer International
Publishing, vol. 25, pp. 239-247, 2016.

[40] M. Andreas, K. Christopher and K.
Engin, “Exploring multiple execution
paths for malware analysis”, In 2007
IEEE Symposium on Security and
Privacy (SP'07), IEEE, pp.231-245,
2007.

[41] K. Bojan, Z. Apostolis, L. Tamas, W.
George and E. Claudia, “Adaptive
semantics-aware malware classifica-
tion”, In Detection of Intrusions and
Malware, and Vulnerability Assessment:
13th International Conference, DIMVA
2016, San Sebastián, Spain, Springer
International Publishing, vol. 13, pp.
419-439, 2016.

[42] R. Edward, Z. Richard, C. Russell, S.
Jared, Y. Paul, W. Rebecca, T. Anna, M.
Mark and N. Charles, “An investigation
of byte n-gram features for malware
classification”, Journal of Computer
Virology and Hacking Techniques, vol.
14, pp. 1-20, 2018.

[43] M. Zane and B. Michael, “Building a
machine learning classifier for malware
detection”, In 2014 second workshop on
anti-malware testing research (Water),
IEEE, pp. 1-4, 2014.

[44] S. Michael and H. Andrew, “A Practical
malware analysis: the hands-on guide to
dissecting malicious software”. Starch
Press, 2012.

[45] W. Tzu-Yen and W. Chin-Hsiung,
“Detection of packed executables using
support vector machines”, International
Conference on Machine Learning and
Cybernetics, IEEE, vol. 2, pp. 717-722,
2011.

[46] A. Satheesh and R. Kumaravelu, “A
mathematical model of HMST model on
malware static analysis”, International
Journal of Information Security and

Privacy, vol. 13, no. 2, pp. 86-103, 2019.

[47] A. Imad and L. Saiida, “A new classifi-
cation based model for malicious PE
files detection”, International Journal of
Computer Network and Information
Security, vol. 9, no.6, pp.1-7, 2019.

[48] L. Michael, A. Steven, H. Blake, R.
Matthew, “Malware Analyst's Cookbook
and DVD”, Wiley Publishing, 2011.

[49] L. Xiaojing, Y. Kan, W. XiaoFeng, L.
Zhou, X. Luyi and B. Raheem, “Acing
the ioc game: Toward automatic discov-
ery and analysis of open-source cyber
threat intelligence”, ACM SIGSAC
conference on computer and communi-
cations security, pp. 755-766, 2016.

[50] S. Sebastian and K. Stefan, “Code
obfuscation against static and dynamic
reverse engineering”, In Information
Hiding: 13th International Conference,
IH 2011, Prague, Czech Republic,
Revised Selected Papers, Springer
Berlin Heidelberg, vol. 13, pp. 270-284,
2011.

[51] C. Michael , “Scanning memory with
Yara”, Digital Investigation, vol. 20, pp.
34-38, 2017.

[52] S. Nikolaos, B. Chafika, A. Omar and A.
Ameer, “Forensic malware analysis: The
value of fuzzy hashing algorithms in
identifying similarities”, IEEE Trust-
com/ Big Data SE/ ISPA, IEEE, pp.
1782-1787, 2016.

[53] K. Abhishek, G. Suchandra and G.
Ratan, “Detecting obfuscated viruses
using cosine similarity analysis”, Asia
International Conference on Modelling
and Simulation (AMS'07), IEEE, pp.
165-170, 2007.

[54] B. Danilo, M. Lorenzo, M. Mattia,

“Code normalization for self-mutating
malware”, IEEE Security and Privacy,
vol. 5, no.2, pp. 46-54, 2007.

[55] Z. Boyun, Y. Jianping, H. Jingbo, Z.
Dingxing and W. Shulin, “Malicious
codes detection based on ensemble
learning”, In Autonomic and Trusted
Computing: 4th International Confer-
ence, ATC 2007, Hong Kong, China,
July 11-13, 2007. Proceedings 4, Spring-
er Berlin Heidelberg, pp. 468-477,
2007.

[56] M. Robert, F. Clint, T. Nir, B. Eugene,
G. Marina, D. Shlomi and E. Yuval,
“Unknown malcode detection using
opcode representation”, In Intelligence
and Security Informatics: First European
Conference, Euro ISI 2008, Esbjerg,
Denmark, Proceedings, Springer Berlin
Heidelberg, pp. 204-215, 2008.

[57] B. S. Mojtaba, J. Saeed and T. Asghar,
“PbMMD: A novel policy based
multi-process malware detection”,
Engineering Applications of Artificial
Intelligence, vol. 60, pp. 57-70, 2017.

[58] N. Vivens, X. Zhifeng, M. V. Rao, M. Ke
and X. Yang, “Network forensics analy-
sis using Wireshark”, International
Journal of Security and Networks, vol.
10, no.2, pp. 91-106, 2015.

[59] H. Nazrul, B. Monowar H, B. Ram
Charan, B. Dhruba K and K. Jugal K,
“Network attacks: Taxonomy, tools and
systems”, Journal of Network and Com-
puter Applications, vol. 40, pp. 307-324,
2014.

[60] E. Eldad, “Reversing: secrets of reverse
engineering”, John Wiley & Sons, 2011.

[61] G. Daniel, M. Carles and P. Jordi, “The
rise of machine learning for detection
and classification of malware: Research

developments, trends and challenges”,
Journal of Network and Computer
Applications, vol. 153, pp. 102526,
2020.

[62] R. Chathuranga and J. Aruna, “An
efficient approach for advanced
malware analysis using memory foren-
sic technique”, In 2017 IEEE Trustcom/
Big Data SE/ ICESS, IEEE, pp.
1145-1150, 2017.

[63] K. Ilker, “A basic malware analysis
method”, Computer Fraud and Security,
vol. 2019, no. 6, pp. 11-19, 2019.

[64] K. Joakim, “Fundamentals of Digital
Forensics”, Springer International
Publishing, 2020.

[65] P. Radu, H. Steven, L. Thor, S. Matija, P.
Jens and C. Alexandre, “Analysis of
malware behavior: Type classification
using machine learning”, International
conference on cyber situational aware-
ness, data analytics and assessment
(Cyber SA), IEEE, pp. 1-7, 2015.

[66] A. Omer and S. Refik, “Investigation of
possibilities to detect malware using
existing tools”, 14th International
Conference on Computer Systems and
Applications. IEEE, pp. 1277-1284,
2017.

[67] M. Q. Ali, A. Irfan and Y. Muhammad,
“Cloud Intell: An intelligent malware
detection system”, Future Generation
Computer Systems, vol. 86, pp.
1042-1053, 2018.

[68] G. Kent, S. Scott, H. Xin and C. Tzi-ck-
er, “Automatic generation of string
signatures for malware detection”,
Recent Advances in Intrusion Detection:
12th International Symposium, RAID
2009, Saint-Malo, France, Proceedings,
Springer Berlin Heidelberg, vol. 12, pp.

101-120, 2009.

[69] G. Dragoş, C. Mihai, A. Dan and C.
Liviu, “Malware detection using
machine learning”, International multi-
conference on computer science and
information technology, IEEE, pp.
735-741, 2009.

[70] B. Philippe, G. Isabelle and M. Jean-Yves,
“Behavior abstraction in malware analy-
sis”, In Runtime Verification: First
International Conference, RV 2010,
Proceedings, Springer Berlin Heidel-
berg, vol. 1, pp. 168-182, 2010.

[71] C. Sang Kil, M. Iulian, J. Jiyong, T.
John, B. David and A. David G, “Split
Screen: Enabling efficient, distributed
malware detection”, Journal of Commu-
nications and Networks, vol. 13, no.2,
pp. 187-200, 2011.

[72] S. Asaf, M, Robert, F. Clint, D. Shlomi
and E. Yuval, “Detecting unknown
malicious code by applying classifica-
tion techniques on opcode patterns”,
Security Informatics, vol. 1, no.1, pp.
1-22, 2012.

[73] S. Asaf, M. Robert, E. Yuval and G.
Chanan, “Detection of malicious code
by applying machine learning classifiers
on static features: A state-of-the-art
survey”, Information Security Technical
Report, vol. 14, no.1, pp. 16-29, 2009.

[74] E. A. Ahmed E, M. M. Aizaini and B.
Bazara, “Improving the detection of
malware behaviour using simplified data
dependent API call graph”, International
Journal of Security and its Applications,
vol. 7, no. 5, pp. 29-42, 2013.

[75] P. Bassir, J. M. Vafaie and J. Mehrdad,
“Malware detection using hidden
Markov model based on Markov blanket
feature selection method”. International

congress on technology, communication
and knowledge, IEEE, pp. 558-563,
2015.

[76] S. Nedim and L. Pavel, “Hidost: a static
machine-learning-based detector of
malicious files”. EURASIP Journal on
Information Security, vol. 2016, pp.
1-20, 2016.

[77] K. Dong Hee, W. Sang Uk, L. Dong Kyu
and C. Tai Myoung, “Static detection of
malware and benign executable using
machine learning algorithm”. Eighth
International Conference on Evolving
Internet, pp. 14-19, 2016.

[78] H. Shamsul, A. Jemal, A. Mamoun, A.
Mali, I. Rafiqul and Y. John, “Hybrids of
support vector machine wrapper and
filter based framework for malware
detection”. Future Generation Computer
Systems, vol. 55, pp. 376-390, 2016.

[79] N. Yuta and U. Ryuya, “Static analysis
with paragraph vector for malware
detection”. In Proceedings of the 11th
International Conference on Ubiquitous
Information Management and Commu-
nication, pp. 1-7, 2017.

[80] W. Cheng, Q. Zheng, Z. Jixin and Y.
Hui, “A malware variants detection
methodology with an opcode based
feature method and a fast density based
clustering algorithm”. 12th International
Conference on Natural Computation,
Fuzzy Systems and Knowledge Discov-
ery (ICNC-FSKD), IEEE, pp. 481-487,
2016.

[81] M. Aziz, A. Omar and M. Manar,
“AMAL: high-fidelity, behavior-based
automated malware analysis and classi-
fication”. Computers and Security, vol.
52, pp. 251-266, 2015.

[82] Y. Yanfang, W. Dingding, L. Tao, Y.

Dongyi and J. Qingshan, “An intelligent
PE-malware detection system based on
association mining”, Journal in comput-
er virology, vol. 4, pp. 323-334, 2008.

[83] B. Michael, O. Jon, A. Jon, M. Z.
Morley, J. Farnam and N. Jose, “Auto-
mated classification and analysis of
internet malware”, Recent Advances in
Intrusion Detection: 10th International
Symposium, RAID, vol. 10, pp.
178-197, 2007.

[84] R. Konrad, T. Philipp, W. Carsten and H.
Thorsten, “Automatic analysis of
malware behavior using machine learn-
ing”, Journal of Computer Security, vol.
19, no.4, pp. 639-668, 2011.

[85] V. Mihai, G. Laura and T. Nicolae,
“Practical malware analysis based on
sandboxing”, Ro Edu Net Conference
13th Edition: Networking in Education
and Research Joint Event RENAM 8th
Conference, IEEE, pp. 1-6, 2014.

[86] H. Jozsef, M. Yoan, I. Alexander and L.
Amaury, “Methodology for behavior-
al-based malware analysis and detection
using random projections and k-nearest
neighbors classifiers”, International
Conference on Computational Intelli-
gence and Security, IEEE, pp.
1016-1023, 2011.

[87] G. Mahboobe, S. Ashkan and S. Zahra,
“Dynamic VSA: a framework for
malware detection based on register
contents”, Engineering Applications of
Artificial Intelligence, vol. 44, pp.
111-122, 2015.

[88] P. Zhi-Peng, F. Chao and T. Chao-Jing,
“Malware classification based on the
behavior analysis and back propagation
neural network”. In ITM Web of Confer-
ences, EDP Sciences, vol.7, pp. 20-28,

Nov. 2016.

[89] H. Shamsul, M. Suruz, H. M. Mehedi, I.
Rafiqul, Y. John, A. Majed and A.
Ahmad, “Defending unknown attacks
on cyber-physical systems by semi-su-
pervised approach and available
unlabeled data”, Information Sciences,
vol. 379, pp. 211-228, 2017.

[90] M. Fahad, H. Wei and B. Antony,
“Novel malware detection methods by
using LCS and LCSS”, 22nd Interna-
tional Conference on Automation and
Computing (ICAC), IEEE, pp. 554-559,
2016.

[91] H. Eduardo, M. Rubén S and L. Ignacio
M, “Evaluating the reliability of compu-
tational grids from the end user’s point
of view”, Journal of Systems Architec-
ture, vol. 52, no. 12, pp. 727-736, 2006.

[92] N. B. Narayanan, D. Ouboti and K.
Temesguen, “Performance analysis of
machine learning and pattern recogni-
tion algorithms for malware classifica-
tion”, IEEE national aerospace and
electronics conference (NAECON) and
ohio innovation summit (OIS), IEEE,
pp. 338-342, 2016.

[93] C. In Kyeom, K. T. Guen, S. Y. Jin, R.
Minsoo and I. E. Gyu, “Malware analy-
sis and classification using sequence
alignments”, Intelligent Automation and
Soft Computing, vol. 22, no.3, pp.
371-377, 2016.

[94] M. Jiang, X. Zhi, L. Pengwei, W. Ding-
hao, L. Peng and M. Bing, “Impeding
behavior-based malware analysis via
replacement attacks to malware specifi-
cations”, Journal of Computer Virology
and Hacking Techniques, vol. 13,
pp.193-207, 2017.

[95] W. Markus, R. Alexander, T. Niklas and

A. Wolfgang, “A knowledge-assisted
visual malware analysis system: Design,
validation, and reflection of KAMAS”,
Computers and Security, vol. 67, pp.
1-15, 2017.

[96] N. Stavros D and P, Iosif, “A
graph-based model for malware detec-
tion and classification using system-call
groups”, Journal of Computer Virology
and Hacking Techniques, vol. 13, no.1,
pp. 29-46, 2017.

[97] L. Quan, B. Oisin, M. N. Brian and S.
Mark, “Deep learning at the shallow
end: Malware classification for non-do-
main experts”, Digital Investigation,
vol. 26, pp. S118-S126, 2018.

[98] P. Abdurrahman and A. Tankut, “Classi-
fication of malware families based on
runtime behaviors”, Journal of informa-
tion security and applications, vol. 37,
pp. 91-100, 2017.

[99] S. Jan, P. Tomás and R. Martin, “Multi-
ple instance learning for malware classi-
fication”, Expert Systems with Applica-
tions, vol. 93, pp. 346-357, 2018.

[100] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

 [101] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

[102] X. Lu, F. Jiang, X. Zhou, S. Yi and J. Sha
and L. Pietro, “ASSCA: API sequence

and statistics features combined archi-
tecture for malware detection”, Comput-
er Networks, vol. 157, pp. 99-111,
2019.

[103] D. Arivudainambi, K.A. Varun Kumar
and P. Visu, “Malware traffic classifica-
tion using principal component analysis
and artificial neural network for extreme
surveillance”, Computer Communica-
tions, vol. 147, pp. 50-57, 2019.

[104] Y. Cagatay and K. Ahmet, “Imaging and
evaluating the memory access for
malware”, Forensic Science Internation-
al: Digital Investigation, vol. 32, pp.
20-27, 2020.

[105] R. Mahdi, W. Yong Li, K. Reza, J.
Hamed, Z. Ruxin and H. Peng, “A
hybrid machine learning approach for
malicious behaviour detection and
recognition in cloud computing”,
Journal of Network and Computer
Applications, vol. 151, pp. 12-19, 2020.

[106] E. A. Ahmed E, M. M. Aizaini, B.
Bazara- IA and H. Hentabli, “Enhancing
the detection of metamorphic malware
using call graphs”, Computers and Secu-
rity, vol. 46, pp. 62-78, 2014.

[107] R. Jesse C, K. Roger I, L. Scott M and C.
Robert K, “Detection of injected,
dynamically generated, and obfuscated
malicious code”, ACM workshop on
Rapid malcode, pp. 76-82, 2003.

[108] C. Michael, “A protocol graph based
anomaly detection system”, Doctoral
dissertation, Carnegie Mellon Universi-
ty, 2008.

[109] M. R. Jose and D. J. Cesar, “Integrating
static and dynamic malware analysis
using machine learning”, IEEE Latin
America Transactions, vol. 13, no. 9, pp.
3080-3087, 2015.

[110] S. PV and S. AJPCS, “Integrated static
and dynamic analysis for malware
detection”, Procedia Computer Science,
vol. 46, pp. 804-811, 2015.

[111] E. E. Inang, B. Chafika, A. Ameer and
W. Paul, “Analysis of malware
behaviour: Using data mining clustering
techniques to support forensics investi-
gation”, Fifth Cybercrime and Trust-
worthy Computing Conference, IEEE,
pp. 54-63, 2014.

[112] W. Ahsan, I. Azhar, L. Jahanzaib, N.
Ahsan and B. Anas, “A novel approach
of unprivileged keylogger detection”,
2nd International Conference on Com-
puting, Mathematics and Engineering
Technologies (iCoMET), IEEE, pp. 1-6,
2019.

[113] N. Mohammad, A. Nouman and Y. Jing
Tao, “A three-way decision making
approach to malware analysis using
probabilistic rough sets”, Information
Sciences, vol. 37, no. 4, pp. 193-209,
2016.

[114] N. Mohammad, A. Nouman and Y. Jing
Tao, “Detecting malware evolution
using support vector machines”, Expert
Systems with Applications, vol. 143, pp.
113022, 2020.

[115] P. Avi, R. Brian, K. Lee, H. Michael, C.
Catherine, O. Alison, T. Glenn, R. S.
Neal, P. Terry, and T. Jason, “Artificial
intelligence based malware analysis”,
arXiv preprint, pp.16-23, 2017.

[116] H. Shamsul, I. Rafiqul, A. Jemal, Y.
John, H. M. Mehedi and F. Giancarlo,
“A hybrid-multi filter-wrapper frame-
work to identify run-time behaviour for
fast malware detection”, Future Genera-
tion Computer Systems, vol. 1, no. 83,
pp. 193-207, 2018.

[117] S. Robert, X. Lifan, K. William, V.
Tristan, F. Teague, H. John, P. Zachary,
S. Corey, S. Joshua and C. John, “Paral-
lelization of machine learning applied to
call graphs of binaries for malware
detection”, 25th Euromicro International
Conference on Parallel, Distributed and
Network-based Processing (PDP),
IEEE, pp. 69-77, 2017.

[118] K. Youngjoon, K. Eunjin and K. Huy
Kang, “A novel approach to detect
malware based on API call sequence
analysis”, International Journal of
Distributed Sensor Networks, vol. 11,
no.6, pp. 659101, 2015.

[119] M. Weixuan, C. Zhongmin, T. Don, F.
Qian and G. Xiaohong, “Security impor-
tance assessment for system objects and
malware detection”, Computers and
Security, vol. 68, pp. 47-68, 2017.

[120] O. Philip, S. Sezer, and K. McLaughlin,
“Detecting obfuscated malware using
reduced opcode set and optimised
runtime trace”, Security Informatics,
vol. 5, pp. 1-12, 2016.

[121] D. Anusha, T. Fabio Di, V. C. Aaron, A.
Thomas H and S. Mark, “A comparison
of static, dynamic, and hybrid analysis
for malware detection”, Journal of Com-
puter Virology and Hacking Techniques,
vol. 13, pp. 1-12, 2017.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

7. CONCLUSION

This study helps to identify malwares using
runtime characteristics. It provides the knowl-
edge fraction for harmful software analysis and
detection procedures through machine learning
algorithms. Malware is now well-known to be
highly sophisticated and rapidly changing.
Today, it is not only used to disturb users, steal
information, and destroy user data but also to
enforce its objectives for businesses and
nations. The protection of data and resources is
a key component in information technology.
This is essential because computers or embed-
ded digital devices in every area are utilized to
execute activities more quickly and precisely
without human involvement. The computer

system is more susceptible to hacking because
of its wide range of applications. This study
covers the development of malware, present
status, and techniques of detection. Two
malware analysis techniques exist signature
based, and behavior based. Signature-based
technology has two major flaws that must be
addressed. For the time being, signature-based
techniques will not be able to identify new or
previously unknown malware. Second, different
types of malwares may readily outwit the
system's detection mechanisms. Behavior-based
technique can identify new variants of malware,
dynamic techniques in malware-based methods
are more robust than signature-based methods.
The actual application of dynamic methods
nevertheless remains rigid and time-intensive,
whereas signature technology is quicker and

more efficacious than dynamic techniques in
identifying known malware. We spoke about
malware methods that were suggested for
machine learning to train the classification of
malware in this research. This is because it
includes a huge number of algorithms that may
be used for a variety of malware features. In
addition to its accessibility, machine learning
algorithms provide many benefits over conven-
tional malware classifications, such as the
capacity to get information from file samples,
rapidly detect, unexpected changes, and
minimize the human work and time spent
analyzing malware. In this article, malware
detection methods are classified according to
analytical methodologies such as static, dynam-
ic, and hybrid techniques. Each method has
advantages and disadvantages. These methods,
however, produced encouraging results in the
categorization of malware in a certain scenario.
For example, static methods are quicker, with a
reduced false-positive rate, but it is difficult to
cope with the obfuscation technique while
collecting static characteristics. In this respect,
on the contrary, dynamic methods offer a
beneficial although implementation in real-time
is inconvenient. Finally, we addressed the
two-layer malware detection framework with
static and dynamic functions that can effectively
and reliably detect the new and known malware.

REFERENCES

[1] H. Weijie, X. Jingfeng, W. Yong, H.
Lu, K. Zixiao and M. Limin, “MalDAE:
Detecting and explaining malware
based on correlation and fusion of static
and dynamic characteristics”, Comput-
ers and Security, vol. 83, pp. 208-233,
2019.

[2] B. Pete, F. Richard, T. Frederick and J.

Kevin, “Malware classification using
self organising feature maps and
machine activity data”, Computers and
Security, vol. 73, pp. 399-410, 2018.

[3] N. Usha, T. F. Di, C. V. Aaron, A.
Thomas and S. Mark, “Clustering versus
SVM for malware detection”, Journal of
Computer Virology and Hacking
Techniques, vol. 12, pp. 213-224, 2016.

[4] J. A. Namavar, H. Sattar, D. Ali and C.
R. Kim kwang, “An improved two-hid-
den-layer extreme learning machine for
malware hunting”, Computers and Secu-
rity, vol. 89, pp. 10-16, 2020.

[5] F. Massimo and P. F. Leaf, “An
open-source cybersecurity training
platform for realistic edge-IoT scenari-
os”, Journal of Systems Architecture,
vol. 97, pp. 107-129, 2020.

[6] K. Afreen, Z. Swaleha and Al. S.
Muaadhabdo, “An improved pre-pro-
cessing machine learning approach for
cross-sectional imaging of demented
older adults”, International Conference
of Intelligent Computing and Engineer-
ing (ICOICE), IEEE, pp. 1-7, 2019.

[7] P. Jakub, N. Q. Anh, B. Adrian, G.
Jonathan and L. Y. Kubo, “a framework
for automated efficacy testing of anti-vi-
rus behavioral detection with proce-
dure-based malware emulation”, In
Proceedings of the 13th International
Workshop on Automating Test Case
Design, Selection and Evaluation, pp.
37-44, 2022.

[8] B. Andrew, “How deception can change
cyber security defenses”, Computer
Fraud & Security, vol.5, no.1, pp. 12-14,
2019.

 [9] G. Ekta, B. Divya and S. Sanjeev, “Mal-
ware analysis and classification: A

survey”, Journal of Information Securi-
ty, vol. 6, 2014.

[10] M. S. Mariam, S. M. Ali, Z. Si-Jing and
Y. Hong-Ji, “Conceivable security risks
and authentication techniques for smart
devices: A comparative evaluation of
security practices”, International journal
of Automation and Computing, vol. 13,
pp. 350-363, 2016.

[11] B. Kang, F. Liu, Z. Yun and Y. Liang,
“Design of an Internet of Things-based
smart home system”, International
Conference on Intelligent Control and
Information Processing, IEEE, vol. 2,
pp. 921-924, 2011.

[12] A. Shahid, H, R. Nigel, T. Issa and S.
Ibrahim, “A framework for metamor-
phic malware analysis and real-time
detection”, Computers and Security, vol.
48, pp. 212-233, 2015.

[13] H. Xin, “Large-scale malware analysis,
detection, and signature generation”,
Doctoral dissertation, University of
Michigan, 2011.

[14] R. Kalpika, A. R. Vasudevan, “Detection
of Zeus Bot Based on Host and Network
Activities”, Communications in Com-
puter and Information Science, vol. 746,
pp. 978-981, 2017.

[15] E. Nabeil, E. Rashad, H. Alzubair and L.
Fagen, “A blockchain-based
attribute-based signcryption scheme to
secure data sharing in the cloud”,
Journal of Systems Architecture, vol.
102, pp. 10-16, 2020.

[16] J. Daehee, J. Yunjong , L Sungman , P.
Minjoon, K. Kuenhwan , K. Donguk and
K. B. Byunghoon, “Rethinking anti-em-
ulation techniques for large-scale
software deployment”, Computers and
Security, vol. 83, pp. 182-200, 2019.

[17] M. Samaneh and G. Ali A, “Application
of deep learning to cybersecurity: A
survey”, Neurocomputing, vol. 347, pp.
149-176, 2019.

[18] Z. Weizhe, W. Huanran, H. Hui and L.
Peng,” DAMBA: detecting android
malware by ORGB analysis”, IEEE
Transactions on Reliability, vol.69, no.1,
pp. 55-69, 2020.

[19] L. Liu, W. Bao-sheng, Y. Bo and Z.
Qiu-xi, “Automatic malware classifica-
tion and new malware detection using
machine learning”, Frontiers of Infor-
mation Technology & Electronic
Engineering, vol. 18, no. 9, pp.
1336-1347, 2017.

