Umar et al.LGU (IJECI) 2020

LGU International Journal for

LGU (IJECI)
ISSN: 2522-3429 (Print)
ISSN: 2616-6003 (Online)

Electronic Crime Investigation

Research Article

Vol. 5 issue 3 Year 2021

Optimal Query Execution Plan with Deep
Reinforcement Learning

Umar Jamshidl, Muhammad Umar Afzal?
umer.khokher@gmail.com1l umar.afzl@ymail.com?
University of Lahore

Abstract:

We examine the use of profound support learning for inquiry development. The technique is to

gradually construct queries by encoding features of sub-inquiries using a learnt representation. We

specifically focus on the organization of the state progress effort and the state portrayal issue. We

provide preliminary results and investigate how we might use the state representation to further

refine question streamlining using assist learning.

1. Introduction

Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least
semantically equivalent arrangement options.

expensive alternative from

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic

programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence

are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We

will construct a model that can learn data and

LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 04 (2021) 23

Optimal Query Execution Plan with Deep Reinforcement Learning

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-

tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement

learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of

output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. i We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Stote Troesiition
0 Forg e NN

i L.

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

24 LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 04 (2021)

Optimal Query Execution Plan with Deep Reinforcement Learning

t+1 by taking the previous subquery represen-

tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector h.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NN : (h, a) —
h +1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
that

maps this state to projected cardinalities at

plan. If we can learn a function, NN

observed’

stage t, we should be able to learn a function,
NN that maps this state to predicted

observed’

cardinalities at stage t. In the figure below, we
display both NNST and NN

observed”

Observed
Viarfables

Figure 2: Representation of NN . and
NN

Obsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in

an optimal query execution plan.
2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the

proper output. Because the layers have no

LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 04 (2021) 25

Optimal Query Execution Plan with Deep Reinforcement Learning

direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3].

Reinforcement learning models can map states

Learning through
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
» and choose an
action, a. The policy determines the action to

tion of the environment, S

be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The

model will arrive at a new state, S based on

T+1°
the action chosen. The environment then

provides the agent a reward, r |, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model

records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors

required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (h, a) as input, where h,
is a vector representation of a subquery and a,
is a single relational action on h. Importantly,
because h, is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NN, function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NN_
function. This NN function learns to

Observed
predict observed variables by mapping a

26 LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 04 (2021)

Optimal Query Execution Plan with Deep Reinforcement Learning

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NN model, we have to understand
an additional function, NN, .. NN. . will take
(x,, 4,) as input, where x represents a vector
that holds the properties of the database D
whereas a; shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a, on D. By
this we can achieve the optimal time on the

execution of the query.

H'Hﬂbsrn'rd {

h;

(OO O O}
(OO0 O O}o

(COOO0O0])

14

'HI,..)
NNsy

——

HHflll'
Figure 3: Input and Output Variables

X, the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x: the
min value, the max value and the number of

distinct values.
4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement

learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum

plans.

EE5_ 8588

Fialatren Ermor

1] 5 L] 1] il
Epecha Epechs

fa) Predicting Cardinality (m = 3) (b} Predicting Cardinality {m = 5)

o
w
=
&
w

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,

200s.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wangt, Meihui Zhang et al.

Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 04 (2021) 27

Optimal Query Execution Plan with Deep Reinforcement Learning

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martin Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

28 LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 04 (2021)

