
communication and when the failure of one
process occurs it disturbs Communication.
Global service called RAMBO Reconfigurable
atomic memory for basic objects. Dynamic
distributed algorithms implement this global
service. Our method includes major action like
reading writing, configuration, and reconfigure

out of date configuration as we can see in
figure 1.The first step includes the Algorithm
merge in the main algorithm. The main Algo-
rithm handles garbage collection and the
global reconfiguration services in the main
algorithm perform read and write operation.
Information collected from reading operations
and spread information to writing operations.
Both operation use for active configuration.
This communication put into the background
which allows the algorithm to maintain infor-
mation. Every stage is finished by a condition
that includes objects from the configuration.
Read and write actions may run simultaneous-
ly. Garbage collection is used when there is no
type of configuration used for repetition.

6. Conclusion

Our proposed work is different from other
works because it acts as a middleware in
communication in distributed systems. There
are a lot of different frameworks such as
CORBA, DCE, and Java/JIN which are used to
develop different distributed systems. But they
have small scope according to their compo-
nents, their specification, and architecture
according to their formal definition and infor-
mally from their behavior. By using these
methods and services, the performance of
dynamic distributed systems cannot be
supported by these frameworks. On the other
hand, our proposed work is very helpful to

provide initial help to handle the faults and
errors during communications. This proposed
work is best because its interface and behavior
are accurately elaborated. The performance
and fault tolerance for communication in
distributed systems are mentioned in the
behavior of an algorithm. The reliability,
accuracy, error detection and handling, and
performance can be handled by our proposed
method because it handles it during its compu-
tation.

We are assuring that our proposed work will be
very helpful in the theory of algorithms
construction. It will provide the analysis for
complications accrue during communication in
dynamic distributed systems. It will provide as
much strong communication and accuracy as
available in static distributed systems. This
project is based on the theoretical. To develop
the dynamic distributed systems, our algorithm
and framework are very strong to ensure the
accuracy and performance of systems. Some
additional work is required just like ours into
systems for some other purpose. It is as same
as components that are created by the help of
object-oriented and component technologies in
software engineering [2].

7. References:

[1] H. Attiya, A. Bar-Noy and D. Dolev,
“Sharing Memory Robustly in
Message-Passing Systems", J. of the
ACM, vol. 42, no. 1, pp. 124-142, 1996.

[2] Kenneth P. Birman. A review of experi-
ences with reliable multicast. Software,
Practice, and Experience,
29(9):741–774, September 1999.

direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3]. Learning through
Reinforcement learning models can map states
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
tion of the environment, S T, and choose an
action, at. The policy determines the action to
be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The
model will arrive at a new state, S T + 1, based on
the action chosen. The environment then
provides the agent a reward, r T + 1, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model
records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors
required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (ht, at) as input, where ht

is a vector representation of a subquery and at
is a single relational action on ht. Importantly,
because ht is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NNST function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NNObserved
function. This NNObserved function learns to
predict observed variables by mapping a

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martín Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

LGU International Journal for
Electronic Crime Investigation

LGU (IJECI)
ISSN: 2522-3429 (Print)
ISSN: 2616-6003 (Online)

Research Article

Umar et al.LGU (IJECI) 2020

Vol. 5 issue 3 Year 2021

1. Introduction

 Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least expensive alternative from
semantically equivalent arrangement options.

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic
programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence
are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We
will construct a model that can learn data and

Optimal Query Execution Plan with Deep
Reinforcement Learning
Umar Jamshid1, Muhammad Umar Afzal2

umer.khokher@gmail.com1 umar.afzl@ymail.com2

University of Lahore

Abstract:
We examine the use of profound support learning for inquiry development. The technique is to
gradually construct queries by encoding features of sub-inquiries using a learnt representation. We
specifically focus on the organization of the state progress effort and the state portrayal issue. We
provide preliminary results and investigate how we might use the state representation to further
refine question streamlining using assist learning.

23LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 04 (2021)

ture. To provide large and small changes
algorithms use reconfiguration in which mem-
bers are updated. These types of updates do not
use any infraction and objects configuration
can install any time.

The algorithm includes major actions like
reading, writing, configuration, and out of date
configuration. Algorithm merge in the main
algorithm which handles garbage collection
and global reconfiguration services. Reconnoi-
ter provide the main algorithm to repeat
configuration. Reconfiguration does not fir
tightly in the main algorithm. The major
configuration may be used one time but read
and write use them all the time.

The main algorithm performs read and write
operations. Information collected from reading
operations and spread information from
writing operations. Both operation use for
active configuration. This communication put
into the background which allows the
algorithm to maintain information. Every stage
is finished by a condition that includes objects
from the configuration. Read and write actions
may run simultaneously. Garbage collection is
used when there is no type of configuration
used for repetition.