[20] K. Ratinder and M. Singh, “Hybrid
real-time zero-day malware analysis and
reporting system”, International Journal
of Information Technology and Comput-
er Sciences, vol. 8, pp. 63-73, 2016.

[21] M. Jelena, M. Miroslaw and F. Alberto,
“Time, accuracy and power consump-
tion tradeoff in mobile malware detec-
tion systems”, Computers and Security,
vol. 82, pp. 314-328, 2019.

[22] S. Hudan, S. Ferdous and P. Christian,
“A survey on forensic investigation of
operating system logs”, Digital Investi-
gation, vol. 29, pp. 1-20, 2019.

[23] N. Bruce, K. K. Hwan, K. Y. Jin, K.H.
Ho, K. T. Yong and L. H. Jae,
“Cross-method-based analysis and
classification of malicious behavior by
api calls extraction”, Applied Sciences,
vol. 9, no.2, pp. 239, 2019.

[24] Z. Hanqi, X. Xi, M. Francesco, N.
Shiguang, M. Fabio and S. A. Kumar,
“Classification of ransomware families
with machine learning based on N-gram
of opcodes”, Future Generation Com-

puter Systems, vol. 90, pp. 211-221,
2019.

[25] N. Jose, P. Araujo, P. Donald M and R.
C. Ghedini, “MULTS: A multi-cloud
fault-tolerant architecture to manage
transient servers in cloud computing”,
Journal of Systems Architecture, vol.
101, pp. 101-108, 2019.

[26] R. Veeramani and R. Nitin, “Windows
api based malware detection and frame-
work analysis”, In International Confer-
ence on Networks and Cyber Security,
vol. 25, 2012.

[27] C. Mihai, J. Somesh, K. Johannes, K.
Stefan and V. Helmut, “Software trans-
formations to improve malware detec-
tion”, Journal in Computer Virology,
vol. 3, pp. 253-265, 2007.

[28] O. Yoshihiro, “Trends of anti-analysis
operations of malwares observed in API
call logs”, Journal of Computer Virology
and Hacking Techniques, vol. 14, no. 1,
pp. 69-85, 2018.

[29] C. Sibi S and V. V. Sangeetha, “A survey
on malware analysis and mitigation
techniques”, Computer Science Review,
vol. 32, pp. 1-23, 2019.

[30] D. Jaime, S. Igor, C. Xabier, P. Yoseba K
and B. Pablo G, “Automatic
behaviour-based analysis and classifica-
tion system for malware detection”,
International Conference on Enterprise
Information Systems, vol. 2, pp.
395-399, 2010.

[31] D. Yuxin, X. Xiaoling, C. Sheng and L.
Ye, “A malware detection method based
on family behavior graph”, Computers
and Security, vol. 73, pp. 73-86, 2018.

[32] S. Jagsir and S. Jaswinder, “A survey on
machine learning-based malware detec-

tion in executable files”, Journal of
Systems Architecture, vol. 112, pp.
10-18, 2021.

[33] R. Anusmita and N. Asoke, “Introduc-
tion to Malware and Malware Analysis:
A brief overview”, International Journal,
vol. 4, no.10, 2016.

[34] W. Huanran, H. Hui and Z. Weizhe,
“Demadroid: Object reference
graph-based malware detection in
Android”, Security and Communication
Networks, vol. 2018, 2018.

[35] B. Tao, T. Takeshi, G. Shanqing, I.
Daisuke and N. Koji, “Integration of
multi-modal features for android
malware detection using linear SVM”,
In 2016 11th Asia Joint Conference on
Information Security (Asia JCIS), IEEE,
pp. 141-146, 2016.

[36] B. Ulrich, K. Engin and K. Christopher,
“Improving the efficiency of dynamic
malware analysis”, In Proceedings of the
2010 ACM Symposium on Applied
Computing, pp. 1871-1878, 2010.

[37] W. Gerard, S. Radu and D. Alexandre,
“Malware behaviour analysis”, Journal
in Computer Virology, vol. 4, pp.
279-287, 2008.

[38] M. Asit and T. Shashikala, “Virtual
machine introspection: towards bridging
the semantic gap”, Journal of Cloud
Computing, vol. 3, no.1, pp. 1-14, 2014.

[39] V. Jiri and P. Martin, “Virtualization of
operating system using type-2 Hypervi-
sor”, In Software Engineering Perspec-
tives and Application in Intelligent
Systems: Proceedings of the 5th Com-
puter Science On-line Conference 2016
(CSOC2016), Springer International
Publishing, vol. 25, pp. 239-247, 2016.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

43Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

[40] M. Andreas, K. Christopher and K.
Engin, “Exploring multiple execution
paths for malware analysis”, In 2007
IEEE Symposium on Security and
Privacy (SP'07), IEEE, pp.231-245,
2007.

[41] K. Bojan, Z. Apostolis, L. Tamas, W.
George and E. Claudia, “Adaptive
semantics-aware malware classifica-
tion”, In Detection of Intrusions and
Malware, and Vulnerability Assessment:
13th International Conference, DIMVA
2016, San Sebastián, Spain, Springer
International Publishing, vol. 13, pp.
419-439, 2016.

[42] R. Edward, Z. Richard, C. Russell, S.
Jared, Y. Paul, W. Rebecca, T. Anna, M.
Mark and N. Charles, “An investigation
of byte n-gram features for malware
classification”, Journal of Computer
Virology and Hacking Techniques, vol.
14, pp. 1-20, 2018.

[43] M. Zane and B. Michael, “Building a
machine learning classifier for malware
detection”, In 2014 second workshop on
anti-malware testing research (Water),
IEEE, pp. 1-4, 2014.

[44] S. Michael and H. Andrew, “A Practical
malware analysis: the hands-on guide to
dissecting malicious software”. Starch
Press, 2012.

[45] W. Tzu-Yen and W. Chin-Hsiung,
“Detection of packed executables using
support vector machines”, International
Conference on Machine Learning and
Cybernetics, IEEE, vol. 2, pp. 717-722,
2011.

[46] A. Satheesh and R. Kumaravelu, “A
mathematical model of HMST model on
malware static analysis”, International
Journal of Information Security and

Privacy, vol. 13, no. 2, pp. 86-103, 2019.

[47] A. Imad and L. Saiida, “A new classifi-
cation based model for malicious PE
files detection”, International Journal of
Computer Network and Information
Security, vol. 9, no.6, pp.1-7, 2019.

[48] L. Michael, A. Steven, H. Blake, R.
Matthew, “Malware Analyst's Cookbook
and DVD”, Wiley Publishing, 2011.

[49] L. Xiaojing, Y. Kan, W. XiaoFeng, L.
Zhou, X. Luyi and B. Raheem, “Acing
the ioc game: Toward automatic discov-
ery and analysis of open-source cyber
threat intelligence”, ACM SIGSAC
conference on computer and communi-
cations security, pp. 755-766, 2016.

[50] S. Sebastian and K. Stefan, “Code
obfuscation against static and dynamic
reverse engineering”, In Information
Hiding: 13th International Conference,
IH 2011, Prague, Czech Republic,
Revised Selected Papers, Springer
Berlin Heidelberg, vol. 13, pp. 270-284,
2011.

[51] C. Michael , “Scanning memory with
Yara”, Digital Investigation, vol. 20, pp.
34-38, 2017.

[52] S. Nikolaos, B. Chafika, A. Omar and A.
Ameer, “Forensic malware analysis: The
value of fuzzy hashing algorithms in
identifying similarities”, IEEE Trust-
com/ Big Data SE/ ISPA, IEEE, pp.
1782-1787, 2016.

[53] K. Abhishek, G. Suchandra and G.
Ratan, “Detecting obfuscated viruses
using cosine similarity analysis”, Asia
International Conference on Modelling
and Simulation (AMS'07), IEEE, pp.
165-170, 2007.

[54] B. Danilo, M. Lorenzo, M. Mattia,

“Code normalization for self-mutating
malware”, IEEE Security and Privacy,
vol. 5, no.2, pp. 46-54, 2007.

[55] Z. Boyun, Y. Jianping, H. Jingbo, Z.
Dingxing and W. Shulin, “Malicious
codes detection based on ensemble
learning”, In Autonomic and Trusted
Computing: 4th International Confer-
ence, ATC 2007, Hong Kong, China,
July 11-13, 2007. Proceedings 4, Spring-
er Berlin Heidelberg, pp. 468-477,
2007.

[56] M. Robert, F. Clint, T. Nir, B. Eugene,
G. Marina, D. Shlomi and E. Yuval,
“Unknown malcode detection using
opcode representation”, In Intelligence
and Security Informatics: First European
Conference, Euro ISI 2008, Esbjerg,
Denmark, Proceedings, Springer Berlin
Heidelberg, pp. 204-215, 2008.

[57] B. S. Mojtaba, J. Saeed and T. Asghar,
“PbMMD: A novel policy based
multi-process malware detection”,
Engineering Applications of Artificial
Intelligence, vol. 60, pp. 57-70, 2017.

[58] N. Vivens, X. Zhifeng, M. V. Rao, M. Ke
and X. Yang, “Network forensics analy-
sis using Wireshark”, International
Journal of Security and Networks, vol.
10, no.2, pp. 91-106, 2015.

[59] H. Nazrul, B. Monowar H, B. Ram
Charan, B. Dhruba K and K. Jugal K,
“Network attacks: Taxonomy, tools and
systems”, Journal of Network and Com-
puter Applications, vol. 40, pp. 307-324,
2014.

[60] E. Eldad, “Reversing: secrets of reverse
engineering”, John Wiley & Sons, 2011.

[61] G. Daniel, M. Carles and P. Jordi, “The
rise of machine learning for detection
and classification of malware: Research

developments, trends and challenges”,
Journal of Network and Computer
Applications, vol. 153, pp. 102526,
2020.

[62] R. Chathuranga and J. Aruna, “An
efficient approach for advanced
malware analysis using memory foren-
sic technique”, In 2017 IEEE Trustcom/
Big Data SE/ ICESS, IEEE, pp.
1145-1150, 2017.

[63] K. Ilker, “A basic malware analysis
method”, Computer Fraud and Security,
vol. 2019, no. 6, pp. 11-19, 2019.

[64] K. Joakim, “Fundamentals of Digital
Forensics”, Springer International
Publishing, 2020.

[65] P. Radu, H. Steven, L. Thor, S. Matija, P.
Jens and C. Alexandre, “Analysis of
malware behavior: Type classification
using machine learning”, International
conference on cyber situational aware-
ness, data analytics and assessment
(Cyber SA), IEEE, pp. 1-7, 2015.

[66] A. Omer and S. Refik, “Investigation of
possibilities to detect malware using
existing tools”, 14th International
Conference on Computer Systems and
Applications. IEEE, pp. 1277-1284,
2017.

[67] M. Q. Ali, A. Irfan and Y. Muhammad,
“Cloud Intell: An intelligent malware
detection system”, Future Generation
Computer Systems, vol. 86, pp.
1042-1053, 2018.

[68] G. Kent, S. Scott, H. Xin and C. Tzi-ck-
er, “Automatic generation of string
signatures for malware detection”,
Recent Advances in Intrusion Detection:
12th International Symposium, RAID
2009, Saint-Malo, France, Proceedings,
Springer Berlin Heidelberg, vol. 12, pp.

101-120, 2009.

[69] G. Dragoş, C. Mihai, A. Dan and C.
Liviu, “Malware detection using
machine learning”, International multi-
conference on computer science and
information technology, IEEE, pp.
735-741, 2009.

[70] B. Philippe, G. Isabelle and M. Jean-Yves,
“Behavior abstraction in malware analy-
sis”, In Runtime Verification: First
International Conference, RV 2010,
Proceedings, Springer Berlin Heidel-
berg, vol. 1, pp. 168-182, 2010.

[71] C. Sang Kil, M. Iulian, J. Jiyong, T.
John, B. David and A. David G, “Split
Screen: Enabling efficient, distributed
malware detection”, Journal of Commu-
nications and Networks, vol. 13, no.2,
pp. 187-200, 2011.

[72] S. Asaf, M, Robert, F. Clint, D. Shlomi
and E. Yuval, “Detecting unknown
malicious code by applying classifica-
tion techniques on opcode patterns”,
Security Informatics, vol. 1, no.1, pp.
1-22, 2012.

[73] S. Asaf, M. Robert, E. Yuval and G.
Chanan, “Detection of malicious code
by applying machine learning classifiers
on static features: A state-of-the-art
survey”, Information Security Technical
Report, vol. 14, no.1, pp. 16-29, 2009.

[74] E. A. Ahmed E, M. M. Aizaini and B.
Bazara, “Improving the detection of
malware behaviour using simplified data
dependent API call graph”, International
Journal of Security and its Applications,
vol. 7, no. 5, pp. 29-42, 2013.

[75] P. Bassir, J. M. Vafaie and J. Mehrdad,
“Malware detection using hidden
Markov model based on Markov blanket
feature selection method”. International

congress on technology, communication
and knowledge, IEEE, pp. 558-563,
2015.

[76] S. Nedim and L. Pavel, “Hidost: a static
machine-learning-based detector of
malicious files”. EURASIP Journal on
Information Security, vol. 2016, pp.
1-20, 2016.

[77] K. Dong Hee, W. Sang Uk, L. Dong Kyu
and C. Tai Myoung, “Static detection of
malware and benign executable using
machine learning algorithm”. Eighth
International Conference on Evolving
Internet, pp. 14-19, 2016.

[78] H. Shamsul, A. Jemal, A. Mamoun, A.
Mali, I. Rafiqul and Y. John, “Hybrids of
support vector machine wrapper and
filter based framework for malware
detection”. Future Generation Computer
Systems, vol. 55, pp. 376-390, 2016.

[79] N. Yuta and U. Ryuya, “Static analysis
with paragraph vector for malware
detection”. In Proceedings of the 11th
International Conference on Ubiquitous
Information Management and Commu-
nication, pp. 1-7, 2017.

[80] W. Cheng, Q. Zheng, Z. Jixin and Y.
Hui, “A malware variants detection
methodology with an opcode based
feature method and a fast density based
clustering algorithm”. 12th International
Conference on Natural Computation,
Fuzzy Systems and Knowledge Discov-
ery (ICNC-FSKD), IEEE, pp. 481-487,
2016.

[81] M. Aziz, A. Omar and M. Manar,
“AMAL: high-fidelity, behavior-based
automated malware analysis and classi-
fication”. Computers and Security, vol.
52, pp. 251-266, 2015.

[82] Y. Yanfang, W. Dingding, L. Tao, Y.

Dongyi and J. Qingshan, “An intelligent
PE-malware detection system based on
association mining”, Journal in comput-
er virology, vol. 4, pp. 323-334, 2008.

[83] B. Michael, O. Jon, A. Jon, M. Z.
Morley, J. Farnam and N. Jose, “Auto-
mated classification and analysis of
internet malware”, Recent Advances in
Intrusion Detection: 10th International
Symposium, RAID, vol. 10, pp.
178-197, 2007.

[84] R. Konrad, T. Philipp, W. Carsten and H.
Thorsten, “Automatic analysis of
malware behavior using machine learn-
ing”, Journal of Computer Security, vol.
19, no.4, pp. 639-668, 2011.

[85] V. Mihai, G. Laura and T. Nicolae,
“Practical malware analysis based on
sandboxing”, Ro Edu Net Conference
13th Edition: Networking in Education
and Research Joint Event RENAM 8th
Conference, IEEE, pp. 1-6, 2014.

[86] H. Jozsef, M. Yoan, I. Alexander and L.
Amaury, “Methodology for behavior-
al-based malware analysis and detection
using random projections and k-nearest
neighbors classifiers”, International
Conference on Computational Intelli-
gence and Security, IEEE, pp.
1016-1023, 2011.

[87] G. Mahboobe, S. Ashkan and S. Zahra,
“Dynamic VSA: a framework for
malware detection based on register
contents”, Engineering Applications of
Artificial Intelligence, vol. 44, pp.
111-122, 2015.

[88] P. Zhi-Peng, F. Chao and T. Chao-Jing,
“Malware classification based on the
behavior analysis and back propagation
neural network”. In ITM Web of Confer-
ences, EDP Sciences, vol.7, pp. 20-28,

Nov. 2016.

[89] H. Shamsul, M. Suruz, H. M. Mehedi, I.
Rafiqul, Y. John, A. Majed and A.
Ahmad, “Defending unknown attacks
on cyber-physical systems by semi-su-
pervised approach and available
unlabeled data”, Information Sciences,
vol. 379, pp. 211-228, 2017.

[90] M. Fahad, H. Wei and B. Antony,
“Novel malware detection methods by
using LCS and LCSS”, 22nd Interna-
tional Conference on Automation and
Computing (ICAC), IEEE, pp. 554-559,
2016.

[91] H. Eduardo, M. Rubén S and L. Ignacio
M, “Evaluating the reliability of compu-
tational grids from the end user’s point
of view”, Journal of Systems Architec-
ture, vol. 52, no. 12, pp. 727-736, 2006.

[92] N. B. Narayanan, D. Ouboti and K.
Temesguen, “Performance analysis of
machine learning and pattern recogni-
tion algorithms for malware classifica-
tion”, IEEE national aerospace and
electronics conference (NAECON) and
ohio innovation summit (OIS), IEEE,
pp. 338-342, 2016.

[93] C. In Kyeom, K. T. Guen, S. Y. Jin, R.
Minsoo and I. E. Gyu, “Malware analy-
sis and classification using sequence
alignments”, Intelligent Automation and
Soft Computing, vol. 22, no.3, pp.
371-377, 2016.

[94] M. Jiang, X. Zhi, L. Pengwei, W. Ding-
hao, L. Peng and M. Bing, “Impeding
behavior-based malware analysis via
replacement attacks to malware specifi-
cations”, Journal of Computer Virology
and Hacking Techniques, vol. 13,
pp.193-207, 2017.

[95] W. Markus, R. Alexander, T. Niklas and

A. Wolfgang, “A knowledge-assisted
visual malware analysis system: Design,
validation, and reflection of KAMAS”,
Computers and Security, vol. 67, pp.
1-15, 2017.

[96] N. Stavros D and P, Iosif, “A
graph-based model for malware detec-
tion and classification using system-call
groups”, Journal of Computer Virology
and Hacking Techniques, vol. 13, no.1,
pp. 29-46, 2017.

[97] L. Quan, B. Oisin, M. N. Brian and S.
Mark, “Deep learning at the shallow
end: Malware classification for non-do-
main experts”, Digital Investigation,
vol. 26, pp. S118-S126, 2018.

[98] P. Abdurrahman and A. Tankut, “Classi-
fication of malware families based on
runtime behaviors”, Journal of informa-
tion security and applications, vol. 37,
pp. 91-100, 2017.

[99] S. Jan, P. Tomás and R. Martin, “Multi-
ple instance learning for malware classi-
fication”, Expert Systems with Applica-
tions, vol. 93, pp. 346-357, 2018.

[100] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

 [101] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

[102] X. Lu, F. Jiang, X. Zhou, S. Yi and J. Sha
and L. Pietro, “ASSCA: API sequence

and statistics features combined archi-
tecture for malware detection”, Comput-
er Networks, vol. 157, pp. 99-111,
2019.

[103] D. Arivudainambi, K.A. Varun Kumar
and P. Visu, “Malware traffic classifica-
tion using principal component analysis
and artificial neural network for extreme
surveillance”, Computer Communica-
tions, vol. 147, pp. 50-57, 2019.

[104] Y. Cagatay and K. Ahmet, “Imaging and
evaluating the memory access for
malware”, Forensic Science Internation-
al: Digital Investigation, vol. 32, pp.
20-27, 2020.

[105] R. Mahdi, W. Yong Li, K. Reza, J.
Hamed, Z. Ruxin and H. Peng, “A
hybrid machine learning approach for
malicious behaviour detection and
recognition in cloud computing”,
Journal of Network and Computer
Applications, vol. 151, pp. 12-19, 2020.

[106] E. A. Ahmed E, M. M. Aizaini, B.
Bazara- IA and H. Hentabli, “Enhancing
the detection of metamorphic malware
using call graphs”, Computers and Secu-
rity, vol. 46, pp. 62-78, 2014.

[107] R. Jesse C, K. Roger I, L. Scott M and C.
Robert K, “Detection of injected,
dynamically generated, and obfuscated
malicious code”, ACM workshop on
Rapid malcode, pp. 76-82, 2003.

[108] C. Michael, “A protocol graph based
anomaly detection system”, Doctoral
dissertation, Carnegie Mellon Universi-
ty, 2008.

[109] M. R. Jose and D. J. Cesar, “Integrating
static and dynamic malware analysis
using machine learning”, IEEE Latin
America Transactions, vol. 13, no. 9, pp.
3080-3087, 2015.

[110] S. PV and S. AJPCS, “Integrated static
and dynamic analysis for malware
detection”, Procedia Computer Science,
vol. 46, pp. 804-811, 2015.

[111] E. E. Inang, B. Chafika, A. Ameer and
W. Paul, “Analysis of malware
behaviour: Using data mining clustering
techniques to support forensics investi-
gation”, Fifth Cybercrime and Trust-
worthy Computing Conference, IEEE,
pp. 54-63, 2014.

[112] W. Ahsan, I. Azhar, L. Jahanzaib, N.
Ahsan and B. Anas, “A novel approach
of unprivileged keylogger detection”,
2nd International Conference on Com-
puting, Mathematics and Engineering
Technologies (iCoMET), IEEE, pp. 1-6,
2019.

[113] N. Mohammad, A. Nouman and Y. Jing
Tao, “A three-way decision making
approach to malware analysis using
probabilistic rough sets”, Information
Sciences, vol. 37, no. 4, pp. 193-209,
2016.

[114] N. Mohammad, A. Nouman and Y. Jing
Tao, “Detecting malware evolution
using support vector machines”, Expert
Systems with Applications, vol. 143, pp.
113022, 2020.

[115] P. Avi, R. Brian, K. Lee, H. Michael, C.
Catherine, O. Alison, T. Glenn, R. S.
Neal, P. Terry, and T. Jason, “Artificial
intelligence based malware analysis”,
arXiv preprint, pp.16-23, 2017.

[116] H. Shamsul, I. Rafiqul, A. Jemal, Y.
John, H. M. Mehedi and F. Giancarlo,
“A hybrid-multi filter-wrapper frame-
work to identify run-time behaviour for
fast malware detection”, Future Genera-
tion Computer Systems, vol. 1, no. 83,
pp. 193-207, 2018.

[117] S. Robert, X. Lifan, K. William, V.
Tristan, F. Teague, H. John, P. Zachary,
S. Corey, S. Joshua and C. John, “Paral-
lelization of machine learning applied to
call graphs of binaries for malware
detection”, 25th Euromicro International
Conference on Parallel, Distributed and
Network-based Processing (PDP),
IEEE, pp. 69-77, 2017.

[118] K. Youngjoon, K. Eunjin and K. Huy
Kang, “A novel approach to detect
malware based on API call sequence
analysis”, International Journal of
Distributed Sensor Networks, vol. 11,
no.6, pp. 659101, 2015.

[119] M. Weixuan, C. Zhongmin, T. Don, F.
Qian and G. Xiaohong, “Security impor-
tance assessment for system objects and
malware detection”, Computers and
Security, vol. 68, pp. 47-68, 2017.

[120] O. Philip, S. Sezer, and K. McLaughlin,
“Detecting obfuscated malware using
reduced opcode set and optimised
runtime trace”, Security Informatics,
vol. 5, pp. 1-12, 2016.

[121] D. Anusha, T. Fabio Di, V. C. Aaron, A.
Thomas H and S. Mark, “A comparison
of static, dynamic, and hybrid analysis
for malware detection”, Journal of Com-
puter Virology and Hacking Techniques,
vol. 13, pp. 1-12, 2017.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

7. CONCLUSION

This study helps to identify malwares using
runtime characteristics. It provides the knowl-
edge fraction for harmful software analysis and
detection procedures through machine learning
algorithms. Malware is now well-known to be
highly sophisticated and rapidly changing.
Today, it is not only used to disturb users, steal
information, and destroy user data but also to
enforce its objectives for businesses and
nations. The protection of data and resources is
a key component in information technology.
This is essential because computers or embed-
ded digital devices in every area are utilized to
execute activities more quickly and precisely
without human involvement. The computer

system is more susceptible to hacking because
of its wide range of applications. This study
covers the development of malware, present
status, and techniques of detection. Two
malware analysis techniques exist signature
based, and behavior based. Signature-based
technology has two major flaws that must be
addressed. For the time being, signature-based
techniques will not be able to identify new or
previously unknown malware. Second, different
types of malwares may readily outwit the
system's detection mechanisms. Behavior-based
technique can identify new variants of malware,
dynamic techniques in malware-based methods
are more robust than signature-based methods.
The actual application of dynamic methods
nevertheless remains rigid and time-intensive,
whereas signature technology is quicker and

more efficacious than dynamic techniques in
identifying known malware. We spoke about
malware methods that were suggested for
machine learning to train the classification of
malware in this research. This is because it
includes a huge number of algorithms that may
be used for a variety of malware features. In
addition to its accessibility, machine learning
algorithms provide many benefits over conven-
tional malware classifications, such as the
capacity to get information from file samples,
rapidly detect, unexpected changes, and
minimize the human work and time spent
analyzing malware. In this article, malware
detection methods are classified according to
analytical methodologies such as static, dynam-
ic, and hybrid techniques. Each method has
advantages and disadvantages. These methods,
however, produced encouraging results in the
categorization of malware in a certain scenario.
For example, static methods are quicker, with a
reduced false-positive rate, but it is difficult to
cope with the obfuscation technique while
collecting static characteristics. In this respect,
on the contrary, dynamic methods offer a
beneficial although implementation in real-time
is inconvenient. Finally, we addressed the
two-layer malware detection framework with
static and dynamic functions that can effectively
and reliably detect the new and known malware.

REFERENCES

[1] H. Weijie, X. Jingfeng, W. Yong, H.
Lu, K. Zixiao and M. Limin, “MalDAE:
Detecting and explaining malware
based on correlation and fusion of static
and dynamic characteristics”, Comput-
ers and Security, vol. 83, pp. 208-233,
2019.

[2] B. Pete, F. Richard, T. Frederick and J.

Kevin, “Malware classification using
self organising feature maps and
machine activity data”, Computers and
Security, vol. 73, pp. 399-410, 2018.

[3] N. Usha, T. F. Di, C. V. Aaron, A.
Thomas and S. Mark, “Clustering versus
SVM for malware detection”, Journal of
Computer Virology and Hacking
Techniques, vol. 12, pp. 213-224, 2016.

[4] J. A. Namavar, H. Sattar, D. Ali and C.
R. Kim kwang, “An improved two-hid-
den-layer extreme learning machine for
malware hunting”, Computers and Secu-
rity, vol. 89, pp. 10-16, 2020.

[5] F. Massimo and P. F. Leaf, “An
open-source cybersecurity training
platform for realistic edge-IoT scenari-
os”, Journal of Systems Architecture,
vol. 97, pp. 107-129, 2020.

[6] K. Afreen, Z. Swaleha and Al. S.
Muaadhabdo, “An improved pre-pro-
cessing machine learning approach for
cross-sectional imaging of demented
older adults”, International Conference
of Intelligent Computing and Engineer-
ing (ICOICE), IEEE, pp. 1-7, 2019.

[7] P. Jakub, N. Q. Anh, B. Adrian, G.
Jonathan and L. Y. Kubo, “a framework
for automated efficacy testing of anti-vi-
rus behavioral detection with proce-
dure-based malware emulation”, In
Proceedings of the 13th International
Workshop on Automating Test Case
Design, Selection and Evaluation, pp.
37-44, 2022.

[8] B. Andrew, “How deception can change
cyber security defenses”, Computer
Fraud & Security, vol.5, no.1, pp. 12-14,
2019.

 [9] G. Ekta, B. Divya and S. Sanjeev, “Mal-
ware analysis and classification: A

survey”, Journal of Information Securi-
ty, vol. 6, 2014.

[10] M. S. Mariam, S. M. Ali, Z. Si-Jing and
Y. Hong-Ji, “Conceivable security risks
and authentication techniques for smart
devices: A comparative evaluation of
security practices”, International journal
of Automation and Computing, vol. 13,
pp. 350-363, 2016.

[11] B. Kang, F. Liu, Z. Yun and Y. Liang,
“Design of an Internet of Things-based
smart home system”, International
Conference on Intelligent Control and
Information Processing, IEEE, vol. 2,
pp. 921-924, 2011.

[12] A. Shahid, H, R. Nigel, T. Issa and S.
Ibrahim, “A framework for metamor-
phic malware analysis and real-time
detection”, Computers and Security, vol.
48, pp. 212-233, 2015.

[13] H. Xin, “Large-scale malware analysis,
detection, and signature generation”,
Doctoral dissertation, University of
Michigan, 2011.

[14] R. Kalpika, A. R. Vasudevan, “Detection
of Zeus Bot Based on Host and Network
Activities”, Communications in Com-
puter and Information Science, vol. 746,
pp. 978-981, 2017.

[15] E. Nabeil, E. Rashad, H. Alzubair and L.
Fagen, “A blockchain-based
attribute-based signcryption scheme to
secure data sharing in the cloud”,
Journal of Systems Architecture, vol.
102, pp. 10-16, 2020.

[16] J. Daehee, J. Yunjong , L Sungman , P.
Minjoon, K. Kuenhwan , K. Donguk and
K. B. Byunghoon, “Rethinking anti-em-
ulation techniques for large-scale
software deployment”, Computers and
Security, vol. 83, pp. 182-200, 2019.

[17] M. Samaneh and G. Ali A, “Application
of deep learning to cybersecurity: A
survey”, Neurocomputing, vol. 347, pp.
149-176, 2019.

[18] Z. Weizhe, W. Huanran, H. Hui and L.
Peng,” DAMBA: detecting android
malware by ORGB analysis”, IEEE
Transactions on Reliability, vol.69, no.1,
pp. 55-69, 2020.

[19] L. Liu, W. Bao-sheng, Y. Bo and Z.
Qiu-xi, “Automatic malware classifica-
tion and new malware detection using
machine learning”, Frontiers of Infor-
mation Technology & Electronic
Engineering, vol. 18, no. 9, pp.
1336-1347, 2017.

[20] K. Ratinder and M. Singh, “Hybrid
real-time zero-day malware analysis and
reporting system”, International Journal
of Information Technology and Comput-
er Sciences, vol. 8, pp. 63-73, 2016.

[21] M. Jelena, M. Miroslaw and F. Alberto,
“Time, accuracy and power consump-
tion tradeoff in mobile malware detec-
tion systems”, Computers and Security,
vol. 82, pp. 314-328, 2019.

[22] S. Hudan, S. Ferdous and P. Christian,
“A survey on forensic investigation of
operating system logs”, Digital Investi-
gation, vol. 29, pp. 1-20, 2019.

[23] N. Bruce, K. K. Hwan, K. Y. Jin, K.H.
Ho, K. T. Yong and L. H. Jae,
“Cross-method-based analysis and
classification of malicious behavior by
api calls extraction”, Applied Sciences,
vol. 9, no.2, pp. 239, 2019.

[24] Z. Hanqi, X. Xi, M. Francesco, N.
Shiguang, M. Fabio and S. A. Kumar,
“Classification of ransomware families
with machine learning based on N-gram
of opcodes”, Future Generation Com-

puter Systems, vol. 90, pp. 211-221,
2019.

[25] N. Jose, P. Araujo, P. Donald M and R.
C. Ghedini, “MULTS: A multi-cloud
fault-tolerant architecture to manage
transient servers in cloud computing”,
Journal of Systems Architecture, vol.
101, pp. 101-108, 2019.

[26] R. Veeramani and R. Nitin, “Windows
api based malware detection and frame-
work analysis”, In International Confer-
ence on Networks and Cyber Security,
vol. 25, 2012.

[27] C. Mihai, J. Somesh, K. Johannes, K.
Stefan and V. Helmut, “Software trans-
formations to improve malware detec-
tion”, Journal in Computer Virology,
vol. 3, pp. 253-265, 2007.

[28] O. Yoshihiro, “Trends of anti-analysis
operations of malwares observed in API
call logs”, Journal of Computer Virology
and Hacking Techniques, vol. 14, no. 1,
pp. 69-85, 2018.

[29] C. Sibi S and V. V. Sangeetha, “A survey
on malware analysis and mitigation
techniques”, Computer Science Review,
vol. 32, pp. 1-23, 2019.

[30] D. Jaime, S. Igor, C. Xabier, P. Yoseba K
and B. Pablo G, “Automatic
behaviour-based analysis and classifica-
tion system for malware detection”,
International Conference on Enterprise
Information Systems, vol. 2, pp.
395-399, 2010.

[31] D. Yuxin, X. Xiaoling, C. Sheng and L.
Ye, “A malware detection method based
on family behavior graph”, Computers
and Security, vol. 73, pp. 73-86, 2018.

[32] S. Jagsir and S. Jaswinder, “A survey on
machine learning-based malware detec-

tion in executable files”, Journal of
Systems Architecture, vol. 112, pp.
10-18, 2021.

[33] R. Anusmita and N. Asoke, “Introduc-
tion to Malware and Malware Analysis:
A brief overview”, International Journal,
vol. 4, no.10, 2016.

[34] W. Huanran, H. Hui and Z. Weizhe,
“Demadroid: Object reference
graph-based malware detection in
Android”, Security and Communication
Networks, vol. 2018, 2018.

[35] B. Tao, T. Takeshi, G. Shanqing, I.
Daisuke and N. Koji, “Integration of
multi-modal features for android
malware detection using linear SVM”,
In 2016 11th Asia Joint Conference on
Information Security (Asia JCIS), IEEE,
pp. 141-146, 2016.

[36] B. Ulrich, K. Engin and K. Christopher,
“Improving the efficiency of dynamic
malware analysis”, In Proceedings of the
2010 ACM Symposium on Applied
Computing, pp. 1871-1878, 2010.

[37] W. Gerard, S. Radu and D. Alexandre,
“Malware behaviour analysis”, Journal
in Computer Virology, vol. 4, pp.
279-287, 2008.

[38] M. Asit and T. Shashikala, “Virtual
machine introspection: towards bridging
the semantic gap”, Journal of Cloud
Computing, vol. 3, no.1, pp. 1-14, 2014.

[39] V. Jiri and P. Martin, “Virtualization of
operating system using type-2 Hypervi-
sor”, In Software Engineering Perspec-
tives and Application in Intelligent
Systems: Proceedings of the 5th Com-
puter Science On-line Conference 2016
(CSOC2016), Springer International
Publishing, vol. 25, pp. 239-247, 2016.

[40] M. Andreas, K. Christopher and K.
Engin, “Exploring multiple execution
paths for malware analysis”, In 2007
IEEE Symposium on Security and
Privacy (SP'07), IEEE, pp.231-245,
2007.

[41] K. Bojan, Z. Apostolis, L. Tamas, W.
George and E. Claudia, “Adaptive
semantics-aware malware classifica-
tion”, In Detection of Intrusions and
Malware, and Vulnerability Assessment:
13th International Conference, DIMVA
2016, San Sebastián, Spain, Springer
International Publishing, vol. 13, pp.
419-439, 2016.

[42] R. Edward, Z. Richard, C. Russell, S.
Jared, Y. Paul, W. Rebecca, T. Anna, M.
Mark and N. Charles, “An investigation
of byte n-gram features for malware
classification”, Journal of Computer
Virology and Hacking Techniques, vol.
14, pp. 1-20, 2018.

[43] M. Zane and B. Michael, “Building a
machine learning classifier for malware
detection”, In 2014 second workshop on
anti-malware testing research (Water),
IEEE, pp. 1-4, 2014.

[44] S. Michael and H. Andrew, “A Practical
malware analysis: the hands-on guide to
dissecting malicious software”. Starch
Press, 2012.

[45] W. Tzu-Yen and W. Chin-Hsiung,
“Detection of packed executables using
support vector machines”, International
Conference on Machine Learning and
Cybernetics, IEEE, vol. 2, pp. 717-722,
2011.

[46] A. Satheesh and R. Kumaravelu, “A
mathematical model of HMST model on
malware static analysis”, International
Journal of Information Security and

Privacy, vol. 13, no. 2, pp. 86-103, 2019.

[47] A. Imad and L. Saiida, “A new classifi-
cation based model for malicious PE
files detection”, International Journal of
Computer Network and Information
Security, vol. 9, no.6, pp.1-7, 2019.

[48] L. Michael, A. Steven, H. Blake, R.
Matthew, “Malware Analyst's Cookbook
and DVD”, Wiley Publishing, 2011.

[49] L. Xiaojing, Y. Kan, W. XiaoFeng, L.
Zhou, X. Luyi and B. Raheem, “Acing
the ioc game: Toward automatic discov-
ery and analysis of open-source cyber
threat intelligence”, ACM SIGSAC
conference on computer and communi-
cations security, pp. 755-766, 2016.

[50] S. Sebastian and K. Stefan, “Code
obfuscation against static and dynamic
reverse engineering”, In Information
Hiding: 13th International Conference,
IH 2011, Prague, Czech Republic,
Revised Selected Papers, Springer
Berlin Heidelberg, vol. 13, pp. 270-284,
2011.

[51] C. Michael , “Scanning memory with
Yara”, Digital Investigation, vol. 20, pp.
34-38, 2017.

[52] S. Nikolaos, B. Chafika, A. Omar and A.
Ameer, “Forensic malware analysis: The
value of fuzzy hashing algorithms in
identifying similarities”, IEEE Trust-
com/ Big Data SE/ ISPA, IEEE, pp.
1782-1787, 2016.

[53] K. Abhishek, G. Suchandra and G.
Ratan, “Detecting obfuscated viruses
using cosine similarity analysis”, Asia
International Conference on Modelling
and Simulation (AMS'07), IEEE, pp.
165-170, 2007.

[54] B. Danilo, M. Lorenzo, M. Mattia,

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

44 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

“Code normalization for self-mutating
malware”, IEEE Security and Privacy,
vol. 5, no.2, pp. 46-54, 2007.

[55] Z. Boyun, Y. Jianping, H. Jingbo, Z.
Dingxing and W. Shulin, “Malicious
codes detection based on ensemble
learning”, In Autonomic and Trusted
Computing: 4th International Confer-
ence, ATC 2007, Hong Kong, China,
July 11-13, 2007. Proceedings 4, Spring-
er Berlin Heidelberg, pp. 468-477,
2007.

[56] M. Robert, F. Clint, T. Nir, B. Eugene,
G. Marina, D. Shlomi and E. Yuval,
“Unknown malcode detection using
opcode representation”, In Intelligence
and Security Informatics: First European
Conference, Euro ISI 2008, Esbjerg,
Denmark, Proceedings, Springer Berlin
Heidelberg, pp. 204-215, 2008.

[57] B. S. Mojtaba, J. Saeed and T. Asghar,
“PbMMD: A novel policy based
multi-process malware detection”,
Engineering Applications of Artificial
Intelligence, vol. 60, pp. 57-70, 2017.

[58] N. Vivens, X. Zhifeng, M. V. Rao, M. Ke
and X. Yang, “Network forensics analy-
sis using Wireshark”, International
Journal of Security and Networks, vol.
10, no.2, pp. 91-106, 2015.

[59] H. Nazrul, B. Monowar H, B. Ram
Charan, B. Dhruba K and K. Jugal K,
“Network attacks: Taxonomy, tools and
systems”, Journal of Network and Com-
puter Applications, vol. 40, pp. 307-324,
2014.

[60] E. Eldad, “Reversing: secrets of reverse
engineering”, John Wiley & Sons, 2011.

[61] G. Daniel, M. Carles and P. Jordi, “The
rise of machine learning for detection
and classification of malware: Research

developments, trends and challenges”,
Journal of Network and Computer
Applications, vol. 153, pp. 102526,
2020.

[62] R. Chathuranga and J. Aruna, “An
efficient approach for advanced
malware analysis using memory foren-
sic technique”, In 2017 IEEE Trustcom/
Big Data SE/ ICESS, IEEE, pp.
1145-1150, 2017.

[63] K. Ilker, “A basic malware analysis
method”, Computer Fraud and Security,
vol. 2019, no. 6, pp. 11-19, 2019.

[64] K. Joakim, “Fundamentals of Digital
Forensics”, Springer International
Publishing, 2020.

[65] P. Radu, H. Steven, L. Thor, S. Matija, P.
Jens and C. Alexandre, “Analysis of
malware behavior: Type classification
using machine learning”, International
conference on cyber situational aware-
ness, data analytics and assessment
(Cyber SA), IEEE, pp. 1-7, 2015.

[66] A. Omer and S. Refik, “Investigation of
possibilities to detect malware using
existing tools”, 14th International
Conference on Computer Systems and
Applications. IEEE, pp. 1277-1284,
2017.

[67] M. Q. Ali, A. Irfan and Y. Muhammad,
“Cloud Intell: An intelligent malware
detection system”, Future Generation
Computer Systems, vol. 86, pp.
1042-1053, 2018.

[68] G. Kent, S. Scott, H. Xin and C. Tzi-ck-
er, “Automatic generation of string
signatures for malware detection”,
Recent Advances in Intrusion Detection:
12th International Symposium, RAID
2009, Saint-Malo, France, Proceedings,
Springer Berlin Heidelberg, vol. 12, pp.

101-120, 2009.

[69] G. Dragoş, C. Mihai, A. Dan and C.
Liviu, “Malware detection using
machine learning”, International multi-
conference on computer science and
information technology, IEEE, pp.
735-741, 2009.

[70] B. Philippe, G. Isabelle and M. Jean-Yves,
“Behavior abstraction in malware analy-
sis”, In Runtime Verification: First
International Conference, RV 2010,
Proceedings, Springer Berlin Heidel-
berg, vol. 1, pp. 168-182, 2010.

[71] C. Sang Kil, M. Iulian, J. Jiyong, T.
John, B. David and A. David G, “Split
Screen: Enabling efficient, distributed
malware detection”, Journal of Commu-
nications and Networks, vol. 13, no.2,
pp. 187-200, 2011.

[72] S. Asaf, M, Robert, F. Clint, D. Shlomi
and E. Yuval, “Detecting unknown
malicious code by applying classifica-
tion techniques on opcode patterns”,
Security Informatics, vol. 1, no.1, pp.
1-22, 2012.

[73] S. Asaf, M. Robert, E. Yuval and G.
Chanan, “Detection of malicious code
by applying machine learning classifiers
on static features: A state-of-the-art
survey”, Information Security Technical
Report, vol. 14, no.1, pp. 16-29, 2009.

[74] E. A. Ahmed E, M. M. Aizaini and B.
Bazara, “Improving the detection of
malware behaviour using simplified data
dependent API call graph”, International
Journal of Security and its Applications,
vol. 7, no. 5, pp. 29-42, 2013.

[75] P. Bassir, J. M. Vafaie and J. Mehrdad,
“Malware detection using hidden
Markov model based on Markov blanket
feature selection method”. International

congress on technology, communication
and knowledge, IEEE, pp. 558-563,
2015.

[76] S. Nedim and L. Pavel, “Hidost: a static
machine-learning-based detector of
malicious files”. EURASIP Journal on
Information Security, vol. 2016, pp.
1-20, 2016.

[77] K. Dong Hee, W. Sang Uk, L. Dong Kyu
and C. Tai Myoung, “Static detection of
malware and benign executable using
machine learning algorithm”. Eighth
International Conference on Evolving
Internet, pp. 14-19, 2016.

[78] H. Shamsul, A. Jemal, A. Mamoun, A.
Mali, I. Rafiqul and Y. John, “Hybrids of
support vector machine wrapper and
filter based framework for malware
detection”. Future Generation Computer
Systems, vol. 55, pp. 376-390, 2016.

[79] N. Yuta and U. Ryuya, “Static analysis
with paragraph vector for malware
detection”. In Proceedings of the 11th
International Conference on Ubiquitous
Information Management and Commu-
nication, pp. 1-7, 2017.

[80] W. Cheng, Q. Zheng, Z. Jixin and Y.
Hui, “A malware variants detection
methodology with an opcode based
feature method and a fast density based
clustering algorithm”. 12th International
Conference on Natural Computation,
Fuzzy Systems and Knowledge Discov-
ery (ICNC-FSKD), IEEE, pp. 481-487,
2016.

[81] M. Aziz, A. Omar and M. Manar,
“AMAL: high-fidelity, behavior-based
automated malware analysis and classi-
fication”. Computers and Security, vol.
52, pp. 251-266, 2015.

[82] Y. Yanfang, W. Dingding, L. Tao, Y.

Dongyi and J. Qingshan, “An intelligent
PE-malware detection system based on
association mining”, Journal in comput-
er virology, vol. 4, pp. 323-334, 2008.

[83] B. Michael, O. Jon, A. Jon, M. Z.
Morley, J. Farnam and N. Jose, “Auto-
mated classification and analysis of
internet malware”, Recent Advances in
Intrusion Detection: 10th International
Symposium, RAID, vol. 10, pp.
178-197, 2007.

[84] R. Konrad, T. Philipp, W. Carsten and H.
Thorsten, “Automatic analysis of
malware behavior using machine learn-
ing”, Journal of Computer Security, vol.
19, no.4, pp. 639-668, 2011.

[85] V. Mihai, G. Laura and T. Nicolae,
“Practical malware analysis based on
sandboxing”, Ro Edu Net Conference
13th Edition: Networking in Education
and Research Joint Event RENAM 8th
Conference, IEEE, pp. 1-6, 2014.

[86] H. Jozsef, M. Yoan, I. Alexander and L.
Amaury, “Methodology for behavior-
al-based malware analysis and detection
using random projections and k-nearest
neighbors classifiers”, International
Conference on Computational Intelli-
gence and Security, IEEE, pp.
1016-1023, 2011.

[87] G. Mahboobe, S. Ashkan and S. Zahra,
“Dynamic VSA: a framework for
malware detection based on register
contents”, Engineering Applications of
Artificial Intelligence, vol. 44, pp.
111-122, 2015.

[88] P. Zhi-Peng, F. Chao and T. Chao-Jing,
“Malware classification based on the
behavior analysis and back propagation
neural network”. In ITM Web of Confer-
ences, EDP Sciences, vol.7, pp. 20-28,

Nov. 2016.

[89] H. Shamsul, M. Suruz, H. M. Mehedi, I.
Rafiqul, Y. John, A. Majed and A.
Ahmad, “Defending unknown attacks
on cyber-physical systems by semi-su-
pervised approach and available
unlabeled data”, Information Sciences,
vol. 379, pp. 211-228, 2017.

[90] M. Fahad, H. Wei and B. Antony,
“Novel malware detection methods by
using LCS and LCSS”, 22nd Interna-
tional Conference on Automation and
Computing (ICAC), IEEE, pp. 554-559,
2016.

[91] H. Eduardo, M. Rubén S and L. Ignacio
M, “Evaluating the reliability of compu-
tational grids from the end user’s point
of view”, Journal of Systems Architec-
ture, vol. 52, no. 12, pp. 727-736, 2006.

[92] N. B. Narayanan, D. Ouboti and K.
Temesguen, “Performance analysis of
machine learning and pattern recogni-
tion algorithms for malware classifica-
tion”, IEEE national aerospace and
electronics conference (NAECON) and
ohio innovation summit (OIS), IEEE,
pp. 338-342, 2016.

[93] C. In Kyeom, K. T. Guen, S. Y. Jin, R.
Minsoo and I. E. Gyu, “Malware analy-
sis and classification using sequence
alignments”, Intelligent Automation and
Soft Computing, vol. 22, no.3, pp.
371-377, 2016.

[94] M. Jiang, X. Zhi, L. Pengwei, W. Ding-
hao, L. Peng and M. Bing, “Impeding
behavior-based malware analysis via
replacement attacks to malware specifi-
cations”, Journal of Computer Virology
and Hacking Techniques, vol. 13,
pp.193-207, 2017.

[95] W. Markus, R. Alexander, T. Niklas and

A. Wolfgang, “A knowledge-assisted
visual malware analysis system: Design,
validation, and reflection of KAMAS”,
Computers and Security, vol. 67, pp.
1-15, 2017.

[96] N. Stavros D and P, Iosif, “A
graph-based model for malware detec-
tion and classification using system-call
groups”, Journal of Computer Virology
and Hacking Techniques, vol. 13, no.1,
pp. 29-46, 2017.

[97] L. Quan, B. Oisin, M. N. Brian and S.
Mark, “Deep learning at the shallow
end: Malware classification for non-do-
main experts”, Digital Investigation,
vol. 26, pp. S118-S126, 2018.

[98] P. Abdurrahman and A. Tankut, “Classi-
fication of malware families based on
runtime behaviors”, Journal of informa-
tion security and applications, vol. 37,
pp. 91-100, 2017.

[99] S. Jan, P. Tomás and R. Martin, “Multi-
ple instance learning for malware classi-
fication”, Expert Systems with Applica-
tions, vol. 93, pp. 346-357, 2018.

[100] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

 [101] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

[102] X. Lu, F. Jiang, X. Zhou, S. Yi and J. Sha
and L. Pietro, “ASSCA: API sequence

and statistics features combined archi-
tecture for malware detection”, Comput-
er Networks, vol. 157, pp. 99-111,
2019.

[103] D. Arivudainambi, K.A. Varun Kumar
and P. Visu, “Malware traffic classifica-
tion using principal component analysis
and artificial neural network for extreme
surveillance”, Computer Communica-
tions, vol. 147, pp. 50-57, 2019.

[104] Y. Cagatay and K. Ahmet, “Imaging and
evaluating the memory access for
malware”, Forensic Science Internation-
al: Digital Investigation, vol. 32, pp.
20-27, 2020.

[105] R. Mahdi, W. Yong Li, K. Reza, J.
Hamed, Z. Ruxin and H. Peng, “A
hybrid machine learning approach for
malicious behaviour detection and
recognition in cloud computing”,
Journal of Network and Computer
Applications, vol. 151, pp. 12-19, 2020.

[106] E. A. Ahmed E, M. M. Aizaini, B.
Bazara- IA and H. Hentabli, “Enhancing
the detection of metamorphic malware
using call graphs”, Computers and Secu-
rity, vol. 46, pp. 62-78, 2014.

[107] R. Jesse C, K. Roger I, L. Scott M and C.
Robert K, “Detection of injected,
dynamically generated, and obfuscated
malicious code”, ACM workshop on
Rapid malcode, pp. 76-82, 2003.

[108] C. Michael, “A protocol graph based
anomaly detection system”, Doctoral
dissertation, Carnegie Mellon Universi-
ty, 2008.

[109] M. R. Jose and D. J. Cesar, “Integrating
static and dynamic malware analysis
using machine learning”, IEEE Latin
America Transactions, vol. 13, no. 9, pp.
3080-3087, 2015.

[110] S. PV and S. AJPCS, “Integrated static
and dynamic analysis for malware
detection”, Procedia Computer Science,
vol. 46, pp. 804-811, 2015.

[111] E. E. Inang, B. Chafika, A. Ameer and
W. Paul, “Analysis of malware
behaviour: Using data mining clustering
techniques to support forensics investi-
gation”, Fifth Cybercrime and Trust-
worthy Computing Conference, IEEE,
pp. 54-63, 2014.

[112] W. Ahsan, I. Azhar, L. Jahanzaib, N.
Ahsan and B. Anas, “A novel approach
of unprivileged keylogger detection”,
2nd International Conference on Com-
puting, Mathematics and Engineering
Technologies (iCoMET), IEEE, pp. 1-6,
2019.

[113] N. Mohammad, A. Nouman and Y. Jing
Tao, “A three-way decision making
approach to malware analysis using
probabilistic rough sets”, Information
Sciences, vol. 37, no. 4, pp. 193-209,
2016.

[114] N. Mohammad, A. Nouman and Y. Jing
Tao, “Detecting malware evolution
using support vector machines”, Expert
Systems with Applications, vol. 143, pp.
113022, 2020.