Reconfiguration service is executed by a
distributed algorithm that involves a general
agreement to configuration. An object from a
new configuration may introduce a new
configuration, many invitations are consistent
by running general agreement among objects.
General agreement executed by the Paxos
algorithm [11]. That type of general agreement
is slow but in some condition may not be
finished but they do not read and write action
slowly.

Garbage collection uses two stages in which
the first stage communicates with old configu-
ration and the second stage communicates with
the new configuration. Garbage collection
action makes surety that objects of reading and
writing old configuration learn new configura-
tion.

We evaluate performance based on time and
failure action means garbage collection occurs
from time to time, reconfiguration is requested
for garbage collection to keep up, objects of
active configuration do not fail, then we show
that read and write action perform in maximum
latency time.

Figure 1

Our proposed method is to overcome problems
found in the previous literature that is PAXOS
algorithm used for the process to process

[3] O. Chenier and A. Shvartsman, “Imple-
menting an eventually-serializable data
service as a distributed system building
block,” in Networks in Distributed
Computing, vol. 45, pp. 43–72, AMS.

[4] Communications of the ACM, special
section on group communications, vol.
39, no. 4, 1996.

[5] R. De Prisco, A. Fekete, N. Lynch, and
A. Shvartsman, “A dynamic primary
configuration group communication
service,” in Distributed Computing
Proceedings of DISC’99

- 13th International Symposium on
Distributed Computing, 1999, LNCS,
vol. 1693, pp. 64–78.

[6] B. Englert and A. Shvartsman. Graceful
quorum reconfiguration in a robust
emulation of shared memory. In Proc. of
the 20th IEEE Intl Conference on
Distributed Computing Systems
(ICDCS’2000), pp. 454-463, 2000.

[7] A. Fekete, D. Gupta, V. Luchangco, N.
Lynch, and A. S h v a r t s -
man, “Eventually-serializable data
service,” Theoretical Computer Science,
vol. 220, no. 1, pp. 113–156, June 1999.

[8] A. Fekete, N. Lynch, and A. Shvarts-
man. “Specifying and using a partition-
able group communication service."
ACM Trans. on Computer Systems. vol.
19, no. 2, pp. 171-216, 2001.

[9] R. Guerraoui and A. Schiper, “The
Generic Consensus Service," IEEE
Trans. on Software Engineering, Vol. 27,
No. 1, pp. 29-41, January 2001.

[10] S. Haldar and P. Vita´nyi, “Bounded
Concurrent Timestamp Systems Using
Vector Clocks", J. of the ACM, Vol. 249,
No. 1, pp. 101-126, January 2002

[11] Leslie Lamport, "The Part-Time Parlia-
ment", ACM Transactions on Computer
Systems, 16(2) 133-169, 1998.

[12] N. Lynch and A. Shvartsman,
“RAMBO: A Reconfigurable Atomic
Memory Service", in Proc. of 16th Int-l
Symposium on Distributed Computing,
DISC’2002, pp. 173-190, 2002.

[13] K. W. Ingols, “Availability study of
dynamic voting algorithms,” M.S.
thesis, Dept. of Electrical Engineering
and Computer Science, MIT, May 2000.

[14] M. Merritt and G. Taubenfeld, “Comput-
ing with infinitely many processes
(under assumptions on concurrency and
participation),” In Proc.14th Internation-
al Symposium on DIS- tributed Comput-
ing (DISC), October 2000.

[15] E. Yeger Lotem, I. Keidar, and D. Dolev.
“Dynamic voting for consistent primary
components." In Proceedings of the
Sixteenth Annual ACM Symposium on
Principles of Distributed Computing,
pages 63–71, August 1997.

for efficient and accurate communication. To
fulfill this purpose, we developed a method
which insured the accuracy and reliability of
communication in processes. The focus of this
work is to gain favorable results and assuring
of communication and it helps to develop
application easier. The reliability provides a
guarantee about communication and coherence
provides a guarantee about the sharing of data.
Algorithms results are checked at lower bound
to explain the limitations and cost of problems
that can be faced. We create a new method
which is a dynamic atomic shared memory for
message communication. A properly stated
method is proposed for message
communication and then implemented.
According to this method, owners can be
changed dynamically and their access to read
and write also changed. In this proposed work,
we provide the best solution for
implementation for communications in
dynamic distributed systems that avoid
crashes. Its performance in evaluates timing
and failure of communication.