[115] P. Avi, R. Brian, K. Lee, H. Michael, C.
Catherine, O. Alison, T. Glenn, R. S.
Neal, P. Terry, and T. Jason, “Artificial
intelligence based malware analysis”,
arXiv preprint, pp.16-23, 2017.

[116] H. Shamsul, I. Rafiqul, A. Jemal, Y.
John, H. M. Mehedi and F. Giancarlo,
“A hybrid-multi filter-wrapper frame-
work to identify run-time behaviour for
fast malware detection”, Future Genera-
tion Computer Systems, vol. 1, no. 83,
pp. 193-207, 2018.

[117] S. Robert, X. Lifan, K. William, V.
Tristan, F. Teague, H. John, P. Zachary,
S. Corey, S. Joshua and C. John, “Paral-
lelization of machine learning applied to
call graphs of binaries for malware
detection”, 25th Euromicro International
Conference on Parallel, Distributed and
Network-based Processing (PDP),
IEEE, pp. 69-77, 2017.

[118] K. Youngjoon, K. Eunjin and K. Huy
Kang, “A novel approach to detect
malware based on API call sequence
analysis”, International Journal of
Distributed Sensor Networks, vol. 11,
no.6, pp. 659101, 2015.

[119] M. Weixuan, C. Zhongmin, T. Don, F.
Qian and G. Xiaohong, “Security impor-
tance assessment for system objects and
malware detection”, Computers and
Security, vol. 68, pp. 47-68, 2017.

[120] O. Philip, S. Sezer, and K. McLaughlin,
“Detecting obfuscated malware using
reduced opcode set and optimised
runtime trace”, Security Informatics,
vol. 5, pp. 1-12, 2016.

[121] D. Anusha, T. Fabio Di, V. C. Aaron, A.
Thomas H and S. Mark, “A comparison
of static, dynamic, and hybrid analysis
for malware detection”, Journal of Com-
puter Virology and Hacking Techniques,
vol. 13, pp. 1-12, 2017.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

7. CONCLUSION

This study helps to identify malwares using
runtime characteristics. It provides the knowl-
edge fraction for harmful software analysis and
detection procedures through machine learning
algorithms. Malware is now well-known to be
highly sophisticated and rapidly changing.
Today, it is not only used to disturb users, steal
information, and destroy user data but also to
enforce its objectives for businesses and
nations. The protection of data and resources is
a key component in information technology.
This is essential because computers or embed-
ded digital devices in every area are utilized to
execute activities more quickly and precisely
without human involvement. The computer

system is more susceptible to hacking because
of its wide range of applications. This study
covers the development of malware, present
status, and techniques of detection. Two
malware analysis techniques exist signature
based, and behavior based. Signature-based
technology has two major flaws that must be
addressed. For the time being, signature-based
techniques will not be able to identify new or
previously unknown malware. Second, different
types of malwares may readily outwit the
system's detection mechanisms. Behavior-based
technique can identify new variants of malware,
dynamic techniques in malware-based methods
are more robust than signature-based methods.
The actual application of dynamic methods
nevertheless remains rigid and time-intensive,
whereas signature technology is quicker and

more efficacious than dynamic techniques in
identifying known malware. We spoke about
malware methods that were suggested for
machine learning to train the classification of
malware in this research. This is because it
includes a huge number of algorithms that may
be used for a variety of malware features. In
addition to its accessibility, machine learning
algorithms provide many benefits over conven-
tional malware classifications, such as the
capacity to get information from file samples,
rapidly detect, unexpected changes, and
minimize the human work and time spent
analyzing malware. In this article, malware
detection methods are classified according to
analytical methodologies such as static, dynam-
ic, and hybrid techniques. Each method has
advantages and disadvantages. These methods,
however, produced encouraging results in the
categorization of malware in a certain scenario.
For example, static methods are quicker, with a
reduced false-positive rate, but it is difficult to
cope with the obfuscation technique while
collecting static characteristics. In this respect,
on the contrary, dynamic methods offer a
beneficial although implementation in real-time
is inconvenient. Finally, we addressed the
two-layer malware detection framework with
static and dynamic functions that can effectively
and reliably detect the new and known malware.

REFERENCES

[1] H. Weijie, X. Jingfeng, W. Yong, H.
Lu, K. Zixiao and M. Limin, “MalDAE:
Detecting and explaining malware
based on correlation and fusion of static
and dynamic characteristics”, Comput-
ers and Security, vol. 83, pp. 208-233,
2019.

[2] B. Pete, F. Richard, T. Frederick and J.

Kevin, “Malware classification using
self organising feature maps and
machine activity data”, Computers and
Security, vol. 73, pp. 399-410, 2018.

[3] N. Usha, T. F. Di, C. V. Aaron, A.
Thomas and S. Mark, “Clustering versus
SVM for malware detection”, Journal of
Computer Virology and Hacking
Techniques, vol. 12, pp. 213-224, 2016.

[4] J. A. Namavar, H. Sattar, D. Ali and C.
R. Kim kwang, “An improved two-hid-
den-layer extreme learning machine for
malware hunting”, Computers and Secu-
rity, vol. 89, pp. 10-16, 2020.

[5] F. Massimo and P. F. Leaf, “An
open-source cybersecurity training
platform for realistic edge-IoT scenari-
os”, Journal of Systems Architecture,
vol. 97, pp. 107-129, 2020.

[6] K. Afreen, Z. Swaleha and Al. S.
Muaadhabdo, “An improved pre-pro-
cessing machine learning approach for
cross-sectional imaging of demented
older adults”, International Conference
of Intelligent Computing and Engineer-
ing (ICOICE), IEEE, pp. 1-7, 2019.

[7] P. Jakub, N. Q. Anh, B. Adrian, G.
Jonathan and L. Y. Kubo, “a framework
for automated efficacy testing of anti-vi-
rus behavioral detection with proce-
dure-based malware emulation”, In
Proceedings of the 13th International
Workshop on Automating Test Case
Design, Selection and Evaluation, pp.
37-44, 2022.

[8] B. Andrew, “How deception can change
cyber security defenses”, Computer
Fraud & Security, vol.5, no.1, pp. 12-14,
2019.

 [9] G. Ekta, B. Divya and S. Sanjeev, “Mal-
ware analysis and classification: A

survey”, Journal of Information Securi-
ty, vol. 6, 2014.

[10] M. S. Mariam, S. M. Ali, Z. Si-Jing and
Y. Hong-Ji, “Conceivable security risks
and authentication techniques for smart
devices: A comparative evaluation of
security practices”, International journal
of Automation and Computing, vol. 13,
pp. 350-363, 2016.

[11] B. Kang, F. Liu, Z. Yun and Y. Liang,
“Design of an Internet of Things-based
smart home system”, International
Conference on Intelligent Control and
Information Processing, IEEE, vol. 2,
pp. 921-924, 2011.

[12] A. Shahid, H, R. Nigel, T. Issa and S.
Ibrahim, “A framework for metamor-
phic malware analysis and real-time
detection”, Computers and Security, vol.
48, pp. 212-233, 2015.

[13] H. Xin, “Large-scale malware analysis,
detection, and signature generation”,
Doctoral dissertation, University of
Michigan, 2011.

[14] R. Kalpika, A. R. Vasudevan, “Detection
of Zeus Bot Based on Host and Network
Activities”, Communications in Com-
puter and Information Science, vol. 746,
pp. 978-981, 2017.

[15] E. Nabeil, E. Rashad, H. Alzubair and L.
Fagen, “A blockchain-based
attribute-based signcryption scheme to
secure data sharing in the cloud”,
Journal of Systems Architecture, vol.
102, pp. 10-16, 2020.

[16] J. Daehee, J. Yunjong , L Sungman , P.
Minjoon, K. Kuenhwan , K. Donguk and
K. B. Byunghoon, “Rethinking anti-em-
ulation techniques for large-scale
software deployment”, Computers and
Security, vol. 83, pp. 182-200, 2019.

[17] M. Samaneh and G. Ali A, “Application
of deep learning to cybersecurity: A
survey”, Neurocomputing, vol. 347, pp.
149-176, 2019.

[18] Z. Weizhe, W. Huanran, H. Hui and L.
Peng,” DAMBA: detecting android
malware by ORGB analysis”, IEEE
Transactions on Reliability, vol.69, no.1,
pp. 55-69, 2020.

[19] L. Liu, W. Bao-sheng, Y. Bo and Z.
Qiu-xi, “Automatic malware classifica-
tion and new malware detection using
machine learning”, Frontiers of Infor-
mation Technology & Electronic
Engineering, vol. 18, no. 9, pp.
1336-1347, 2017.

[20] K. Ratinder and M. Singh, “Hybrid
real-time zero-day malware analysis and
reporting system”, International Journal
of Information Technology and Comput-
er Sciences, vol. 8, pp. 63-73, 2016.

[21] M. Jelena, M. Miroslaw and F. Alberto,
“Time, accuracy and power consump-
tion tradeoff in mobile malware detec-
tion systems”, Computers and Security,
vol. 82, pp. 314-328, 2019.

[22] S. Hudan, S. Ferdous and P. Christian,
“A survey on forensic investigation of
operating system logs”, Digital Investi-
gation, vol. 29, pp. 1-20, 2019.

[23] N. Bruce, K. K. Hwan, K. Y. Jin, K.H.
Ho, K. T. Yong and L. H. Jae,
“Cross-method-based analysis and
classification of malicious behavior by
api calls extraction”, Applied Sciences,
vol. 9, no.2, pp. 239, 2019.

[24] Z. Hanqi, X. Xi, M. Francesco, N.
Shiguang, M. Fabio and S. A. Kumar,
“Classification of ransomware families
with machine learning based on N-gram
of opcodes”, Future Generation Com-

puter Systems, vol. 90, pp. 211-221,
2019.

[25] N. Jose, P. Araujo, P. Donald M and R.
C. Ghedini, “MULTS: A multi-cloud
fault-tolerant architecture to manage
transient servers in cloud computing”,
Journal of Systems Architecture, vol.
101, pp. 101-108, 2019.

[26] R. Veeramani and R. Nitin, “Windows
api based malware detection and frame-
work analysis”, In International Confer-
ence on Networks and Cyber Security,
vol. 25, 2012.

[27] C. Mihai, J. Somesh, K. Johannes, K.
Stefan and V. Helmut, “Software trans-
formations to improve malware detec-
tion”, Journal in Computer Virology,
vol. 3, pp. 253-265, 2007.

[28] O. Yoshihiro, “Trends of anti-analysis
operations of malwares observed in API
call logs”, Journal of Computer Virology
and Hacking Techniques, vol. 14, no. 1,
pp. 69-85, 2018.

[29] C. Sibi S and V. V. Sangeetha, “A survey
on malware analysis and mitigation
techniques”, Computer Science Review,
vol. 32, pp. 1-23, 2019.

[30] D. Jaime, S. Igor, C. Xabier, P. Yoseba K
and B. Pablo G, “Automatic
behaviour-based analysis and classifica-
tion system for malware detection”,
International Conference on Enterprise
Information Systems, vol. 2, pp.
395-399, 2010.

[31] D. Yuxin, X. Xiaoling, C. Sheng and L.
Ye, “A malware detection method based
on family behavior graph”, Computers
and Security, vol. 73, pp. 73-86, 2018.

[32] S. Jagsir and S. Jaswinder, “A survey on
machine learning-based malware detec-

tion in executable files”, Journal of
Systems Architecture, vol. 112, pp.
10-18, 2021.

[33] R. Anusmita and N. Asoke, “Introduc-
tion to Malware and Malware Analysis:
A brief overview”, International Journal,
vol. 4, no.10, 2016.

[34] W. Huanran, H. Hui and Z. Weizhe,
“Demadroid: Object reference
graph-based malware detection in
Android”, Security and Communication
Networks, vol. 2018, 2018.

[35] B. Tao, T. Takeshi, G. Shanqing, I.
Daisuke and N. Koji, “Integration of
multi-modal features for android
malware detection using linear SVM”,
In 2016 11th Asia Joint Conference on
Information Security (Asia JCIS), IEEE,
pp. 141-146, 2016.

[36] B. Ulrich, K. Engin and K. Christopher,
“Improving the efficiency of dynamic
malware analysis”, In Proceedings of the
2010 ACM Symposium on Applied
Computing, pp. 1871-1878, 2010.

[37] W. Gerard, S. Radu and D. Alexandre,
“Malware behaviour analysis”, Journal
in Computer Virology, vol. 4, pp.
279-287, 2008.

[38] M. Asit and T. Shashikala, “Virtual
machine introspection: towards bridging
the semantic gap”, Journal of Cloud
Computing, vol. 3, no.1, pp. 1-14, 2014.

[39] V. Jiri and P. Martin, “Virtualization of
operating system using type-2 Hypervi-
sor”, In Software Engineering Perspec-
tives and Application in Intelligent
Systems: Proceedings of the 5th Com-
puter Science On-line Conference 2016
(CSOC2016), Springer International
Publishing, vol. 25, pp. 239-247, 2016.

[40] M. Andreas, K. Christopher and K.
Engin, “Exploring multiple execution
paths for malware analysis”, In 2007
IEEE Symposium on Security and
Privacy (SP'07), IEEE, pp.231-245,
2007.

[41] K. Bojan, Z. Apostolis, L. Tamas, W.
George and E. Claudia, “Adaptive
semantics-aware malware classifica-
tion”, In Detection of Intrusions and
Malware, and Vulnerability Assessment:
13th International Conference, DIMVA
2016, San Sebastián, Spain, Springer
International Publishing, vol. 13, pp.
419-439, 2016.

[42] R. Edward, Z. Richard, C. Russell, S.
Jared, Y. Paul, W. Rebecca, T. Anna, M.
Mark and N. Charles, “An investigation
of byte n-gram features for malware
classification”, Journal of Computer
Virology and Hacking Techniques, vol.
14, pp. 1-20, 2018.

[43] M. Zane and B. Michael, “Building a
machine learning classifier for malware
detection”, In 2014 second workshop on
anti-malware testing research (Water),
IEEE, pp. 1-4, 2014.

[44] S. Michael and H. Andrew, “A Practical
malware analysis: the hands-on guide to
dissecting malicious software”. Starch
Press, 2012.

[45] W. Tzu-Yen and W. Chin-Hsiung,
“Detection of packed executables using
support vector machines”, International
Conference on Machine Learning and
Cybernetics, IEEE, vol. 2, pp. 717-722,
2011.

[46] A. Satheesh and R. Kumaravelu, “A
mathematical model of HMST model on
malware static analysis”, International
Journal of Information Security and

Privacy, vol. 13, no. 2, pp. 86-103, 2019.

[47] A. Imad and L. Saiida, “A new classifi-
cation based model for malicious PE
files detection”, International Journal of
Computer Network and Information
Security, vol. 9, no.6, pp.1-7, 2019.

[48] L. Michael, A. Steven, H. Blake, R.
Matthew, “Malware Analyst's Cookbook
and DVD”, Wiley Publishing, 2011.

[49] L. Xiaojing, Y. Kan, W. XiaoFeng, L.
Zhou, X. Luyi and B. Raheem, “Acing
the ioc game: Toward automatic discov-
ery and analysis of open-source cyber
threat intelligence”, ACM SIGSAC
conference on computer and communi-
cations security, pp. 755-766, 2016.

[50] S. Sebastian and K. Stefan, “Code
obfuscation against static and dynamic
reverse engineering”, In Information
Hiding: 13th International Conference,
IH 2011, Prague, Czech Republic,
Revised Selected Papers, Springer
Berlin Heidelberg, vol. 13, pp. 270-284,
2011.

[51] C. Michael , “Scanning memory with
Yara”, Digital Investigation, vol. 20, pp.
34-38, 2017.

[52] S. Nikolaos, B. Chafika, A. Omar and A.
Ameer, “Forensic malware analysis: The
value of fuzzy hashing algorithms in
identifying similarities”, IEEE Trust-
com/ Big Data SE/ ISPA, IEEE, pp.
1782-1787, 2016.

[53] K. Abhishek, G. Suchandra and G.
Ratan, “Detecting obfuscated viruses
using cosine similarity analysis”, Asia
International Conference on Modelling
and Simulation (AMS'07), IEEE, pp.
165-170, 2007.

[54] B. Danilo, M. Lorenzo, M. Mattia,

“Code normalization for self-mutating
malware”, IEEE Security and Privacy,
vol. 5, no.2, pp. 46-54, 2007.

[55] Z. Boyun, Y. Jianping, H. Jingbo, Z.
Dingxing and W. Shulin, “Malicious
codes detection based on ensemble
learning”, In Autonomic and Trusted
Computing: 4th International Confer-
ence, ATC 2007, Hong Kong, China,
July 11-13, 2007. Proceedings 4, Spring-
er Berlin Heidelberg, pp. 468-477,
2007.

[56] M. Robert, F. Clint, T. Nir, B. Eugene,
G. Marina, D. Shlomi and E. Yuval,
“Unknown malcode detection using
opcode representation”, In Intelligence
and Security Informatics: First European
Conference, Euro ISI 2008, Esbjerg,
Denmark, Proceedings, Springer Berlin
Heidelberg, pp. 204-215, 2008.

[57] B. S. Mojtaba, J. Saeed and T. Asghar,
“PbMMD: A novel policy based
multi-process malware detection”,
Engineering Applications of Artificial
Intelligence, vol. 60, pp. 57-70, 2017.

[58] N. Vivens, X. Zhifeng, M. V. Rao, M. Ke
and X. Yang, “Network forensics analy-
sis using Wireshark”, International
Journal of Security and Networks, vol.
10, no.2, pp. 91-106, 2015.

[59] H. Nazrul, B. Monowar H, B. Ram
Charan, B. Dhruba K and K. Jugal K,
“Network attacks: Taxonomy, tools and
systems”, Journal of Network and Com-
puter Applications, vol. 40, pp. 307-324,
2014.

[60] E. Eldad, “Reversing: secrets of reverse
engineering”, John Wiley & Sons, 2011.

[61] G. Daniel, M. Carles and P. Jordi, “The
rise of machine learning for detection
and classification of malware: Research

developments, trends and challenges”,
Journal of Network and Computer
Applications, vol. 153, pp. 102526,
2020.

[62] R. Chathuranga and J. Aruna, “An
efficient approach for advanced
malware analysis using memory foren-
sic technique”, In 2017 IEEE Trustcom/
Big Data SE/ ICESS, IEEE, pp.
1145-1150, 2017.

[63] K. Ilker, “A basic malware analysis
method”, Computer Fraud and Security,
vol. 2019, no. 6, pp. 11-19, 2019.

[64] K. Joakim, “Fundamentals of Digital
Forensics”, Springer International
Publishing, 2020.

[65] P. Radu, H. Steven, L. Thor, S. Matija, P.
Jens and C. Alexandre, “Analysis of
malware behavior: Type classification
using machine learning”, International
conference on cyber situational aware-
ness, data analytics and assessment
(Cyber SA), IEEE, pp. 1-7, 2015.

[66] A. Omer and S. Refik, “Investigation of
possibilities to detect malware using
existing tools”, 14th International
Conference on Computer Systems and
Applications. IEEE, pp. 1277-1284,
2017.

[67] M. Q. Ali, A. Irfan and Y. Muhammad,
“Cloud Intell: An intelligent malware
detection system”, Future Generation
Computer Systems, vol. 86, pp.
1042-1053, 2018.

[68] G. Kent, S. Scott, H. Xin and C. Tzi-ck-
er, “Automatic generation of string
signatures for malware detection”,
Recent Advances in Intrusion Detection:
12th International Symposium, RAID
2009, Saint-Malo, France, Proceedings,
Springer Berlin Heidelberg, vol. 12, pp.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

45Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

101-120, 2009.

[69] G. Dragoş, C. Mihai, A. Dan and C.
Liviu, “Malware detection using
machine learning”, International multi-
conference on computer science and
information technology, IEEE, pp.
735-741, 2009.

[70] B. Philippe, G. Isabelle and M. Jean-Yves,
“Behavior abstraction in malware analy-
sis”, In Runtime Verification: First
International Conference, RV 2010,
Proceedings, Springer Berlin Heidel-
berg, vol. 1, pp. 168-182, 2010.

[71] C. Sang Kil, M. Iulian, J. Jiyong, T.
John, B. David and A. David G, “Split
Screen: Enabling efficient, distributed
malware detection”, Journal of Commu-
nications and Networks, vol. 13, no.2,
pp. 187-200, 2011.

[72] S. Asaf, M, Robert, F. Clint, D. Shlomi
and E. Yuval, “Detecting unknown
malicious code by applying classifica-
tion techniques on opcode patterns”,
Security Informatics, vol. 1, no.1, pp.
1-22, 2012.

[73] S. Asaf, M. Robert, E. Yuval and G.
Chanan, “Detection of malicious code
by applying machine learning classifiers
on static features: A state-of-the-art
survey”, Information Security Technical
Report, vol. 14, no.1, pp. 16-29, 2009.

[74] E. A. Ahmed E, M. M. Aizaini and B.
Bazara, “Improving the detection of
malware behaviour using simplified data
dependent API call graph”, International
Journal of Security and its Applications,
vol. 7, no. 5, pp. 29-42, 2013.

[75] P. Bassir, J. M. Vafaie and J. Mehrdad,
“Malware detection using hidden
Markov model based on Markov blanket
feature selection method”. International

congress on technology, communication
and knowledge, IEEE, pp. 558-563,
2015.

[76] S. Nedim and L. Pavel, “Hidost: a static
machine-learning-based detector of
malicious files”. EURASIP Journal on
Information Security, vol. 2016, pp.
1-20, 2016.

[77] K. Dong Hee, W. Sang Uk, L. Dong Kyu
and C. Tai Myoung, “Static detection of
malware and benign executable using
machine learning algorithm”. Eighth
International Conference on Evolving
Internet, pp. 14-19, 2016.

[78] H. Shamsul, A. Jemal, A. Mamoun, A.
Mali, I. Rafiqul and Y. John, “Hybrids of
support vector machine wrapper and
filter based framework for malware
detection”. Future Generation Computer
Systems, vol. 55, pp. 376-390, 2016.

[79] N. Yuta and U. Ryuya, “Static analysis
with paragraph vector for malware
detection”. In Proceedings of the 11th
International Conference on Ubiquitous
Information Management and Commu-
nication, pp. 1-7, 2017.

[80] W. Cheng, Q. Zheng, Z. Jixin and Y.
Hui, “A malware variants detection
methodology with an opcode based
feature method and a fast density based
clustering algorithm”. 12th International
Conference on Natural Computation,
Fuzzy Systems and Knowledge Discov-
ery (ICNC-FSKD), IEEE, pp. 481-487,
2016.

[81] M. Aziz, A. Omar and M. Manar,
“AMAL: high-fidelity, behavior-based
automated malware analysis and classi-
fication”. Computers and Security, vol.
52, pp. 251-266, 2015.

[82] Y. Yanfang, W. Dingding, L. Tao, Y.

Dongyi and J. Qingshan, “An intelligent
PE-malware detection system based on
association mining”, Journal in comput-
er virology, vol. 4, pp. 323-334, 2008.

[83] B. Michael, O. Jon, A. Jon, M. Z.
Morley, J. Farnam and N. Jose, “Auto-
mated classification and analysis of
internet malware”, Recent Advances in
Intrusion Detection: 10th International
Symposium, RAID, vol. 10, pp.
178-197, 2007.

[84] R. Konrad, T. Philipp, W. Carsten and H.
Thorsten, “Automatic analysis of
malware behavior using machine learn-
ing”, Journal of Computer Security, vol.
19, no.4, pp. 639-668, 2011.

[85] V. Mihai, G. Laura and T. Nicolae,
“Practical malware analysis based on
sandboxing”, Ro Edu Net Conference
13th Edition: Networking in Education
and Research Joint Event RENAM 8th
Conference, IEEE, pp. 1-6, 2014.

[86] H. Jozsef, M. Yoan, I. Alexander and L.
Amaury, “Methodology for behavior-
al-based malware analysis and detection
using random projections and k-nearest
neighbors classifiers”, International
Conference on Computational Intelli-
gence and Security, IEEE, pp.
1016-1023, 2011.

[87] G. Mahboobe, S. Ashkan and S. Zahra,
“Dynamic VSA: a framework for
malware detection based on register
contents”, Engineering Applications of
Artificial Intelligence, vol. 44, pp.
111-122, 2015.

[88] P. Zhi-Peng, F. Chao and T. Chao-Jing,
“Malware classification based on the
behavior analysis and back propagation
neural network”. In ITM Web of Confer-
ences, EDP Sciences, vol.7, pp. 20-28,

Nov. 2016.

[89] H. Shamsul, M. Suruz, H. M. Mehedi, I.
Rafiqul, Y. John, A. Majed and A.
Ahmad, “Defending unknown attacks
on cyber-physical systems by semi-su-
pervised approach and available
unlabeled data”, Information Sciences,
vol. 379, pp. 211-228, 2017.

[90] M. Fahad, H. Wei and B. Antony,
“Novel malware detection methods by
using LCS and LCSS”, 22nd Interna-
tional Conference on Automation and
Computing (ICAC), IEEE, pp. 554-559,
2016.

[91] H. Eduardo, M. Rubén S and L. Ignacio
M, “Evaluating the reliability of compu-
tational grids from the end user’s point
of view”, Journal of Systems Architec-
ture, vol. 52, no. 12, pp. 727-736, 2006.

[92] N. B. Narayanan, D. Ouboti and K.
Temesguen, “Performance analysis of
machine learning and pattern recogni-
tion algorithms for malware classifica-
tion”, IEEE national aerospace and
electronics conference (NAECON) and
ohio innovation summit (OIS), IEEE,
pp. 338-342, 2016.

[93] C. In Kyeom, K. T. Guen, S. Y. Jin, R.
Minsoo and I. E. Gyu, “Malware analy-
sis and classification using sequence
alignments”, Intelligent Automation and
Soft Computing, vol. 22, no.3, pp.
371-377, 2016.

[94] M. Jiang, X. Zhi, L. Pengwei, W. Ding-
hao, L. Peng and M. Bing, “Impeding
behavior-based malware analysis via
replacement attacks to malware specifi-
cations”, Journal of Computer Virology
and Hacking Techniques, vol. 13,
pp.193-207, 2017.

[95] W. Markus, R. Alexander, T. Niklas and

A. Wolfgang, “A knowledge-assisted
visual malware analysis system: Design,
validation, and reflection of KAMAS”,
Computers and Security, vol. 67, pp.
1-15, 2017.

[96] N. Stavros D and P, Iosif, “A
graph-based model for malware detec-
tion and classification using system-call
groups”, Journal of Computer Virology
and Hacking Techniques, vol. 13, no.1,
pp. 29-46, 2017.

[97] L. Quan, B. Oisin, M. N. Brian and S.
Mark, “Deep learning at the shallow
end: Malware classification for non-do-
main experts”, Digital Investigation,
vol. 26, pp. S118-S126, 2018.

[98] P. Abdurrahman and A. Tankut, “Classi-
fication of malware families based on
runtime behaviors”, Journal of informa-
tion security and applications, vol. 37,
pp. 91-100, 2017.

[99] S. Jan, P. Tomás and R. Martin, “Multi-
ple instance learning for malware classi-
fication”, Expert Systems with Applica-
tions, vol. 93, pp. 346-357, 2018.

[100] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

 [101] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

[102] X. Lu, F. Jiang, X. Zhou, S. Yi and J. Sha
and L. Pietro, “ASSCA: API sequence

and statistics features combined archi-
tecture for malware detection”, Comput-
er Networks, vol. 157, pp. 99-111,
2019.

[103] D. Arivudainambi, K.A. Varun Kumar
and P. Visu, “Malware traffic classifica-
tion using principal component analysis
and artificial neural network for extreme
surveillance”, Computer Communica-
tions, vol. 147, pp. 50-57, 2019.

[104] Y. Cagatay and K. Ahmet, “Imaging and
evaluating the memory access for
malware”, Forensic Science Internation-
al: Digital Investigation, vol. 32, pp.
20-27, 2020.

[105] R. Mahdi, W. Yong Li, K. Reza, J.
Hamed, Z. Ruxin and H. Peng, “A
hybrid machine learning approach for
malicious behaviour detection and
recognition in cloud computing”,
Journal of Network and Computer
Applications, vol. 151, pp. 12-19, 2020.

[106] E. A. Ahmed E, M. M. Aizaini, B.
Bazara- IA and H. Hentabli, “Enhancing
the detection of metamorphic malware
using call graphs”, Computers and Secu-
rity, vol. 46, pp. 62-78, 2014.

[107] R. Jesse C, K. Roger I, L. Scott M and C.
Robert K, “Detection of injected,
dynamically generated, and obfuscated
malicious code”, ACM workshop on
Rapid malcode, pp. 76-82, 2003.

[108] C. Michael, “A protocol graph based
anomaly detection system”, Doctoral
dissertation, Carnegie Mellon Universi-
ty, 2008.

[109] M. R. Jose and D. J. Cesar, “Integrating
static and dynamic malware analysis
using machine learning”, IEEE Latin
America Transactions, vol. 13, no. 9, pp.
3080-3087, 2015.

[110] S. PV and S. AJPCS, “Integrated static
and dynamic analysis for malware
detection”, Procedia Computer Science,
vol. 46, pp. 804-811, 2015.

[111] E. E. Inang, B. Chafika, A. Ameer and
W. Paul, “Analysis of malware
behaviour: Using data mining clustering
techniques to support forensics investi-
gation”, Fifth Cybercrime and Trust-
worthy Computing Conference, IEEE,
pp. 54-63, 2014.

[112] W. Ahsan, I. Azhar, L. Jahanzaib, N.
Ahsan and B. Anas, “A novel approach
of unprivileged keylogger detection”,
2nd International Conference on Com-
puting, Mathematics and Engineering
Technologies (iCoMET), IEEE, pp. 1-6,
2019.

[113] N. Mohammad, A. Nouman and Y. Jing
Tao, “A three-way decision making
approach to malware analysis using
probabilistic rough sets”, Information
Sciences, vol. 37, no. 4, pp. 193-209,
2016.

[114] N. Mohammad, A. Nouman and Y. Jing
Tao, “Detecting malware evolution
using support vector machines”, Expert
Systems with Applications, vol. 143, pp.
113022, 2020.

[115] P. Avi, R. Brian, K. Lee, H. Michael, C.
Catherine, O. Alison, T. Glenn, R. S.
Neal, P. Terry, and T. Jason, “Artificial
intelligence based malware analysis”,
arXiv preprint, pp.16-23, 2017.

[116] H. Shamsul, I. Rafiqul, A. Jemal, Y.
John, H. M. Mehedi and F. Giancarlo,
“A hybrid-multi filter-wrapper frame-
work to identify run-time behaviour for
fast malware detection”, Future Genera-
tion Computer Systems, vol. 1, no. 83,
pp. 193-207, 2018.

[117] S. Robert, X. Lifan, K. William, V.
Tristan, F. Teague, H. John, P. Zachary,
S. Corey, S. Joshua and C. John, “Paral-
lelization of machine learning applied to
call graphs of binaries for malware
detection”, 25th Euromicro International
Conference on Parallel, Distributed and
Network-based Processing (PDP),
IEEE, pp. 69-77, 2017.

[118] K. Youngjoon, K. Eunjin and K. Huy
Kang, “A novel approach to detect
malware based on API call sequence
analysis”, International Journal of
Distributed Sensor Networks, vol. 11,
no.6, pp. 659101, 2015.

[119] M. Weixuan, C. Zhongmin, T. Don, F.
Qian and G. Xiaohong, “Security impor-
tance assessment for system objects and
malware detection”, Computers and
Security, vol. 68, pp. 47-68, 2017.

[120] O. Philip, S. Sezer, and K. McLaughlin,
“Detecting obfuscated malware using
reduced opcode set and optimised
runtime trace”, Security Informatics,
vol. 5, pp. 1-12, 2016.

[121] D. Anusha, T. Fabio Di, V. C. Aaron, A.
Thomas H and S. Mark, “A comparison
of static, dynamic, and hybrid analysis
for malware detection”, Journal of Com-
puter Virology and Hacking Techniques,
vol. 13, pp. 1-12, 2017.

6. IMPORTANT CRITERIA FOR
MALWARE DETECTION
SYSTEMS DEVELOPMENT

This section deals with several important
elements of malware creation, providing the
scientist insights into how to investigate this
issue.

6.1. Handling Anti-Analysis Technique
The issue arises when malware is produced
employing the method of antistatic or
anti-dynamic analysis. In dynamic analysis,
malware detects the analytical environment and
hides or inhibits actual activity from occurring
in this environment. The issue occurs when
malware is produced using antistatic or dynamic
analysis methods. The malware identifies the
analytical environment and conceals or
discontinues to run in that environment in
dynamic analysis. As a result, throughout the
development of the malware analysis system,
analysts will be tasked with addressing this
issue. In the case of static analysis, malware
analysts must develop unpacking software and
build a dynamic environment by addressing all
the patterns of virtual control devices used by
malware to control the analysis environment to
do the static analysis. Here are a few indicators
of how dynamic malware analysis may be
configured for malware samples.

• The Default media access control address
of virtual machine may be altered so that
malware does not detect virtual machine
with virtual machine standard and known
media access control access address. Make
a note of the names of virtual machines that
seem to be the host systems. For example,
Ahsan-pc, Sunny, and so on.

• Install all the essential program
applications, including Microsoft Office,

Adobe Reader, VLC, and others, to give
your machine the appearance of a personal
computer.

• Create subdirectories for documents in
various folders, such as Documents,
Desktop, Downloads, and Temp etc. Also,
utilize the VM machine for many days to
ensure that malware does not identify it as a
new computer suitable for malware analysis
and mark it as a target. Several documents
are generated, as well as cache and other
temporary files when accessing the internet
after utilizing a virtual machine for personal
work.

6.2. Analysis Tools and Environment Setup
Apart from the anti-analysis methodologies, the
tools and kind of environment setup especially
in dynamic analysis have a big impact on the
accuracy of malware classifiers. In static
analysis, several static extractor tools were
utilized, including IDA Pro disassembler,
capstone, Peid, PsStudio, and others. Statistical
analyses are conducted on deconstructed files
and disassembled malware files. Disassemblers
extract more comprehensive characteristics
which cannot be obtained with basic tools such
as CFF Explorer, Psfile, IOC Finder, etc. The
dynamic analytical analysis is influenced by the
kind of architecture of the analytics
environment. The hypervisor Type 1 is more
robust than the hypervisor type 2 when it comes
to anti-analytic methods. However, both have
advantages and disadvantages that are
addressed in Section 2. Thereby, the developer
must select techniques for extracting the
malware feature required while building an
anti-malware system.

6.3. Data Samples for Malware Classifier
Training
Samples of malware are gathered in the

academic literature from different sources.
Certain sources like Virus Share enable
scientists to download millions of malwares,
including the latest. Vxheaven has been used to
gather the most frequently used samples of
malware and give labeled to the malware, but
this malware repository has not been updated
since 2010. In this manner, malware detectors
need new malware samples. As we have found
some research, repositories used for the
formation of malware are Kaggle, Microsoft,
Malware, contagio, the Zoo. The major problem
is that the Malware Samples are not labeled with
a particular database. Although certain internet
systems can mark samples of malware such as
VirusTotal and Hybrid Malware Analysis are
often utilized. Labeling the malware samples
one at a time is a time-intensive procedure, on
the other hand. Malware samples from different
categories may also be hard to include on a level
playing field. A honeypot may also be used to
acquire livemalware. Some of the suggested
methods utilized honeypots to acquire payloads
for malware in real-time, although most
research documents do not disclose this. In
addition, we may acquire malware samples of
our suggested model from antivirus firms. This
would be an excellent method of testing
malware classifiers with actual malware
samples.

6.4. Malware Characteristics Selection
The scalability of the suggested approach is a
major issue. It mainly depends on the set of
features in which benign and malicious files are
classified. With the addition of features, the
precision is improved, but the time to scan is
increased, restricting malware detection
systems in real-time applications. Malware
selection is mainly used to distinguish between
malware and benign files. Many studies have
used API calls, PE headers, and file network

activity.

6.5. Machine-Learning Algorithmic
Frameworks Selection
Following a comprehensive examination of
numerous methodologies, all kinds of machine
learning algorithms were applied. Ensemble
produces better accuracy than simple
classification algorithms (SVM, DT, KNN), but
these algorithms take more training time than
simple algorithms. Classification methods for
Machine Learning may be selected depending
on malware size and variety. Another important
factor in the accuracy of malware categorization
is the parameterization of the algorithms that are
used. This issue has not been addressed in depth
by the approach that has been proposed. it is
very important factor for the accuracy of the
malware classifier.

6.6. Future Directives
The challenge now is how one can build a
classification of malware that can deal with
these problems. We understand now that
malware analysts evaluate malware samples
and continue to update the malware detection
system to block attacks malware. Currently it’s
almost impossible for signature-based
technique to detect new malware. However, the
behavioral malware detection technique gives
hope for detecting new malware. Therefore, we
shall design a hybrid framework, not like hybrid
methodologies previously offered. For
implementing the suggested method, a
two-layered architecture will be utilized. At
first, signature-based malware detection is
conducted, which, if it fails, will be utilized in
second-level Behavior based analytical
methods. In the first layer known and basic
unbuffered malware may be readily detected,
while in the dynamic analysis the malware can
be predicted using runtime. When each new

virus occurs, the database will be updated and
utilized to anticipate future malware. Fig. 8
shows the framework of the malware detection
system. This approach collects runtime
characteristics by using both sandboxing
automation (e.g., Cuckoo sandbox) and a
variety of dynamical analysis tools, including
Ollydbg, Regshot, Wireshark, and ProcMon, for
collecting run time data. Furthermore, tools
such as PExplorer, Peview, Peid, and IDA pro
are used to extract static features such as strings,
imports, and exports from a program. The
algorithms for learning machines are then used
for malware classification training, which is a
kind of machine learning. Using runtime
behavior, this approach has the potential to
inherit the benefits of both signature-based and
behavioral methods. It can successfully identify
existing malware while also detecting new

malware. We are going to use anti-obfuscation
techniques to correctly analyses malware
samples. It can be done only after the use of
static and dynamic malware analyses to check
for malware and benign samples. The approach
that has been described is intended to bridge the
gap that exists between signature and behavioral
methods. Real-time malware detection will be
made feasible by the development of a
two-layer hybrid technique, which will be
implemented in real-time. In addition, various
algorithms are used to enhance the resistance of
the hybrid model against the adversarial
machine learning. The various types of
malwares and their description is included in
Table 11. A chronological examination of
several well-known malwares is presented in
Table 12.

7. CONCLUSION

This study helps to identify malwares using
runtime characteristics. It provides the knowl-
edge fraction for harmful software analysis and
detection procedures through machine learning
algorithms. Malware is now well-known to be
highly sophisticated and rapidly changing.
Today, it is not only used to disturb users, steal
information, and destroy user data but also to
enforce its objectives for businesses and
nations. The protection of data and resources is
a key component in information technology.
This is essential because computers or embed-
ded digital devices in every area are utilized to
execute activities more quickly and precisely
without human involvement. The computer

system is more susceptible to hacking because
of its wide range of applications. This study
covers the development of malware, present
status, and techniques of detection. Two
malware analysis techniques exist signature
based, and behavior based. Signature-based
technology has two major flaws that must be
addressed. For the time being, signature-based
techniques will not be able to identify new or
previously unknown malware. Second, different
types of malwares may readily outwit the
system's detection mechanisms. Behavior-based
technique can identify new variants of malware,
dynamic techniques in malware-based methods
are more robust than signature-based methods.
The actual application of dynamic methods
nevertheless remains rigid and time-intensive,
whereas signature technology is quicker and

more efficacious than dynamic techniques in
identifying known malware. We spoke about
malware methods that were suggested for
machine learning to train the classification of
malware in this research. This is because it
includes a huge number of algorithms that may
be used for a variety of malware features. In
addition to its accessibility, machine learning
algorithms provide many benefits over conven-
tional malware classifications, such as the
capacity to get information from file samples,
rapidly detect, unexpected changes, and
minimize the human work and time spent
analyzing malware. In this article, malware
detection methods are classified according to
analytical methodologies such as static, dynam-
ic, and hybrid techniques. Each method has
advantages and disadvantages. These methods,
however, produced encouraging results in the
categorization of malware in a certain scenario.
For example, static methods are quicker, with a
reduced false-positive rate, but it is difficult to
cope with the obfuscation technique while
collecting static characteristics. In this respect,
on the contrary, dynamic methods offer a
beneficial although implementation in real-time
is inconvenient. Finally, we addressed the
two-layer malware detection framework with
static and dynamic functions that can effectively
and reliably detect the new and known malware.

REFERENCES

[1] H. Weijie, X. Jingfeng, W. Yong, H.
Lu, K. Zixiao and M. Limin, “MalDAE:
Detecting and explaining malware
based on correlation and fusion of static
and dynamic characteristics”, Comput-
ers and Security, vol. 83, pp. 208-233,
2019.

[2] B. Pete, F. Richard, T. Frederick and J.

Kevin, “Malware classification using
self organising feature maps and
machine activity data”, Computers and
Security, vol. 73, pp. 399-410, 2018.

[3] N. Usha, T. F. Di, C. V. Aaron, A.
Thomas and S. Mark, “Clustering versus
SVM for malware detection”, Journal of
Computer Virology and Hacking
Techniques, vol. 12, pp. 213-224, 2016.

[4] J. A. Namavar, H. Sattar, D. Ali and C.
R. Kim kwang, “An improved two-hid-
den-layer extreme learning machine for
malware hunting”, Computers and Secu-
rity, vol. 89, pp. 10-16, 2020.

[5] F. Massimo and P. F. Leaf, “An
open-source cybersecurity training
platform for realistic edge-IoT scenari-
os”, Journal of Systems Architecture,
vol. 97, pp. 107-129, 2020.

[6] K. Afreen, Z. Swaleha and Al. S.
Muaadhabdo, “An improved pre-pro-
cessing machine learning approach for
cross-sectional imaging of demented
older adults”, International Conference
of Intelligent Computing and Engineer-
ing (ICOICE), IEEE, pp. 1-7, 2019.

[7] P. Jakub, N. Q. Anh, B. Adrian, G.
Jonathan and L. Y. Kubo, “a framework
for automated efficacy testing of anti-vi-
rus behavioral detection with proce-
dure-based malware emulation”, In
Proceedings of the 13th International
Workshop on Automating Test Case
Design, Selection and Evaluation, pp.
37-44, 2022.

[8] B. Andrew, “How deception can change
cyber security defenses”, Computer
Fraud & Security, vol.5, no.1, pp. 12-14,
2019.

 [9] G. Ekta, B. Divya and S. Sanjeev, “Mal-
ware analysis and classification: A

survey”, Journal of Information Securi-
ty, vol. 6, 2014.

[10] M. S. Mariam, S. M. Ali, Z. Si-Jing and
Y. Hong-Ji, “Conceivable security risks
and authentication techniques for smart
devices: A comparative evaluation of
security practices”, International journal
of Automation and Computing, vol. 13,
pp. 350-363, 2016.

[11] B. Kang, F. Liu, Z. Yun and Y. Liang,
“Design of an Internet of Things-based
smart home system”, International
Conference on Intelligent Control and
Information Processing, IEEE, vol. 2,
pp. 921-924, 2011.

[12] A. Shahid, H, R. Nigel, T. Issa and S.
Ibrahim, “A framework for metamor-
phic malware analysis and real-time
detection”, Computers and Security, vol.
48, pp. 212-233, 2015.

[13] H. Xin, “Large-scale malware analysis,
detection, and signature generation”,
Doctoral dissertation, University of
Michigan, 2011.

[14] R. Kalpika, A. R. Vasudevan, “Detection
of Zeus Bot Based on Host and Network
Activities”, Communications in Com-
puter and Information Science, vol. 746,
pp. 978-981, 2017.

[15] E. Nabeil, E. Rashad, H. Alzubair and L.
Fagen, “A blockchain-based
attribute-based signcryption scheme to
secure data sharing in the cloud”,
Journal of Systems Architecture, vol.
102, pp. 10-16, 2020.

[16] J. Daehee, J. Yunjong , L Sungman , P.
Minjoon, K. Kuenhwan , K. Donguk and
K. B. Byunghoon, “Rethinking anti-em-
ulation techniques for large-scale
software deployment”, Computers and
Security, vol. 83, pp. 182-200, 2019.

[17] M. Samaneh and G. Ali A, “Application
of deep learning to cybersecurity: A
survey”, Neurocomputing, vol. 347, pp.
149-176, 2019.

[18] Z. Weizhe, W. Huanran, H. Hui and L.
Peng,” DAMBA: detecting android
malware by ORGB analysis”, IEEE
Transactions on Reliability, vol.69, no.1,
pp. 55-69, 2020.

[19] L. Liu, W. Bao-sheng, Y. Bo and Z.
Qiu-xi, “Automatic malware classifica-
tion and new malware detection using
machine learning”, Frontiers of Infor-
mation Technology & Electronic
Engineering, vol. 18, no. 9, pp.
1336-1347, 2017.

[20] K. Ratinder and M. Singh, “Hybrid
real-time zero-day malware analysis and
reporting system”, International Journal
of Information Technology and Comput-
er Sciences, vol. 8, pp. 63-73, 2016.

[21] M. Jelena, M. Miroslaw and F. Alberto,
“Time, accuracy and power consump-
tion tradeoff in mobile malware detec-
tion systems”, Computers and Security,
vol. 82, pp. 314-328, 2019.

[22] S. Hudan, S. Ferdous and P. Christian,
“A survey on forensic investigation of
operating system logs”, Digital Investi-
gation, vol. 29, pp. 1-20, 2019.

[23] N. Bruce, K. K. Hwan, K. Y. Jin, K.H.
Ho, K. T. Yong and L. H. Jae,
“Cross-method-based analysis and
classification of malicious behavior by
api calls extraction”, Applied Sciences,
vol. 9, no.2, pp. 239, 2019.

[24] Z. Hanqi, X. Xi, M. Francesco, N.
Shiguang, M. Fabio and S. A. Kumar,
“Classification of ransomware families
with machine learning based on N-gram
of opcodes”, Future Generation Com-

puter Systems, vol. 90, pp. 211-221,
2019.

[25] N. Jose, P. Araujo, P. Donald M and R.
C. Ghedini, “MULTS: A multi-cloud
fault-tolerant architecture to manage
transient servers in cloud computing”,
Journal of Systems Architecture, vol.
101, pp. 101-108, 2019.

[26] R. Veeramani and R. Nitin, “Windows
api based malware detection and frame-
work analysis”, In International Confer-
ence on Networks and Cyber Security,
vol. 25, 2012.

[27] C. Mihai, J. Somesh, K. Johannes, K.
Stefan and V. Helmut, “Software trans-
formations to improve malware detec-
tion”, Journal in Computer Virology,
vol. 3, pp. 253-265, 2007.

[28] O. Yoshihiro, “Trends of anti-analysis
operations of malwares observed in API
call logs”, Journal of Computer Virology
and Hacking Techniques, vol. 14, no. 1,
pp. 69-85, 2018.

[29] C. Sibi S and V. V. Sangeetha, “A survey
on malware analysis and mitigation
techniques”, Computer Science Review,
vol. 32, pp. 1-23, 2019.

[30] D. Jaime, S. Igor, C. Xabier, P. Yoseba K
and B. Pablo G, “Automatic
behaviour-based analysis and classifica-
tion system for malware detection”,
International Conference on Enterprise
Information Systems, vol. 2, pp.
395-399, 2010.

[31] D. Yuxin, X. Xiaoling, C. Sheng and L.
Ye, “A malware detection method based
on family behavior graph”, Computers
and Security, vol. 73, pp. 73-86, 2018.

[32] S. Jagsir and S. Jaswinder, “A survey on
machine learning-based malware detec-

tion in executable files”, Journal of
Systems Architecture, vol. 112, pp.
10-18, 2021.

[33] R. Anusmita and N. Asoke, “Introduc-
tion to Malware and Malware Analysis:
A brief overview”, International Journal,
vol. 4, no.10, 2016.

[34] W. Huanran, H. Hui and Z. Weizhe,
“Demadroid: Object reference
graph-based malware detection in
Android”, Security and Communication
Networks, vol. 2018, 2018.

[35] B. Tao, T. Takeshi, G. Shanqing, I.
Daisuke and N. Koji, “Integration of
multi-modal features for android
malware detection using linear SVM”,
In 2016 11th Asia Joint Conference on
Information Security (Asia JCIS), IEEE,
pp. 141-146, 2016.

[36] B. Ulrich, K. Engin and K. Christopher,
“Improving the efficiency of dynamic
malware analysis”, In Proceedings of the
2010 ACM Symposium on Applied
Computing, pp. 1871-1878, 2010.

[37] W. Gerard, S. Radu and D. Alexandre,
“Malware behaviour analysis”, Journal
in Computer Virology, vol. 4, pp.
279-287, 2008.

[38] M. Asit and T. Shashikala, “Virtual
machine introspection: towards bridging
the semantic gap”, Journal of Cloud
Computing, vol. 3, no.1, pp. 1-14, 2014.

[39] V. Jiri and P. Martin, “Virtualization of
operating system using type-2 Hypervi-
sor”, In Software Engineering Perspec-
tives and Application in Intelligent
Systems: Proceedings of the 5th Com-
puter Science On-line Conference 2016
(CSOC2016), Springer International
Publishing, vol. 25, pp. 239-247, 2016.

[40] M. Andreas, K. Christopher and K.
Engin, “Exploring multiple execution
paths for malware analysis”, In 2007
IEEE Symposium on Security and
Privacy (SP'07), IEEE, pp.231-245,
2007.

[41] K. Bojan, Z. Apostolis, L. Tamas, W.
George and E. Claudia, “Adaptive
semantics-aware malware classifica-
tion”, In Detection of Intrusions and
Malware, and Vulnerability Assessment:
13th International Conference, DIMVA
2016, San Sebastián, Spain, Springer
International Publishing, vol. 13, pp.
419-439, 2016.

[42] R. Edward, Z. Richard, C. Russell, S.
Jared, Y. Paul, W. Rebecca, T. Anna, M.
Mark and N. Charles, “An investigation
of byte n-gram features for malware
classification”, Journal of Computer
Virology and Hacking Techniques, vol.
14, pp. 1-20, 2018.

[43] M. Zane and B. Michael, “Building a
machine learning classifier for malware
detection”, In 2014 second workshop on
anti-malware testing research (Water),
IEEE, pp. 1-4, 2014.

[44] S. Michael and H. Andrew, “A Practical
malware analysis: the hands-on guide to
dissecting malicious software”. Starch
Press, 2012.

[45] W. Tzu-Yen and W. Chin-Hsiung,
“Detection of packed executables using
support vector machines”, International
Conference on Machine Learning and
Cybernetics, IEEE, vol. 2, pp. 717-722,
2011.

[46] A. Satheesh and R. Kumaravelu, “A
mathematical model of HMST model on
malware static analysis”, International
Journal of Information Security and

Privacy, vol. 13, no. 2, pp. 86-103, 2019.

[47] A. Imad and L. Saiida, “A new classifi-
cation based model for malicious PE
files detection”, International Journal of
Computer Network and Information
Security, vol. 9, no.6, pp.1-7, 2019.

[48] L. Michael, A. Steven, H. Blake, R.
Matthew, “Malware Analyst's Cookbook
and DVD”, Wiley Publishing, 2011.

[49] L. Xiaojing, Y. Kan, W. XiaoFeng, L.
Zhou, X. Luyi and B. Raheem, “Acing
the ioc game: Toward automatic discov-
ery and analysis of open-source cyber
threat intelligence”, ACM SIGSAC
conference on computer and communi-
cations security, pp. 755-766, 2016.

[50] S. Sebastian and K. Stefan, “Code
obfuscation against static and dynamic
reverse engineering”, In Information
Hiding: 13th International Conference,
IH 2011, Prague, Czech Republic,
Revised Selected Papers, Springer
Berlin Heidelberg, vol. 13, pp. 270-284,
2011.

[51] C. Michael , “Scanning memory with
Yara”, Digital Investigation, vol. 20, pp.
34-38, 2017.

[52] S. Nikolaos, B. Chafika, A. Omar and A.
Ameer, “Forensic malware analysis: The
value of fuzzy hashing algorithms in
identifying similarities”, IEEE Trust-
com/ Big Data SE/ ISPA, IEEE, pp.
1782-1787, 2016.

[53] K. Abhishek, G. Suchandra and G.
Ratan, “Detecting obfuscated viruses
using cosine similarity analysis”, Asia
International Conference on Modelling
and Simulation (AMS'07), IEEE, pp.
165-170, 2007.

[54] B. Danilo, M. Lorenzo, M. Mattia,

“Code normalization for self-mutating
malware”, IEEE Security and Privacy,
vol. 5, no.2, pp. 46-54, 2007.

[55] Z. Boyun, Y. Jianping, H. Jingbo, Z.
Dingxing and W. Shulin, “Malicious
codes detection based on ensemble
learning”, In Autonomic and Trusted
Computing: 4th International Confer-
ence, ATC 2007, Hong Kong, China,
July 11-13, 2007. Proceedings 4, Spring-
er Berlin Heidelberg, pp. 468-477,
2007.

[56] M. Robert, F. Clint, T. Nir, B. Eugene,
G. Marina, D. Shlomi and E. Yuval,
“Unknown malcode detection using
opcode representation”, In Intelligence
and Security Informatics: First European
Conference, Euro ISI 2008, Esbjerg,
Denmark, Proceedings, Springer Berlin
Heidelberg, pp. 204-215, 2008.

[57] B. S. Mojtaba, J. Saeed and T. Asghar,
“PbMMD: A novel policy based
multi-process malware detection”,
Engineering Applications of Artificial
Intelligence, vol. 60, pp. 57-70, 2017.

[58] N. Vivens, X. Zhifeng, M. V. Rao, M. Ke
and X. Yang, “Network forensics analy-
sis using Wireshark”, International
Journal of Security and Networks, vol.
10, no.2, pp. 91-106, 2015.

[59] H. Nazrul, B. Monowar H, B. Ram
Charan, B. Dhruba K and K. Jugal K,
“Network attacks: Taxonomy, tools and
systems”, Journal of Network and Com-
puter Applications, vol. 40, pp. 307-324,
2014.

[60] E. Eldad, “Reversing: secrets of reverse
engineering”, John Wiley & Sons, 2011.

[61] G. Daniel, M. Carles and P. Jordi, “The
rise of machine learning for detection
and classification of malware: Research

developments, trends and challenges”,
Journal of Network and Computer
Applications, vol. 153, pp. 102526,
2020.

[62] R. Chathuranga and J. Aruna, “An
efficient approach for advanced
malware analysis using memory foren-
sic technique”, In 2017 IEEE Trustcom/
Big Data SE/ ICESS, IEEE, pp.
1145-1150, 2017.

[63] K. Ilker, “A basic malware analysis
method”, Computer Fraud and Security,
vol. 2019, no. 6, pp. 11-19, 2019.

[64] K. Joakim, “Fundamentals of Digital
Forensics”, Springer International
Publishing, 2020.

[65] P. Radu, H. Steven, L. Thor, S. Matija, P.
Jens and C. Alexandre, “Analysis of
malware behavior: Type classification
using machine learning”, International
conference on cyber situational aware-
ness, data analytics and assessment
(Cyber SA), IEEE, pp. 1-7, 2015.

[66] A. Omer and S. Refik, “Investigation of
possibilities to detect malware using
existing tools”, 14th International
Conference on Computer Systems and
Applications. IEEE, pp. 1277-1284,
2017.

[67] M. Q. Ali, A. Irfan and Y. Muhammad,
“Cloud Intell: An intelligent malware
detection system”, Future Generation
Computer Systems, vol. 86, pp.
1042-1053, 2018.

[68] G. Kent, S. Scott, H. Xin and C. Tzi-ck-
er, “Automatic generation of string
signatures for malware detection”,
Recent Advances in Intrusion Detection:
12th International Symposium, RAID
2009, Saint-Malo, France, Proceedings,
Springer Berlin Heidelberg, vol. 12, pp.

101-120, 2009.

[69] G. Dragoş, C. Mihai, A. Dan and C.
Liviu, “Malware detection using
machine learning”, International multi-
conference on computer science and
information technology, IEEE, pp.
735-741, 2009.

[70] B. Philippe, G. Isabelle and M. Jean-Yves,
“Behavior abstraction in malware analy-
sis”, In Runtime Verification: First
International Conference, RV 2010,
Proceedings, Springer Berlin Heidel-
berg, vol. 1, pp. 168-182, 2010.

[71] C. Sang Kil, M. Iulian, J. Jiyong, T.
John, B. David and A. David G, “Split
Screen: Enabling efficient, distributed
malware detection”, Journal of Commu-
nications and Networks, vol. 13, no.2,
pp. 187-200, 2011.

[72] S. Asaf, M, Robert, F. Clint, D. Shlomi
and E. Yuval, “Detecting unknown
malicious code by applying classifica-
tion techniques on opcode patterns”,
Security Informatics, vol. 1, no.1, pp.
1-22, 2012.

[73] S. Asaf, M. Robert, E. Yuval and G.
Chanan, “Detection of malicious code
by applying machine learning classifiers
on static features: A state-of-the-art
survey”, Information Security Technical
Report, vol. 14, no.1, pp. 16-29, 2009.

[74] E. A. Ahmed E, M. M. Aizaini and B.
Bazara, “Improving the detection of
malware behaviour using simplified data
dependent API call graph”, International
Journal of Security and its Applications,
vol. 7, no. 5, pp. 29-42, 2013.

[75] P. Bassir, J. M. Vafaie and J. Mehrdad,
“Malware detection using hidden
Markov model based on Markov blanket
feature selection method”. International

congress on technology, communication
and knowledge, IEEE, pp. 558-563,
2015.

[76] S. Nedim and L. Pavel, “Hidost: a static
machine-learning-based detector of
malicious files”. EURASIP Journal on
Information Security, vol. 2016, pp.
1-20, 2016.

[77] K. Dong Hee, W. Sang Uk, L. Dong Kyu
and C. Tai Myoung, “Static detection of
malware and benign executable using
machine learning algorithm”. Eighth
International Conference on Evolving
Internet, pp. 14-19, 2016.

[78] H. Shamsul, A. Jemal, A. Mamoun, A.
Mali, I. Rafiqul and Y. John, “Hybrids of
support vector machine wrapper and
filter based framework for malware
detection”. Future Generation Computer
Systems, vol. 55, pp. 376-390, 2016.

[79] N. Yuta and U. Ryuya, “Static analysis
with paragraph vector for malware
detection”. In Proceedings of the 11th
International Conference on Ubiquitous
Information Management and Commu-
nication, pp. 1-7, 2017.

[80] W. Cheng, Q. Zheng, Z. Jixin and Y.
Hui, “A malware variants detection
methodology with an opcode based
feature method and a fast density based
clustering algorithm”. 12th International
Conference on Natural Computation,
Fuzzy Systems and Knowledge Discov-
ery (ICNC-FSKD), IEEE, pp. 481-487,
2016.

[81] M. Aziz, A. Omar and M. Manar,
“AMAL: high-fidelity, behavior-based
automated malware analysis and classi-
fication”. Computers and Security, vol.
52, pp. 251-266, 2015.

[82] Y. Yanfang, W. Dingding, L. Tao, Y.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

46 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

Dongyi and J. Qingshan, “An intelligent
PE-malware detection system based on
association mining”, Journal in comput-
er virology, vol. 4, pp. 323-334, 2008.

[83] B. Michael, O. Jon, A. Jon, M. Z.
Morley, J. Farnam and N. Jose, “Auto-
mated classification and analysis of
internet malware”, Recent Advances in
Intrusion Detection: 10th International
Symposium, RAID, vol. 10, pp.
178-197, 2007.

[84] R. Konrad, T. Philipp, W. Carsten and H.
Thorsten, “Automatic analysis of
malware behavior using machine learn-
ing”, Journal of Computer Security, vol.
19, no.4, pp. 639-668, 2011.

[85] V. Mihai, G. Laura and T. Nicolae,
“Practical malware analysis based on
sandboxing”, Ro Edu Net Conference
13th Edition: Networking in Education
and Research Joint Event RENAM 8th
Conference, IEEE, pp. 1-6, 2014.

[86] H. Jozsef, M. Yoan, I. Alexander and L.
Amaury, “Methodology for behavior-
al-based malware analysis and detection
using random projections and k-nearest
neighbors classifiers”, International
Conference on Computational Intelli-
gence and Security, IEEE, pp.
1016-1023, 2011.

[87] G. Mahboobe, S. Ashkan and S. Zahra,
“Dynamic VSA: a framework for
malware detection based on register
contents”, Engineering Applications of
Artificial Intelligence, vol. 44, pp.
111-122, 2015.

[88] P. Zhi-Peng, F. Chao and T. Chao-Jing,
“Malware classification based on the
behavior analysis and back propagation
neural network”. In ITM Web of Confer-
ences, EDP Sciences, vol.7, pp. 20-28,

Nov. 2016.

[89] H. Shamsul, M. Suruz, H. M. Mehedi, I.
Rafiqul, Y. John, A. Majed and A.
Ahmad, “Defending unknown attacks
on cyber-physical systems by semi-su-
pervised approach and available
unlabeled data”, Information Sciences,
vol. 379, pp. 211-228, 2017.

[90] M. Fahad, H. Wei and B. Antony,
“Novel malware detection methods by
using LCS and LCSS”, 22nd Interna-
tional Conference on Automation and
Computing (ICAC), IEEE, pp. 554-559,
2016.

[91] H. Eduardo, M. Rubén S and L. Ignacio
M, “Evaluating the reliability of compu-
tational grids from the end user’s point
of view”, Journal of Systems Architec-
ture, vol. 52, no. 12, pp. 727-736, 2006.

[92] N. B. Narayanan, D. Ouboti and K.
Temesguen, “Performance analysis of
machine learning and pattern recogni-
tion algorithms for malware classifica-
tion”, IEEE national aerospace and
electronics conference (NAECON) and
ohio innovation summit (OIS), IEEE,
pp. 338-342, 2016.

[93] C. In Kyeom, K. T. Guen, S. Y. Jin, R.
Minsoo and I. E. Gyu, “Malware analy-
sis and classification using sequence
alignments”, Intelligent Automation and
Soft Computing, vol. 22, no.3, pp.
371-377, 2016.

[94] M. Jiang, X. Zhi, L. Pengwei, W. Ding-
hao, L. Peng and M. Bing, “Impeding
behavior-based malware analysis via
replacement attacks to malware specifi-
cations”, Journal of Computer Virology
and Hacking Techniques, vol. 13,
pp.193-207, 2017.

[95] W. Markus, R. Alexander, T. Niklas and

A. Wolfgang, “A knowledge-assisted
visual malware analysis system: Design,
validation, and reflection of KAMAS”,
Computers and Security, vol. 67, pp.
1-15, 2017.

[96] N. Stavros D and P, Iosif, “A
graph-based model for malware detec-
tion and classification using system-call
groups”, Journal of Computer Virology
and Hacking Techniques, vol. 13, no.1,
pp. 29-46, 2017.

[97] L. Quan, B. Oisin, M. N. Brian and S.
Mark, “Deep learning at the shallow
end: Malware classification for non-do-
main experts”, Digital Investigation,
vol. 26, pp. S118-S126, 2018.

[98] P. Abdurrahman and A. Tankut, “Classi-
fication of malware families based on
runtime behaviors”, Journal of informa-
tion security and applications, vol. 37,
pp. 91-100, 2017.

[99] S. Jan, P. Tomás and R. Martin, “Multi-
ple instance learning for malware classi-
fication”, Expert Systems with Applica-
tions, vol. 93, pp. 346-357, 2018.

[100] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

 [101] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

[102] X. Lu, F. Jiang, X. Zhou, S. Yi and J. Sha
and L. Pietro, “ASSCA: API sequence

and statistics features combined archi-
tecture for malware detection”, Comput-
er Networks, vol. 157, pp. 99-111,
2019.

[103] D. Arivudainambi, K.A. Varun Kumar
and P. Visu, “Malware traffic classifica-
tion using principal component analysis
and artificial neural network for extreme
surveillance”, Computer Communica-
tions, vol. 147, pp. 50-57, 2019.

[104] Y. Cagatay and K. Ahmet, “Imaging and
evaluating the memory access for
malware”, Forensic Science Internation-
al: Digital Investigation, vol. 32, pp.
20-27, 2020.

[105] R. Mahdi, W. Yong Li, K. Reza, J.
Hamed, Z. Ruxin and H. Peng, “A
hybrid machine learning approach for
malicious behaviour detection and
recognition in cloud computing”,
Journal of Network and Computer
Applications, vol. 151, pp. 12-19, 2020.

[106] E. A. Ahmed E, M. M. Aizaini, B.
Bazara- IA and H. Hentabli, “Enhancing
the detection of metamorphic malware
using call graphs”, Computers and Secu-
rity, vol. 46, pp. 62-78, 2014.

[107] R. Jesse C, K. Roger I, L. Scott M and C.
Robert K, “Detection of injected,
dynamically generated, and obfuscated
malicious code”, ACM workshop on
Rapid malcode, pp. 76-82, 2003.

[108] C. Michael, “A protocol graph based
anomaly detection system”, Doctoral
dissertation, Carnegie Mellon Universi-
ty, 2008.

[109] M. R. Jose and D. J. Cesar, “Integrating
static and dynamic malware analysis
using machine learning”, IEEE Latin
America Transactions, vol. 13, no. 9, pp.
3080-3087, 2015.

[110] S. PV and S. AJPCS, “Integrated static
and dynamic analysis for malware
detection”, Procedia Computer Science,
vol. 46, pp. 804-811, 2015.

[111] E. E. Inang, B. Chafika, A. Ameer and
W. Paul, “Analysis of malware
behaviour: Using data mining clustering
techniques to support forensics investi-
gation”, Fifth Cybercrime and Trust-
worthy Computing Conference, IEEE,
pp. 54-63, 2014.

[112] W. Ahsan, I. Azhar, L. Jahanzaib, N.
Ahsan and B. Anas, “A novel approach
of unprivileged keylogger detection”,
2nd International Conference on Com-
puting, Mathematics and Engineering
Technologies (iCoMET), IEEE, pp. 1-6,
2019.

[113] N. Mohammad, A. Nouman and Y. Jing
Tao, “A three-way decision making
approach to malware analysis using
probabilistic rough sets”, Information
Sciences, vol. 37, no. 4, pp. 193-209,
2016.

[114] N. Mohammad, A. Nouman and Y. Jing
Tao, “Detecting malware evolution
using support vector machines”, Expert
Systems with Applications, vol. 143, pp.
113022, 2020.

[115] P. Avi, R. Brian, K. Lee, H. Michael, C.
Catherine, O. Alison, T. Glenn, R. S.
Neal, P. Terry, and T. Jason, “Artificial
intelligence based malware analysis”,
arXiv preprint, pp.16-23, 2017.

[116] H. Shamsul, I. Rafiqul, A. Jemal, Y.
John, H. M. Mehedi and F. Giancarlo,
“A hybrid-multi filter-wrapper frame-
work to identify run-time behaviour for
fast malware detection”, Future Genera-
tion Computer Systems, vol. 1, no. 83,
pp. 193-207, 2018.

[117] S. Robert, X. Lifan, K. William, V.
Tristan, F. Teague, H. John, P. Zachary,
S. Corey, S. Joshua and C. John, “Paral-
lelization of machine learning applied to
call graphs of binaries for malware
detection”, 25th Euromicro International
Conference on Parallel, Distributed and
Network-based Processing (PDP),
IEEE, pp. 69-77, 2017.

[118] K. Youngjoon, K. Eunjin and K. Huy
Kang, “A novel approach to detect
malware based on API call sequence
analysis”, International Journal of
Distributed Sensor Networks, vol. 11,
no.6, pp. 659101, 2015.

[119] M. Weixuan, C. Zhongmin, T. Don, F.
Qian and G. Xiaohong, “Security impor-
tance assessment for system objects and
malware detection”, Computers and
Security, vol. 68, pp. 47-68, 2017.

[120] O. Philip, S. Sezer, and K. McLaughlin,
“Detecting obfuscated malware using
reduced opcode set and optimised
runtime trace”, Security Informatics,
vol. 5, pp. 1-12, 2016.

[121] D. Anusha, T. Fabio Di, V. C. Aaron, A.
Thomas H and S. Mark, “A comparison
of static, dynamic, and hybrid analysis
for malware detection”, Journal of Com-
puter Virology and Hacking Techniques,
vol. 13, pp. 1-12, 2017.

7. CONCLUSION

This study helps to identify malwares using
runtime characteristics. It provides the knowl-
edge fraction for harmful software analysis and
detection procedures through machine learning
algorithms. Malware is now well-known to be
highly sophisticated and rapidly changing.
Today, it is not only used to disturb users, steal
information, and destroy user data but also to
enforce its objectives for businesses and
nations. The protection of data and resources is
a key component in information technology.
This is essential because computers or embed-
ded digital devices in every area are utilized to
execute activities more quickly and precisely
without human involvement. The computer

system is more susceptible to hacking because
of its wide range of applications. This study
covers the development of malware, present
status, and techniques of detection. Two
malware analysis techniques exist signature
based, and behavior based. Signature-based
technology has two major flaws that must be
addressed. For the time being, signature-based
techniques will not be able to identify new or
previously unknown malware. Second, different
types of malwares may readily outwit the
system's detection mechanisms. Behavior-based
technique can identify new variants of malware,
dynamic techniques in malware-based methods
are more robust than signature-based methods.
The actual application of dynamic methods
nevertheless remains rigid and time-intensive,
whereas signature technology is quicker and

more efficacious than dynamic techniques in
identifying known malware. We spoke about
malware methods that were suggested for
machine learning to train the classification of
malware in this research. This is because it
includes a huge number of algorithms that may
be used for a variety of malware features. In
addition to its accessibility, machine learning
algorithms provide many benefits over conven-
tional malware classifications, such as the
capacity to get information from file samples,
rapidly detect, unexpected changes, and
minimize the human work and time spent
analyzing malware. In this article, malware
detection methods are classified according to
analytical methodologies such as static, dynam-
ic, and hybrid techniques. Each method has
advantages and disadvantages. These methods,
however, produced encouraging results in the
categorization of malware in a certain scenario.
For example, static methods are quicker, with a
reduced false-positive rate, but it is difficult to
cope with the obfuscation technique while
collecting static characteristics. In this respect,
on the contrary, dynamic methods offer a
beneficial although implementation in real-time
is inconvenient. Finally, we addressed the
two-layer malware detection framework with
static and dynamic functions that can effectively
and reliably detect the new and known malware.

REFERENCES

[1] H. Weijie, X. Jingfeng, W. Yong, H.
Lu, K. Zixiao and M. Limin, “MalDAE:
Detecting and explaining malware
based on correlation and fusion of static
and dynamic characteristics”, Comput-
ers and Security, vol. 83, pp. 208-233,
2019.

[2] B. Pete, F. Richard, T. Frederick and J.

Kevin, “Malware classification using
self organising feature maps and
machine activity data”, Computers and
Security, vol. 73, pp. 399-410, 2018.

[3] N. Usha, T. F. Di, C. V. Aaron, A.
Thomas and S. Mark, “Clustering versus
SVM for malware detection”, Journal of
Computer Virology and Hacking
Techniques, vol. 12, pp. 213-224, 2016.

[4] J. A. Namavar, H. Sattar, D. Ali and C.
R. Kim kwang, “An improved two-hid-
den-layer extreme learning machine for
malware hunting”, Computers and Secu-
rity, vol. 89, pp. 10-16, 2020.

[5] F. Massimo and P. F. Leaf, “An
open-source cybersecurity training
platform for realistic edge-IoT scenari-
os”, Journal of Systems Architecture,
vol. 97, pp. 107-129, 2020.

[6] K. Afreen, Z. Swaleha and Al. S.
Muaadhabdo, “An improved pre-pro-
cessing machine learning approach for
cross-sectional imaging of demented
older adults”, International Conference
of Intelligent Computing and Engineer-
ing (ICOICE), IEEE, pp. 1-7, 2019.

[7] P. Jakub, N. Q. Anh, B. Adrian, G.
Jonathan and L. Y. Kubo, “a framework
for automated efficacy testing of anti-vi-
rus behavioral detection with proce-
dure-based malware emulation”, In
Proceedings of the 13th International
Workshop on Automating Test Case
Design, Selection and Evaluation, pp.
37-44, 2022.

[8] B. Andrew, “How deception can change
cyber security defenses”, Computer
Fraud & Security, vol.5, no.1, pp. 12-14,
2019.

 [9] G. Ekta, B. Divya and S. Sanjeev, “Mal-
ware analysis and classification: A

survey”, Journal of Information Securi-
ty, vol. 6, 2014.

[10] M. S. Mariam, S. M. Ali, Z. Si-Jing and
Y. Hong-Ji, “Conceivable security risks
and authentication techniques for smart
devices: A comparative evaluation of
security practices”, International journal
of Automation and Computing, vol. 13,
pp. 350-363, 2016.

[11] B. Kang, F. Liu, Z. Yun and Y. Liang,
“Design of an Internet of Things-based
smart home system”, International
Conference on Intelligent Control and
Information Processing, IEEE, vol. 2,
pp. 921-924, 2011.

[12] A. Shahid, H, R. Nigel, T. Issa and S.
Ibrahim, “A framework for metamor-
phic malware analysis and real-time
detection”, Computers and Security, vol.
48, pp. 212-233, 2015.

[13] H. Xin, “Large-scale malware analysis,
detection, and signature generation”,
Doctoral dissertation, University of
Michigan, 2011.

[14] R. Kalpika, A. R. Vasudevan, “Detection
of Zeus Bot Based on Host and Network
Activities”, Communications in Com-
puter and Information Science, vol. 746,
pp. 978-981, 2017.

[15] E. Nabeil, E. Rashad, H. Alzubair and L.
Fagen, “A blockchain-based
attribute-based signcryption scheme to
secure data sharing in the cloud”,
Journal of Systems Architecture, vol.
102, pp. 10-16, 2020.

[16] J. Daehee, J. Yunjong , L Sungman , P.
Minjoon, K. Kuenhwan , K. Donguk and
K. B. Byunghoon, “Rethinking anti-em-
ulation techniques for large-scale
software deployment”, Computers and
Security, vol. 83, pp. 182-200, 2019.

[17] M. Samaneh and G. Ali A, “Application
of deep learning to cybersecurity: A
survey”, Neurocomputing, vol. 347, pp.
149-176, 2019.

[18] Z. Weizhe, W. Huanran, H. Hui and L.
Peng,” DAMBA: detecting android
malware by ORGB analysis”, IEEE
Transactions on Reliability, vol.69, no.1,
pp. 55-69, 2020.

[19] L. Liu, W. Bao-sheng, Y. Bo and Z.
Qiu-xi, “Automatic malware classifica-
tion and new malware detection using
machine learning”, Frontiers of Infor-
mation Technology & Electronic
Engineering, vol. 18, no. 9, pp.
1336-1347, 2017.

[20] K. Ratinder and M. Singh, “Hybrid
real-time zero-day malware analysis and
reporting system”, International Journal
of Information Technology and Comput-
er Sciences, vol. 8, pp. 63-73, 2016.

[21] M. Jelena, M. Miroslaw and F. Alberto,
“Time, accuracy and power consump-
tion tradeoff in mobile malware detec-
tion systems”, Computers and Security,
vol. 82, pp. 314-328, 2019.

[22] S. Hudan, S. Ferdous and P. Christian,
“A survey on forensic investigation of
operating system logs”, Digital Investi-
gation, vol. 29, pp. 1-20, 2019.

[23] N. Bruce, K. K. Hwan, K. Y. Jin, K.H.
Ho, K. T. Yong and L. H. Jae,
“Cross-method-based analysis and
classification of malicious behavior by
api calls extraction”, Applied Sciences,
vol. 9, no.2, pp. 239, 2019.

[24] Z. Hanqi, X. Xi, M. Francesco, N.
Shiguang, M. Fabio and S. A. Kumar,
“Classification of ransomware families
with machine learning based on N-gram
of opcodes”, Future Generation Com-

puter Systems, vol. 90, pp. 211-221,
2019.

[25] N. Jose, P. Araujo, P. Donald M and R.
C. Ghedini, “MULTS: A multi-cloud
fault-tolerant architecture to manage
transient servers in cloud computing”,
Journal of Systems Architecture, vol.
101, pp. 101-108, 2019.

[26] R. Veeramani and R. Nitin, “Windows
api based malware detection and frame-
work analysis”, In International Confer-
ence on Networks and Cyber Security,
vol. 25, 2012.

[27] C. Mihai, J. Somesh, K. Johannes, K.
Stefan and V. Helmut, “Software trans-
formations to improve malware detec-
tion”, Journal in Computer Virology,
vol. 3, pp. 253-265, 2007.

[28] O. Yoshihiro, “Trends of anti-analysis
operations of malwares observed in API
call logs”, Journal of Computer Virology
and Hacking Techniques, vol. 14, no. 1,
pp. 69-85, 2018.

[29] C. Sibi S and V. V. Sangeetha, “A survey
on malware analysis and mitigation
techniques”, Computer Science Review,
vol. 32, pp. 1-23, 2019.

[30] D. Jaime, S. Igor, C. Xabier, P. Yoseba K
and B. Pablo G, “Automatic
behaviour-based analysis and classifica-
tion system for malware detection”,
International Conference on Enterprise
Information Systems, vol. 2, pp.
395-399, 2010.

[31] D. Yuxin, X. Xiaoling, C. Sheng and L.
Ye, “A malware detection method based
on family behavior graph”, Computers
and Security, vol. 73, pp. 73-86, 2018.

[32] S. Jagsir and S. Jaswinder, “A survey on
machine learning-based malware detec-

tion in executable files”, Journal of
Systems Architecture, vol. 112, pp.
10-18, 2021.

[33] R. Anusmita and N. Asoke, “Introduc-
tion to Malware and Malware Analysis:
A brief overview”, International Journal,
vol. 4, no.10, 2016.

[34] W. Huanran, H. Hui and Z. Weizhe,
“Demadroid: Object reference
graph-based malware detection in
Android”, Security and Communication
Networks, vol. 2018, 2018.

[35] B. Tao, T. Takeshi, G. Shanqing, I.
Daisuke and N. Koji, “Integration of
multi-modal features for android
malware detection using linear SVM”,
In 2016 11th Asia Joint Conference on
Information Security (Asia JCIS), IEEE,
pp. 141-146, 2016.

[36] B. Ulrich, K. Engin and K. Christopher,
“Improving the efficiency of dynamic
malware analysis”, In Proceedings of the
2010 ACM Symposium on Applied
Computing, pp. 1871-1878, 2010.

[37] W. Gerard, S. Radu and D. Alexandre,
“Malware behaviour analysis”, Journal
in Computer Virology, vol. 4, pp.
279-287, 2008.

[38] M. Asit and T. Shashikala, “Virtual
machine introspection: towards bridging
the semantic gap”, Journal of Cloud
Computing, vol. 3, no.1, pp. 1-14, 2014.

[39] V. Jiri and P. Martin, “Virtualization of
operating system using type-2 Hypervi-
sor”, In Software Engineering Perspec-
tives and Application in Intelligent
Systems: Proceedings of the 5th Com-
puter Science On-line Conference 2016
(CSOC2016), Springer International
Publishing, vol. 25, pp. 239-247, 2016.

[40] M. Andreas, K. Christopher and K.
Engin, “Exploring multiple execution
paths for malware analysis”, In 2007
IEEE Symposium on Security and
Privacy (SP'07), IEEE, pp.231-245,
2007.

[41] K. Bojan, Z. Apostolis, L. Tamas, W.
George and E. Claudia, “Adaptive
semantics-aware malware classifica-
tion”, In Detection of Intrusions and
Malware, and Vulnerability Assessment:
13th International Conference, DIMVA
2016, San Sebastián, Spain, Springer
International Publishing, vol. 13, pp.
419-439, 2016.

[42] R. Edward, Z. Richard, C. Russell, S.
Jared, Y. Paul, W. Rebecca, T. Anna, M.
Mark and N. Charles, “An investigation
of byte n-gram features for malware
classification”, Journal of Computer
Virology and Hacking Techniques, vol.
14, pp. 1-20, 2018.

[43] M. Zane and B. Michael, “Building a
machine learning classifier for malware
detection”, In 2014 second workshop on
anti-malware testing research (Water),
IEEE, pp. 1-4, 2014.

[44] S. Michael and H. Andrew, “A Practical
malware analysis: the hands-on guide to
dissecting malicious software”. Starch
Press, 2012.

[45] W. Tzu-Yen and W. Chin-Hsiung,
“Detection of packed executables using
support vector machines”, International
Conference on Machine Learning and
Cybernetics, IEEE, vol. 2, pp. 717-722,
2011.

[46] A. Satheesh and R. Kumaravelu, “A
mathematical model of HMST model on
malware static analysis”, International
Journal of Information Security and

Privacy, vol. 13, no. 2, pp. 86-103, 2019.

[47] A. Imad and L. Saiida, “A new classifi-
cation based model for malicious PE
files detection”, International Journal of
Computer Network and Information
Security, vol. 9, no.6, pp.1-7, 2019.

[48] L. Michael, A. Steven, H. Blake, R.
Matthew, “Malware Analyst's Cookbook
and DVD”, Wiley Publishing, 2011.

[49] L. Xiaojing, Y. Kan, W. XiaoFeng, L.
Zhou, X. Luyi and B. Raheem, “Acing
the ioc game: Toward automatic discov-
ery and analysis of open-source cyber
threat intelligence”, ACM SIGSAC
conference on computer and communi-
cations security, pp. 755-766, 2016.

[50] S. Sebastian and K. Stefan, “Code
obfuscation against static and dynamic
reverse engineering”, In Information
Hiding: 13th International Conference,
IH 2011, Prague, Czech Republic,
Revised Selected Papers, Springer
Berlin Heidelberg, vol. 13, pp. 270-284,
2011.

[51] C. Michael , “Scanning memory with
Yara”, Digital Investigation, vol. 20, pp.
34-38, 2017.

[52] S. Nikolaos, B. Chafika, A. Omar and A.
Ameer, “Forensic malware analysis: The
value of fuzzy hashing algorithms in
identifying similarities”, IEEE Trust-
com/ Big Data SE/ ISPA, IEEE, pp.
1782-1787, 2016.

[53] K. Abhishek, G. Suchandra and G.
Ratan, “Detecting obfuscated viruses
using cosine similarity analysis”, Asia
International Conference on Modelling
and Simulation (AMS'07), IEEE, pp.
165-170, 2007.

[54] B. Danilo, M. Lorenzo, M. Mattia,

“Code normalization for self-mutating
malware”, IEEE Security and Privacy,
vol. 5, no.2, pp. 46-54, 2007.

[55] Z. Boyun, Y. Jianping, H. Jingbo, Z.
Dingxing and W. Shulin, “Malicious
codes detection based on ensemble
learning”, In Autonomic and Trusted
Computing: 4th International Confer-
ence, ATC 2007, Hong Kong, China,
July 11-13, 2007. Proceedings 4, Spring-
er Berlin Heidelberg, pp. 468-477,
2007.

[56] M. Robert, F. Clint, T. Nir, B. Eugene,
G. Marina, D. Shlomi and E. Yuval,
“Unknown malcode detection using
opcode representation”, In Intelligence
and Security Informatics: First European
Conference, Euro ISI 2008, Esbjerg,
Denmark, Proceedings, Springer Berlin
Heidelberg, pp. 204-215, 2008.

[57] B. S. Mojtaba, J. Saeed and T. Asghar,
“PbMMD: A novel policy based
multi-process malware detection”,
Engineering Applications of Artificial
Intelligence, vol. 60, pp. 57-70, 2017.

[58] N. Vivens, X. Zhifeng, M. V. Rao, M. Ke
and X. Yang, “Network forensics analy-
sis using Wireshark”, International
Journal of Security and Networks, vol.
10, no.2, pp. 91-106, 2015.

[59] H. Nazrul, B. Monowar H, B. Ram
Charan, B. Dhruba K and K. Jugal K,
“Network attacks: Taxonomy, tools and
systems”, Journal of Network and Com-
puter Applications, vol. 40, pp. 307-324,
2014.

[60] E. Eldad, “Reversing: secrets of reverse
engineering”, John Wiley & Sons, 2011.

[61] G. Daniel, M. Carles and P. Jordi, “The
rise of machine learning for detection
and classification of malware: Research

developments, trends and challenges”,
Journal of Network and Computer
Applications, vol. 153, pp. 102526,
2020.

[62] R. Chathuranga and J. Aruna, “An
efficient approach for advanced
malware analysis using memory foren-
sic technique”, In 2017 IEEE Trustcom/
Big Data SE/ ICESS, IEEE, pp.
1145-1150, 2017.

[63] K. Ilker, “A basic malware analysis
method”, Computer Fraud and Security,
vol. 2019, no. 6, pp. 11-19, 2019.

[64] K. Joakim, “Fundamentals of Digital
Forensics”, Springer International
Publishing, 2020.

[65] P. Radu, H. Steven, L. Thor, S. Matija, P.
Jens and C. Alexandre, “Analysis of
malware behavior: Type classification
using machine learning”, International
conference on cyber situational aware-
ness, data analytics and assessment
(Cyber SA), IEEE, pp. 1-7, 2015.

[66] A. Omer and S. Refik, “Investigation of
possibilities to detect malware using
existing tools”, 14th International
Conference on Computer Systems and
Applications. IEEE, pp. 1277-1284,
2017.

[67] M. Q. Ali, A. Irfan and Y. Muhammad,
“Cloud Intell: An intelligent malware
detection system”, Future Generation
Computer Systems, vol. 86, pp.
1042-1053, 2018.

[68] G. Kent, S. Scott, H. Xin and C. Tzi-ck-
er, “Automatic generation of string
signatures for malware detection”,
Recent Advances in Intrusion Detection:
12th International Symposium, RAID
2009, Saint-Malo, France, Proceedings,
Springer Berlin Heidelberg, vol. 12, pp.

101-120, 2009.

[69] G. Dragoş, C. Mihai, A. Dan and C.
Liviu, “Malware detection using
machine learning”, International multi-
conference on computer science and
information technology, IEEE, pp.
735-741, 2009.

[70] B. Philippe, G. Isabelle and M. Jean-Yves,
“Behavior abstraction in malware analy-
sis”, In Runtime Verification: First
International Conference, RV 2010,
Proceedings, Springer Berlin Heidel-
berg, vol. 1, pp. 168-182, 2010.

[71] C. Sang Kil, M. Iulian, J. Jiyong, T.
John, B. David and A. David G, “Split
Screen: Enabling efficient, distributed
malware detection”, Journal of Commu-
nications and Networks, vol. 13, no.2,
pp. 187-200, 2011.

[72] S. Asaf, M, Robert, F. Clint, D. Shlomi
and E. Yuval, “Detecting unknown
malicious code by applying classifica-
tion techniques on opcode patterns”,
Security Informatics, vol. 1, no.1, pp.
1-22, 2012.

[73] S. Asaf, M. Robert, E. Yuval and G.
Chanan, “Detection of malicious code
by applying machine learning classifiers
on static features: A state-of-the-art
survey”, Information Security Technical
Report, vol. 14, no.1, pp. 16-29, 2009.

[74] E. A. Ahmed E, M. M. Aizaini and B.
Bazara, “Improving the detection of
malware behaviour using simplified data
dependent API call graph”, International
Journal of Security and its Applications,
vol. 7, no. 5, pp. 29-42, 2013.

[75] P. Bassir, J. M. Vafaie and J. Mehrdad,
“Malware detection using hidden
Markov model based on Markov blanket
feature selection method”. International

congress on technology, communication
and knowledge, IEEE, pp. 558-563,
2015.

[76] S. Nedim and L. Pavel, “Hidost: a static
machine-learning-based detector of
malicious files”. EURASIP Journal on
Information Security, vol. 2016, pp.
1-20, 2016.

[77] K. Dong Hee, W. Sang Uk, L. Dong Kyu
and C. Tai Myoung, “Static detection of
malware and benign executable using
machine learning algorithm”. Eighth
International Conference on Evolving
Internet, pp. 14-19, 2016.

[78] H. Shamsul, A. Jemal, A. Mamoun, A.
Mali, I. Rafiqul and Y. John, “Hybrids of
support vector machine wrapper and
filter based framework for malware
detection”. Future Generation Computer
Systems, vol. 55, pp. 376-390, 2016.

[79] N. Yuta and U. Ryuya, “Static analysis
with paragraph vector for malware
detection”. In Proceedings of the 11th
International Conference on Ubiquitous
Information Management and Commu-
nication, pp. 1-7, 2017.

[80] W. Cheng, Q. Zheng, Z. Jixin and Y.
Hui, “A malware variants detection
methodology with an opcode based
feature method and a fast density based
clustering algorithm”. 12th International
Conference on Natural Computation,
Fuzzy Systems and Knowledge Discov-
ery (ICNC-FSKD), IEEE, pp. 481-487,
2016.

[81] M. Aziz, A. Omar and M. Manar,
“AMAL: high-fidelity, behavior-based
automated malware analysis and classi-
fication”. Computers and Security, vol.
52, pp. 251-266, 2015.

[82] Y. Yanfang, W. Dingding, L. Tao, Y.

Dongyi and J. Qingshan, “An intelligent
PE-malware detection system based on
association mining”, Journal in comput-
er virology, vol. 4, pp. 323-334, 2008.

[83] B. Michael, O. Jon, A. Jon, M. Z.
Morley, J. Farnam and N. Jose, “Auto-
mated classification and analysis of
internet malware”, Recent Advances in
Intrusion Detection: 10th International
Symposium, RAID, vol. 10, pp.
178-197, 2007.

[84] R. Konrad, T. Philipp, W. Carsten and H.
Thorsten, “Automatic analysis of
malware behavior using machine learn-
ing”, Journal of Computer Security, vol.
19, no.4, pp. 639-668, 2011.

[85] V. Mihai, G. Laura and T. Nicolae,
“Practical malware analysis based on
sandboxing”, Ro Edu Net Conference
13th Edition: Networking in Education
and Research Joint Event RENAM 8th
Conference, IEEE, pp. 1-6, 2014.

[86] H. Jozsef, M. Yoan, I. Alexander and L.
Amaury, “Methodology for behavior-
al-based malware analysis and detection
using random projections and k-nearest
neighbors classifiers”, International
Conference on Computational Intelli-
gence and Security, IEEE, pp.
1016-1023, 2011.

[87] G. Mahboobe, S. Ashkan and S. Zahra,
“Dynamic VSA: a framework for
malware detection based on register
contents”, Engineering Applications of
Artificial Intelligence, vol. 44, pp.
111-122, 2015.

[88] P. Zhi-Peng, F. Chao and T. Chao-Jing,
“Malware classification based on the
behavior analysis and back propagation
neural network”. In ITM Web of Confer-
ences, EDP Sciences, vol.7, pp. 20-28,

Nov. 2016.

[89] H. Shamsul, M. Suruz, H. M. Mehedi, I.
Rafiqul, Y. John, A. Majed and A.
Ahmad, “Defending unknown attacks
on cyber-physical systems by semi-su-
pervised approach and available
unlabeled data”, Information Sciences,
vol. 379, pp. 211-228, 2017.

[90] M. Fahad, H. Wei and B. Antony,
“Novel malware detection methods by
using LCS and LCSS”, 22nd Interna-
tional Conference on Automation and
Computing (ICAC), IEEE, pp. 554-559,
2016.

[91] H. Eduardo, M. Rubén S and L. Ignacio
M, “Evaluating the reliability of compu-
tational grids from the end user’s point
of view”, Journal of Systems Architec-
ture, vol. 52, no. 12, pp. 727-736, 2006.

[92] N. B. Narayanan, D. Ouboti and K.
Temesguen, “Performance analysis of
machine learning and pattern recogni-
tion algorithms for malware classifica-
tion”, IEEE national aerospace and
electronics conference (NAECON) and
ohio innovation summit (OIS), IEEE,
pp. 338-342, 2016.

[93] C. In Kyeom, K. T. Guen, S. Y. Jin, R.
Minsoo and I. E. Gyu, “Malware analy-
sis and classification using sequence
alignments”, Intelligent Automation and
Soft Computing, vol. 22, no.3, pp.
371-377, 2016.

[94] M. Jiang, X. Zhi, L. Pengwei, W. Ding-
hao, L. Peng and M. Bing, “Impeding
behavior-based malware analysis via
replacement attacks to malware specifi-
cations”, Journal of Computer Virology
and Hacking Techniques, vol. 13,
pp.193-207, 2017.

[95] W. Markus, R. Alexander, T. Niklas and

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

47Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

A. Wolfgang, “A knowledge-assisted
visual malware analysis system: Design,
validation, and reflection of KAMAS”,
Computers and Security, vol. 67, pp.
1-15, 2017.

[96] N. Stavros D and P, Iosif, “A
graph-based model for malware detec-
tion and classification using system-call
groups”, Journal of Computer Virology
and Hacking Techniques, vol. 13, no.1,
pp. 29-46, 2017.

[97] L. Quan, B. Oisin, M. N. Brian and S.
Mark, “Deep learning at the shallow
end: Malware classification for non-do-
main experts”, Digital Investigation,
vol. 26, pp. S118-S126, 2018.

[98] P. Abdurrahman and A. Tankut, “Classi-
fication of malware families based on
runtime behaviors”, Journal of informa-
tion security and applications, vol. 37,
pp. 91-100, 2017.

[99] S. Jan, P. Tomás and R. Martin, “Multi-
ple instance learning for malware classi-
fication”, Expert Systems with Applica-
tions, vol. 93, pp. 346-357, 2018.

[100] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

 [101] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

[102] X. Lu, F. Jiang, X. Zhou, S. Yi and J. Sha
and L. Pietro, “ASSCA: API sequence

and statistics features combined archi-
tecture for malware detection”, Comput-
er Networks, vol. 157, pp. 99-111,
2019.

[103] D. Arivudainambi, K.A. Varun Kumar
and P. Visu, “Malware traffic classifica-
tion using principal component analysis
and artificial neural network for extreme
surveillance”, Computer Communica-
tions, vol. 147, pp. 50-57, 2019.

[104] Y. Cagatay and K. Ahmet, “Imaging and
evaluating the memory access for
malware”, Forensic Science Internation-
al: Digital Investigation, vol. 32, pp.
20-27, 2020.

[105] R. Mahdi, W. Yong Li, K. Reza, J.
Hamed, Z. Ruxin and H. Peng, “A
hybrid machine learning approach for
malicious behaviour detection and
recognition in cloud computing”,
Journal of Network and Computer
Applications, vol. 151, pp. 12-19, 2020.

[106] E. A. Ahmed E, M. M. Aizaini, B.
Bazara- IA and H. Hentabli, “Enhancing
the detection of metamorphic malware
using call graphs”, Computers and Secu-
rity, vol. 46, pp. 62-78, 2014.

[107] R. Jesse C, K. Roger I, L. Scott M and C.
Robert K, “Detection of injected,
dynamically generated, and obfuscated
malicious code”, ACM workshop on
Rapid malcode, pp. 76-82, 2003.

[108] C. Michael, “A protocol graph based
anomaly detection system”, Doctoral
dissertation, Carnegie Mellon Universi-
ty, 2008.

[109] M. R. Jose and D. J. Cesar, “Integrating
static and dynamic malware analysis
using machine learning”, IEEE Latin
America Transactions, vol. 13, no. 9, pp.
3080-3087, 2015.

[110] S. PV and S. AJPCS, “Integrated static
and dynamic analysis for malware
detection”, Procedia Computer Science,
vol. 46, pp. 804-811, 2015.

[111] E. E. Inang, B. Chafika, A. Ameer and
W. Paul, “Analysis of malware
behaviour: Using data mining clustering
techniques to support forensics investi-
gation”, Fifth Cybercrime and Trust-
worthy Computing Conference, IEEE,
pp. 54-63, 2014.

[112] W. Ahsan, I. Azhar, L. Jahanzaib, N.
Ahsan and B. Anas, “A novel approach
of unprivileged keylogger detection”,
2nd International Conference on Com-
puting, Mathematics and Engineering
Technologies (iCoMET), IEEE, pp. 1-6,
2019.

[113] N. Mohammad, A. Nouman and Y. Jing
Tao, “A three-way decision making
approach to malware analysis using
probabilistic rough sets”, Information
Sciences, vol. 37, no. 4, pp. 193-209,
2016.

[114] N. Mohammad, A. Nouman and Y. Jing
Tao, “Detecting malware evolution
using support vector machines”, Expert
Systems with Applications, vol. 143, pp.
113022, 2020.

[115] P. Avi, R. Brian, K. Lee, H. Michael, C.
Catherine, O. Alison, T. Glenn, R. S.
Neal, P. Terry, and T. Jason, “Artificial
intelligence based malware analysis”,
arXiv preprint, pp.16-23, 2017.

[116] H. Shamsul, I. Rafiqul, A. Jemal, Y.
John, H. M. Mehedi and F. Giancarlo,
“A hybrid-multi filter-wrapper frame-
work to identify run-time behaviour for
fast malware detection”, Future Genera-
tion Computer Systems, vol. 1, no. 83,
pp. 193-207, 2018.

[117] S. Robert, X. Lifan, K. William, V.
Tristan, F. Teague, H. John, P. Zachary,
S. Corey, S. Joshua and C. John, “Paral-
lelization of machine learning applied to
call graphs of binaries for malware
detection”, 25th Euromicro International
Conference on Parallel, Distributed and
Network-based Processing (PDP),
IEEE, pp. 69-77, 2017.

[118] K. Youngjoon, K. Eunjin and K. Huy
Kang, “A novel approach to detect
malware based on API call sequence
analysis”, International Journal of
Distributed Sensor Networks, vol. 11,
no.6, pp. 659101, 2015.

[119] M. Weixuan, C. Zhongmin, T. Don, F.
Qian and G. Xiaohong, “Security impor-
tance assessment for system objects and
malware detection”, Computers and
Security, vol. 68, pp. 47-68, 2017.

[120] O. Philip, S. Sezer, and K. McLaughlin,
“Detecting obfuscated malware using
reduced opcode set and optimised
runtime trace”, Security Informatics,
vol. 5, pp. 1-12, 2016.

[121] D. Anusha, T. Fabio Di, V. C. Aaron, A.
Thomas H and S. Mark, “A comparison
of static, dynamic, and hybrid analysis
for malware detection”, Journal of Com-
puter Virology and Hacking Techniques,
vol. 13, pp. 1-12, 2017.

7. CONCLUSION

This study helps to identify malwares using
runtime characteristics. It provides the knowl-
edge fraction for harmful software analysis and
detection procedures through machine learning
algorithms. Malware is now well-known to be
highly sophisticated and rapidly changing.
Today, it is not only used to disturb users, steal
information, and destroy user data but also to
enforce its objectives for businesses and
nations. The protection of data and resources is
a key component in information technology.
This is essential because computers or embed-
ded digital devices in every area are utilized to
execute activities more quickly and precisely
without human involvement. The computer

system is more susceptible to hacking because
of its wide range of applications. This study
covers the development of malware, present
status, and techniques of detection. Two
malware analysis techniques exist signature
based, and behavior based. Signature-based
technology has two major flaws that must be
addressed. For the time being, signature-based
techniques will not be able to identify new or
previously unknown malware. Second, different
types of malwares may readily outwit the
system's detection mechanisms. Behavior-based
technique can identify new variants of malware,
dynamic techniques in malware-based methods
are more robust than signature-based methods.
The actual application of dynamic methods
nevertheless remains rigid and time-intensive,
whereas signature technology is quicker and

more efficacious than dynamic techniques in
identifying known malware. We spoke about
malware methods that were suggested for
machine learning to train the classification of
malware in this research. This is because it
includes a huge number of algorithms that may
be used for a variety of malware features. In
addition to its accessibility, machine learning
algorithms provide many benefits over conven-
tional malware classifications, such as the
capacity to get information from file samples,
rapidly detect, unexpected changes, and
minimize the human work and time spent
analyzing malware. In this article, malware
detection methods are classified according to
analytical methodologies such as static, dynam-
ic, and hybrid techniques. Each method has
advantages and disadvantages. These methods,
however, produced encouraging results in the
categorization of malware in a certain scenario.
For example, static methods are quicker, with a
reduced false-positive rate, but it is difficult to
cope with the obfuscation technique while
collecting static characteristics. In this respect,
on the contrary, dynamic methods offer a
beneficial although implementation in real-time
is inconvenient. Finally, we addressed the
two-layer malware detection framework with
static and dynamic functions that can effectively
and reliably detect the new and known malware.

REFERENCES

[1] H. Weijie, X. Jingfeng, W. Yong, H.
Lu, K. Zixiao and M. Limin, “MalDAE:
Detecting and explaining malware
based on correlation and fusion of static
and dynamic characteristics”, Comput-
ers and Security, vol. 83, pp. 208-233,
2019.

[2] B. Pete, F. Richard, T. Frederick and J.

Kevin, “Malware classification using
self organising feature maps and
machine activity data”, Computers and
Security, vol. 73, pp. 399-410, 2018.

[3] N. Usha, T. F. Di, C. V. Aaron, A.
Thomas and S. Mark, “Clustering versus
SVM for malware detection”, Journal of
Computer Virology and Hacking
Techniques, vol. 12, pp. 213-224, 2016.

[4] J. A. Namavar, H. Sattar, D. Ali and C.
R. Kim kwang, “An improved two-hid-
den-layer extreme learning machine for
malware hunting”, Computers and Secu-
rity, vol. 89, pp. 10-16, 2020.

[5] F. Massimo and P. F. Leaf, “An
open-source cybersecurity training
platform for realistic edge-IoT scenari-
os”, Journal of Systems Architecture,
vol. 97, pp. 107-129, 2020.

[6] K. Afreen, Z. Swaleha and Al. S.
Muaadhabdo, “An improved pre-pro-
cessing machine learning approach for
cross-sectional imaging of demented
older adults”, International Conference
of Intelligent Computing and Engineer-
ing (ICOICE), IEEE, pp. 1-7, 2019.

[7] P. Jakub, N. Q. Anh, B. Adrian, G.
Jonathan and L. Y. Kubo, “a framework
for automated efficacy testing of anti-vi-
rus behavioral detection with proce-
dure-based malware emulation”, In
Proceedings of the 13th International
Workshop on Automating Test Case
Design, Selection and Evaluation, pp.
37-44, 2022.

[8] B. Andrew, “How deception can change
cyber security defenses”, Computer
Fraud & Security, vol.5, no.1, pp. 12-14,
2019.

 [9] G. Ekta, B. Divya and S. Sanjeev, “Mal-
ware analysis and classification: A

survey”, Journal of Information Securi-
ty, vol. 6, 2014.

[10] M. S. Mariam, S. M. Ali, Z. Si-Jing and
Y. Hong-Ji, “Conceivable security risks
and authentication techniques for smart
devices: A comparative evaluation of
security practices”, International journal
of Automation and Computing, vol. 13,
pp. 350-363, 2016.

[11] B. Kang, F. Liu, Z. Yun and Y. Liang,
“Design of an Internet of Things-based
smart home system”, International
Conference on Intelligent Control and
Information Processing, IEEE, vol. 2,
pp. 921-924, 2011.

[12] A. Shahid, H, R. Nigel, T. Issa and S.
Ibrahim, “A framework for metamor-
phic malware analysis and real-time
detection”, Computers and Security, vol.
48, pp. 212-233, 2015.

[13] H. Xin, “Large-scale malware analysis,
detection, and signature generation”,
Doctoral dissertation, University of
Michigan, 2011.

[14] R. Kalpika, A. R. Vasudevan, “Detection
of Zeus Bot Based on Host and Network
Activities”, Communications in Com-
puter and Information Science, vol. 746,
pp. 978-981, 2017.

[15] E. Nabeil, E. Rashad, H. Alzubair and L.
Fagen, “A blockchain-based
attribute-based signcryption scheme to
secure data sharing in the cloud”,
Journal of Systems Architecture, vol.
102, pp. 10-16, 2020.

[16] J. Daehee, J. Yunjong , L Sungman , P.
Minjoon, K. Kuenhwan , K. Donguk and
K. B. Byunghoon, “Rethinking anti-em-
ulation techniques for large-scale
software deployment”, Computers and
Security, vol. 83, pp. 182-200, 2019.

[17] M. Samaneh and G. Ali A, “Application
of deep learning to cybersecurity: A
survey”, Neurocomputing, vol. 347, pp.
149-176, 2019.

[18] Z. Weizhe, W. Huanran, H. Hui and L.
Peng,” DAMBA: detecting android
malware by ORGB analysis”, IEEE
Transactions on Reliability, vol.69, no.1,
pp. 55-69, 2020.

[19] L. Liu, W. Bao-sheng, Y. Bo and Z.
Qiu-xi, “Automatic malware classifica-
tion and new malware detection using
machine learning”, Frontiers of Infor-
mation Technology & Electronic
Engineering, vol. 18, no. 9, pp.
1336-1347, 2017.

[20] K. Ratinder and M. Singh, “Hybrid
real-time zero-day malware analysis and
reporting system”, International Journal
of Information Technology and Comput-
er Sciences, vol. 8, pp. 63-73, 2016.

[21] M. Jelena, M. Miroslaw and F. Alberto,
“Time, accuracy and power consump-
tion tradeoff in mobile malware detec-
tion systems”, Computers and Security,
vol. 82, pp. 314-328, 2019.

[22] S. Hudan, S. Ferdous and P. Christian,
“A survey on forensic investigation of
operating system logs”, Digital Investi-
gation, vol. 29, pp. 1-20, 2019.

[23] N. Bruce, K. K. Hwan, K. Y. Jin, K.H.
Ho, K. T. Yong and L. H. Jae,
“Cross-method-based analysis and
classification of malicious behavior by
api calls extraction”, Applied Sciences,
vol. 9, no.2, pp. 239, 2019.

[24] Z. Hanqi, X. Xi, M. Francesco, N.
Shiguang, M. Fabio and S. A. Kumar,
“Classification of ransomware families
with machine learning based on N-gram
of opcodes”, Future Generation Com-

puter Systems, vol. 90, pp. 211-221,
2019.

[25] N. Jose, P. Araujo, P. Donald M and R.
C. Ghedini, “MULTS: A multi-cloud
fault-tolerant architecture to manage
transient servers in cloud computing”,
Journal of Systems Architecture, vol.
101, pp. 101-108, 2019.

[26] R. Veeramani and R. Nitin, “Windows
api based malware detection and frame-
work analysis”, In International Confer-
ence on Networks and Cyber Security,
vol. 25, 2012.

[27] C. Mihai, J. Somesh, K. Johannes, K.
Stefan and V. Helmut, “Software trans-
formations to improve malware detec-
tion”, Journal in Computer Virology,
vol. 3, pp. 253-265, 2007.

[28] O. Yoshihiro, “Trends of anti-analysis
operations of malwares observed in API
call logs”, Journal of Computer Virology
and Hacking Techniques, vol. 14, no. 1,
pp. 69-85, 2018.

[29] C. Sibi S and V. V. Sangeetha, “A survey
on malware analysis and mitigation
techniques”, Computer Science Review,
vol. 32, pp. 1-23, 2019.

[30] D. Jaime, S. Igor, C. Xabier, P. Yoseba K
and B. Pablo G, “Automatic
behaviour-based analysis and classifica-
tion system for malware detection”,
International Conference on Enterprise
Information Systems, vol. 2, pp.
395-399, 2010.

[31] D. Yuxin, X. Xiaoling, C. Sheng and L.
Ye, “A malware detection method based
on family behavior graph”, Computers
and Security, vol. 73, pp. 73-86, 2018.

[32] S. Jagsir and S. Jaswinder, “A survey on
machine learning-based malware detec-

tion in executable files”, Journal of
Systems Architecture, vol. 112, pp.
10-18, 2021.

[33] R. Anusmita and N. Asoke, “Introduc-
tion to Malware and Malware Analysis:
A brief overview”, International Journal,
vol. 4, no.10, 2016.

[34] W. Huanran, H. Hui and Z. Weizhe,
“Demadroid: Object reference
graph-based malware detection in
Android”, Security and Communication
Networks, vol. 2018, 2018.

[35] B. Tao, T. Takeshi, G. Shanqing, I.
Daisuke and N. Koji, “Integration of
multi-modal features for android
malware detection using linear SVM”,
In 2016 11th Asia Joint Conference on
Information Security (Asia JCIS), IEEE,
pp. 141-146, 2016.

[36] B. Ulrich, K. Engin and K. Christopher,
“Improving the efficiency of dynamic
malware analysis”, In Proceedings of the
2010 ACM Symposium on Applied
Computing, pp. 1871-1878, 2010.

[37] W. Gerard, S. Radu and D. Alexandre,
“Malware behaviour analysis”, Journal
in Computer Virology, vol. 4, pp.
279-287, 2008.

[38] M. Asit and T. Shashikala, “Virtual
machine introspection: towards bridging
the semantic gap”, Journal of Cloud
Computing, vol. 3, no.1, pp. 1-14, 2014.

[39] V. Jiri and P. Martin, “Virtualization of
operating system using type-2 Hypervi-
sor”, In Software Engineering Perspec-
tives and Application in Intelligent
Systems: Proceedings of the 5th Com-
puter Science On-line Conference 2016
(CSOC2016), Springer International
Publishing, vol. 25, pp. 239-247, 2016.

[40] M. Andreas, K. Christopher and K.
Engin, “Exploring multiple execution
paths for malware analysis”, In 2007
IEEE Symposium on Security and
Privacy (SP'07), IEEE, pp.231-245,
2007.

[41] K. Bojan, Z. Apostolis, L. Tamas, W.
George and E. Claudia, “Adaptive
semantics-aware malware classifica-
tion”, In Detection of Intrusions and
Malware, and Vulnerability Assessment:
13th International Conference, DIMVA
2016, San Sebastián, Spain, Springer
International Publishing, vol. 13, pp.
419-439, 2016.

[42] R. Edward, Z. Richard, C. Russell, S.
Jared, Y. Paul, W. Rebecca, T. Anna, M.
Mark and N. Charles, “An investigation
of byte n-gram features for malware
classification”, Journal of Computer
Virology and Hacking Techniques, vol.
14, pp. 1-20, 2018.

[43] M. Zane and B. Michael, “Building a
machine learning classifier for malware
detection”, In 2014 second workshop on
anti-malware testing research (Water),
IEEE, pp. 1-4, 2014.

[44] S. Michael and H. Andrew, “A Practical
malware analysis: the hands-on guide to
dissecting malicious software”. Starch
Press, 2012.

[45] W. Tzu-Yen and W. Chin-Hsiung,
“Detection of packed executables using
support vector machines”, International
Conference on Machine Learning and
Cybernetics, IEEE, vol. 2, pp. 717-722,
2011.

[46] A. Satheesh and R. Kumaravelu, “A
mathematical model of HMST model on
malware static analysis”, International
Journal of Information Security and

Privacy, vol. 13, no. 2, pp. 86-103, 2019.

[47] A. Imad and L. Saiida, “A new classifi-
cation based model for malicious PE
files detection”, International Journal of
Computer Network and Information
Security, vol. 9, no.6, pp.1-7, 2019.

[48] L. Michael, A. Steven, H. Blake, R.
Matthew, “Malware Analyst's Cookbook
and DVD”, Wiley Publishing, 2011.

[49] L. Xiaojing, Y. Kan, W. XiaoFeng, L.
Zhou, X. Luyi and B. Raheem, “Acing
the ioc game: Toward automatic discov-
ery and analysis of open-source cyber
threat intelligence”, ACM SIGSAC
conference on computer and communi-
cations security, pp. 755-766, 2016.

[50] S. Sebastian and K. Stefan, “Code
obfuscation against static and dynamic
reverse engineering”, In Information
Hiding: 13th International Conference,
IH 2011, Prague, Czech Republic,
Revised Selected Papers, Springer
Berlin Heidelberg, vol. 13, pp. 270-284,
2011.

[51] C. Michael , “Scanning memory with
Yara”, Digital Investigation, vol. 20, pp.
34-38, 2017.

[52] S. Nikolaos, B. Chafika, A. Omar and A.
Ameer, “Forensic malware analysis: The
value of fuzzy hashing algorithms in
identifying similarities”, IEEE Trust-
com/ Big Data SE/ ISPA, IEEE, pp.
1782-1787, 2016.

[53] K. Abhishek, G. Suchandra and G.
Ratan, “Detecting obfuscated viruses
using cosine similarity analysis”, Asia
International Conference on Modelling
and Simulation (AMS'07), IEEE, pp.
165-170, 2007.

[54] B. Danilo, M. Lorenzo, M. Mattia,

“Code normalization for self-mutating
malware”, IEEE Security and Privacy,
vol. 5, no.2, pp. 46-54, 2007.

[55] Z. Boyun, Y. Jianping, H. Jingbo, Z.
Dingxing and W. Shulin, “Malicious
codes detection based on ensemble
learning”, In Autonomic and Trusted
Computing: 4th International Confer-
ence, ATC 2007, Hong Kong, China,
July 11-13, 2007. Proceedings 4, Spring-
er Berlin Heidelberg, pp. 468-477,
2007.

[56] M. Robert, F. Clint, T. Nir, B. Eugene,
G. Marina, D. Shlomi and E. Yuval,
“Unknown malcode detection using
opcode representation”, In Intelligence
and Security Informatics: First European
Conference, Euro ISI 2008, Esbjerg,
Denmark, Proceedings, Springer Berlin
Heidelberg, pp. 204-215, 2008.

[57] B. S. Mojtaba, J. Saeed and T. Asghar,
“PbMMD: A novel policy based
multi-process malware detection”,
Engineering Applications of Artificial
Intelligence, vol. 60, pp. 57-70, 2017.

[58] N. Vivens, X. Zhifeng, M. V. Rao, M. Ke
and X. Yang, “Network forensics analy-
sis using Wireshark”, International
Journal of Security and Networks, vol.
10, no.2, pp. 91-106, 2015.

[59] H. Nazrul, B. Monowar H, B. Ram
Charan, B. Dhruba K and K. Jugal K,
“Network attacks: Taxonomy, tools and
systems”, Journal of Network and Com-
puter Applications, vol. 40, pp. 307-324,
2014.

[60] E. Eldad, “Reversing: secrets of reverse
engineering”, John Wiley & Sons, 2011.

[61] G. Daniel, M. Carles and P. Jordi, “The
rise of machine learning for detection
and classification of malware: Research

developments, trends and challenges”,
Journal of Network and Computer
Applications, vol. 153, pp. 102526,
2020.

[62] R. Chathuranga and J. Aruna, “An
efficient approach for advanced
malware analysis using memory foren-
sic technique”, In 2017 IEEE Trustcom/
Big Data SE/ ICESS, IEEE, pp.
1145-1150, 2017.

[63] K. Ilker, “A basic malware analysis
method”, Computer Fraud and Security,
vol. 2019, no. 6, pp. 11-19, 2019.

[64] K. Joakim, “Fundamentals of Digital
Forensics”, Springer International
Publishing, 2020.

[65] P. Radu, H. Steven, L. Thor, S. Matija, P.
Jens and C. Alexandre, “Analysis of
malware behavior: Type classification
using machine learning”, International
conference on cyber situational aware-
ness, data analytics and assessment
(Cyber SA), IEEE, pp. 1-7, 2015.

[66] A. Omer and S. Refik, “Investigation of
possibilities to detect malware using
existing tools”, 14th International
Conference on Computer Systems and
Applications. IEEE, pp. 1277-1284,
2017.

[67] M. Q. Ali, A. Irfan and Y. Muhammad,
“Cloud Intell: An intelligent malware
detection system”, Future Generation
Computer Systems, vol. 86, pp.
1042-1053, 2018.

[68] G. Kent, S. Scott, H. Xin and C. Tzi-ck-
er, “Automatic generation of string
signatures for malware detection”,
Recent Advances in Intrusion Detection:
12th International Symposium, RAID
2009, Saint-Malo, France, Proceedings,
Springer Berlin Heidelberg, vol. 12, pp.

101-120, 2009.

[69] G. Dragoş, C. Mihai, A. Dan and C.
Liviu, “Malware detection using
machine learning”, International multi-
conference on computer science and
information technology, IEEE, pp.
735-741, 2009.

[70] B. Philippe, G. Isabelle and M. Jean-Yves,
“Behavior abstraction in malware analy-
sis”, In Runtime Verification: First
International Conference, RV 2010,
Proceedings, Springer Berlin Heidel-
berg, vol. 1, pp. 168-182, 2010.

[71] C. Sang Kil, M. Iulian, J. Jiyong, T.
John, B. David and A. David G, “Split
Screen: Enabling efficient, distributed
malware detection”, Journal of Commu-
nications and Networks, vol. 13, no.2,
pp. 187-200, 2011.

[72] S. Asaf, M, Robert, F. Clint, D. Shlomi
and E. Yuval, “Detecting unknown
malicious code by applying classifica-
tion techniques on opcode patterns”,
Security Informatics, vol. 1, no.1, pp.
1-22, 2012.

[73] S. Asaf, M. Robert, E. Yuval and G.
Chanan, “Detection of malicious code
by applying machine learning classifiers
on static features: A state-of-the-art
survey”, Information Security Technical
Report, vol. 14, no.1, pp. 16-29, 2009.

[74] E. A. Ahmed E, M. M. Aizaini and B.
Bazara, “Improving the detection of
malware behaviour using simplified data
dependent API call graph”, International
Journal of Security and its Applications,
vol. 7, no. 5, pp. 29-42, 2013.

[75] P. Bassir, J. M. Vafaie and J. Mehrdad,
“Malware detection using hidden
Markov model based on Markov blanket
feature selection method”. International

congress on technology, communication
and knowledge, IEEE, pp. 558-563,
2015.

[76] S. Nedim and L. Pavel, “Hidost: a static
machine-learning-based detector of
malicious files”. EURASIP Journal on
Information Security, vol. 2016, pp.
1-20, 2016.

[77] K. Dong Hee, W. Sang Uk, L. Dong Kyu
and C. Tai Myoung, “Static detection of
malware and benign executable using
machine learning algorithm”. Eighth
International Conference on Evolving
Internet, pp. 14-19, 2016.

[78] H. Shamsul, A. Jemal, A. Mamoun, A.
Mali, I. Rafiqul and Y. John, “Hybrids of
support vector machine wrapper and
filter based framework for malware
detection”. Future Generation Computer
Systems, vol. 55, pp. 376-390, 2016.

[79] N. Yuta and U. Ryuya, “Static analysis
with paragraph vector for malware
detection”. In Proceedings of the 11th
International Conference on Ubiquitous
Information Management and Commu-
nication, pp. 1-7, 2017.

[80] W. Cheng, Q. Zheng, Z. Jixin and Y.
Hui, “A malware variants detection
methodology with an opcode based
feature method and a fast density based
clustering algorithm”. 12th International
Conference on Natural Computation,
Fuzzy Systems and Knowledge Discov-
ery (ICNC-FSKD), IEEE, pp. 481-487,
2016.

[81] M. Aziz, A. Omar and M. Manar,
“AMAL: high-fidelity, behavior-based
automated malware analysis and classi-
fication”. Computers and Security, vol.
52, pp. 251-266, 2015.

[82] Y. Yanfang, W. Dingding, L. Tao, Y.

Dongyi and J. Qingshan, “An intelligent
PE-malware detection system based on
association mining”, Journal in comput-
er virology, vol. 4, pp. 323-334, 2008.

[83] B. Michael, O. Jon, A. Jon, M. Z.
Morley, J. Farnam and N. Jose, “Auto-
mated classification and analysis of
internet malware”, Recent Advances in
Intrusion Detection: 10th International
Symposium, RAID, vol. 10, pp.
178-197, 2007.

[84] R. Konrad, T. Philipp, W. Carsten and H.
Thorsten, “Automatic analysis of
malware behavior using machine learn-
ing”, Journal of Computer Security, vol.
19, no.4, pp. 639-668, 2011.

[85] V. Mihai, G. Laura and T. Nicolae,
“Practical malware analysis based on
sandboxing”, Ro Edu Net Conference
13th Edition: Networking in Education
and Research Joint Event RENAM 8th
Conference, IEEE, pp. 1-6, 2014.

[86] H. Jozsef, M. Yoan, I. Alexander and L.
Amaury, “Methodology for behavior-
al-based malware analysis and detection
using random projections and k-nearest
neighbors classifiers”, International
Conference on Computational Intelli-
gence and Security, IEEE, pp.
1016-1023, 2011.

[87] G. Mahboobe, S. Ashkan and S. Zahra,
“Dynamic VSA: a framework for
malware detection based on register
contents”, Engineering Applications of
Artificial Intelligence, vol. 44, pp.
111-122, 2015.

[88] P. Zhi-Peng, F. Chao and T. Chao-Jing,
“Malware classification based on the
behavior analysis and back propagation
neural network”. In ITM Web of Confer-
ences, EDP Sciences, vol.7, pp. 20-28,

Nov. 2016.

[89] H. Shamsul, M. Suruz, H. M. Mehedi, I.
Rafiqul, Y. John, A. Majed and A.
Ahmad, “Defending unknown attacks
on cyber-physical systems by semi-su-
pervised approach and available
unlabeled data”, Information Sciences,
vol. 379, pp. 211-228, 2017.

[90] M. Fahad, H. Wei and B. Antony,
“Novel malware detection methods by
using LCS and LCSS”, 22nd Interna-
tional Conference on Automation and
Computing (ICAC), IEEE, pp. 554-559,
2016.

[91] H. Eduardo, M. Rubén S and L. Ignacio
M, “Evaluating the reliability of compu-
tational grids from the end user’s point
of view”, Journal of Systems Architec-
ture, vol. 52, no. 12, pp. 727-736, 2006.

[92] N. B. Narayanan, D. Ouboti and K.
Temesguen, “Performance analysis of
machine learning and pattern recogni-
tion algorithms for malware classifica-
tion”, IEEE national aerospace and
electronics conference (NAECON) and
ohio innovation summit (OIS), IEEE,
pp. 338-342, 2016.

[93] C. In Kyeom, K. T. Guen, S. Y. Jin, R.
Minsoo and I. E. Gyu, “Malware analy-
sis and classification using sequence
alignments”, Intelligent Automation and
Soft Computing, vol. 22, no.3, pp.
371-377, 2016.

[94] M. Jiang, X. Zhi, L. Pengwei, W. Ding-
hao, L. Peng and M. Bing, “Impeding
behavior-based malware analysis via
replacement attacks to malware specifi-
cations”, Journal of Computer Virology
and Hacking Techniques, vol. 13,
pp.193-207, 2017.

[95] W. Markus, R. Alexander, T. Niklas and

A. Wolfgang, “A knowledge-assisted
visual malware analysis system: Design,
validation, and reflection of KAMAS”,
Computers and Security, vol. 67, pp.
1-15, 2017.

[96] N. Stavros D and P, Iosif, “A
graph-based model for malware detec-
tion and classification using system-call
groups”, Journal of Computer Virology
and Hacking Techniques, vol. 13, no.1,
pp. 29-46, 2017.

[97] L. Quan, B. Oisin, M. N. Brian and S.
Mark, “Deep learning at the shallow
end: Malware classification for non-do-
main experts”, Digital Investigation,
vol. 26, pp. S118-S126, 2018.

[98] P. Abdurrahman and A. Tankut, “Classi-
fication of malware families based on
runtime behaviors”, Journal of informa-
tion security and applications, vol. 37,
pp. 91-100, 2017.

[99] S. Jan, P. Tomás and R. Martin, “Multi-
ple instance learning for malware classi-
fication”, Expert Systems with Applica-
tions, vol. 93, pp. 346-357, 2018.

[100] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

 [101] G. Ibrahim, H. Mohammad, P. Vaclav,
H. Liangxiu, H. Robert, R. Khaled, and
A. Francisco J, “Detection of advanced
persistent threat using machine-learning
correlation analysis”, Future Generation
Computer Systems, vol. 89, pp.
349-359, 2018.

[102] X. Lu, F. Jiang, X. Zhou, S. Yi and J. Sha
and L. Pietro, “ASSCA: API sequence

and statistics features combined archi-
tecture for malware detection”, Comput-
er Networks, vol. 157, pp. 99-111,
2019.

[103] D. Arivudainambi, K.A. Varun Kumar
and P. Visu, “Malware traffic classifica-
tion using principal component analysis
and artificial neural network for extreme
surveillance”, Computer Communica-
tions, vol. 147, pp. 50-57, 2019.

[104] Y. Cagatay and K. Ahmet, “Imaging and
evaluating the memory access for
malware”, Forensic Science Internation-
al: Digital Investigation, vol. 32, pp.
20-27, 2020.

[105] R. Mahdi, W. Yong Li, K. Reza, J.
Hamed, Z. Ruxin and H. Peng, “A
hybrid machine learning approach for
malicious behaviour detection and
recognition in cloud computing”,
Journal of Network and Computer
Applications, vol. 151, pp. 12-19, 2020.

[106] E. A. Ahmed E, M. M. Aizaini, B.
Bazara- IA and H. Hentabli, “Enhancing
the detection of metamorphic malware
using call graphs”, Computers and Secu-
rity, vol. 46, pp. 62-78, 2014.

[107] R. Jesse C, K. Roger I, L. Scott M and C.
Robert K, “Detection of injected,
dynamically generated, and obfuscated
malicious code”, ACM workshop on
Rapid malcode, pp. 76-82, 2003.

[108] C. Michael, “A protocol graph based
anomaly detection system”, Doctoral
dissertation, Carnegie Mellon Universi-
ty, 2008.

[109] M. R. Jose and D. J. Cesar, “Integrating
static and dynamic malware analysis
using machine learning”, IEEE Latin
America Transactions, vol. 13, no. 9, pp.
3080-3087, 2015.

A Comprehensive Study for Malware Detection through Machine Learning in Executable Files

48 Int.J. Elect.Crime Investigation 8(1):IJECI MS.ID- 02 (2024)

[110] S. PV and S. AJPCS, “Integrated static
and dynamic analysis for malware
detection”, Procedia Computer Science,
vol. 46, pp. 804-811, 2015.

[111] E. E. Inang, B. Chafika, A. Ameer and
W. Paul, “Analysis of malware
behaviour: Using data mining clustering
techniques to support forensics investi-
gation”, Fifth Cybercrime and Trust-
worthy Computing Conference, IEEE,
pp. 54-63, 2014.

[112] W. Ahsan, I. Azhar, L. Jahanzaib, N.
Ahsan and B. Anas, “A novel approach
of unprivileged keylogger detection”,
2nd International Conference on Com-
puting, Mathematics and Engineering
Technologies (iCoMET), IEEE, pp. 1-6,
2019.

[113] N. Mohammad, A. Nouman and Y. Jing
Tao, “A three-way decision making
approach to malware analysis using
probabilistic rough sets”, Information
Sciences, vol. 37, no. 4, pp. 193-209,
2016.

[114] N. Mohammad, A. Nouman and Y. Jing
Tao, “Detecting malware evolution
using support vector machines”, Expert
Systems with Applications, vol. 143, pp.
113022, 2020.

[115] P. Avi, R. Brian, K. Lee, H. Michael, C.
Catherine, O. Alison, T. Glenn, R. S.
Neal, P. Terry, and T. Jason, “Artificial
intelligence based malware analysis”,
arXiv preprint, pp.16-23, 2017.

[116] H. Shamsul, I. Rafiqul, A. Jemal, Y.
John, H. M. Mehedi and F. Giancarlo,
“A hybrid-multi filter-wrapper frame-
work to identify run-time behaviour for
fast malware detection”, Future Genera-
tion Computer Systems, vol. 1, no. 83,
pp. 193-207, 2018.

[117] S. Robert, X. Lifan, K. William, V.
Tristan, F. Teague, H. John, P. Zachary,
S. Corey, S. Joshua and C. John, “Paral-
lelization of machine learning applied to
call graphs of binaries for malware
detection”, 25th Euromicro International
Conference on Parallel, Distributed and
Network-based Processing (PDP),
IEEE, pp. 69-77, 2017.

[118] K. Youngjoon, K. Eunjin and K. Huy
Kang, “A novel approach to detect
malware based on API call sequence
analysis”, International Journal of
Distributed Sensor Networks, vol. 11,
no.6, pp. 659101, 2015.

[119] M. Weixuan, C. Zhongmin, T. Don, F.
Qian and G. Xiaohong, “Security impor-
tance assessment for system objects and
malware detection”, Computers and
Security, vol. 68, pp. 47-68, 2017.

[120] O. Philip, S. Sezer, and K. McLaughlin,
“Detecting obfuscated malware using
reduced opcode set and optimised
runtime trace”, Security Informatics,
vol. 5, pp. 1-12, 2016.

[121] D. Anusha, T. Fabio Di, V. C. Aaron, A.
Thomas H and S. Mark, “A comparison
of static, dynamic, and hybrid analysis
for malware detection”, Journal of Com-
puter Virology and Hacking Techniques,
vol. 13, pp. 1-12, 2017.