2. Literature Review

In the past, work is done for the inquiry of a lot
of complications, errors and duplication of
data on distributed algorithms [6,7], and group
membership and communication mechanisms
are checked [5,8]. We also focused on the
previously implemented studies [3, 13]. A lot
of mechanisms are used in different academic
and commercial systems for communication in
processes. They act as a middleware for the
process to process communication in distribut-
ed systems. Mostly they used in group commu-
nication distributed systems [4]. An inspira-
tional work which helps to develop this work is
atomic data from dynamic voting systems [15]

protocols. This system can manage a lot of
processors in distributed systems [14]. To
handle the problems just like inconsistency in
the breakdown of communications in process-
es, and some are used to demand the systems
for configuration. It is noticed that it is very
useful for problem detection and generates
solutions for these problems. From recent
studies and it is noticed that algorithms are
very complex which are developed to detect
the problems and errors in distributed systems.
Such algorithms help a lot to decrease the
complexity by using global services with good
interface and practices. An example of this
conscious algorithm which provides a baseline
for other related works [9]. To check the
performance and efficiency of this algorithm,
decomposition is used.

3. Problem Statement:

Dynamic Distributed Systems

For data sharing and communication problems
in dynamic distributed systems, we are focus-
ing new direction. The environment will be
less interacting for example an unlimited
number of processors, Request from the user to
join and leave the system. Our purpose is for
coherent theory and we see service for the
lower bound and upper bound algorithm
results. With the passage of time, the number
of processes and their connections is changed
over a network. Processors can be added,
recover if they fail in a network. Processors
can be connected via mobile and wirelessly. An
application may move from one place to anoth-
er, on these conditions we will consider distrib-
uted running application which has identifica-
tion and information of users include file,
multimedia, real-world information, and

1. Introduction

 In this research, problems are discussed
dynamically distributed systems that relate to
the sharing of data and communication from
one system to another over the network. A
distributed system communicates with its
related systems by sending and receiving
messages over the internet and in this way, it
fulfills its work. When we discuss dynamic

distributed systems then it means that it
includes many different changeable types of
networks, different operating systems like
android, mac, windows, different software
processors portability, breaking down of WAN,
and inter-process communication errors. The
communication mechanism in distributed
systems is related to how the system sends and
receives messages from one system to another
over the internet. In distributed systems,
multiple systems relate to each other’s, so a
specific and well-defined method is required

games.

4. Approach

As the high-level global services are solved,
communication and data sharing problems are
solved in the same way. According to the
environmental performance expectation, these

services maintain the problems and fault
tolerance.

Research on distributed services focuses on
correctness, On the other hand, Algorithm
focuses on performance. Our work will
combine these two techniques which will
produce algorithms that work efficiently will
break down in dynamic distributed systems
then performance and fault tolerance squeeze
out by global services. We will include a
balanced study of performance and service
assurance. Atomicity is expensive so resolve
consistency which may reduce the cost and
will provide benefits.

The setting of these techniques is difficult, so it
is also difficult to develop these algorithms
which means that we have to break down
bigger pieces into smaller pieces. These pieces
will be viewed as lower-level global services.
These services will provide data sharing and
lower-level communication for example
resource allocation, routing, failure, and
progress detection. These services also include
fault tolerance and performance which can be
repeated again and again. The work we focus
to achieve goals are given below:

-State new services focus on communication
and data sharing in a Distributed environment

- Developing and analyzing an algorithm in a
dynamic system to implement these services

This work is achieved by the mathematical
framework based on state machines which
include the feature to convey timing issues,
behavior, and probabilistic behavior. Give
assistance to Meta theory include models,
measure performance and analysis proof meth-
ods will also be developed. Our theoretical
work contributes features to the implementa-
tion and testing of distributed systems services.
This work is conducted by examples that are
selected from file management, application
prototype, collected information, games, and
computer cooperative work. During develop-
ing the specification for the system, we also
focus on the developer’s opinion and informa-
tion for service assurance.

5. Atomic Memory Service

Reconfigurable memory service on the
algorithm for a distributed system that can be
used to reading and writing memory in a
dynamic network [12]. Users can join and
leave during the action of mathematical calcu-
lation. Examples are mobile and peer comput-
ing networks. The benefit of this service is that
data can survive for a long time in a dynamic
setting.

We identify and introduce atomic memory
serves as a global service called RAMBO
means Reconfigurable atomic memory for
basic objects. Dynamic distributed algorithms
implement this global service. To obtain
presence objects are reproduce and also to

obtain repetition in the availability of small
changes algorithm use configuration which
includes read and write sets of belonging struc-

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-
tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement
learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of
output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector ht.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NNST: (ht, at) →
ht+1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
plan. If we can learn a function, NNobserved, that
maps this state to projected cardinalities at
stage t, we should be able to learn a function,
NNobserved, that maps this state to predicted
cardinalities at stage t. In the figure below, we
display both NNST and NNobserved.

Figure 2: Representation of NNST and

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in
an optimal query execution plan.

2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the
proper output. Because the layers have no

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NNST model, we have to understand
an additional function, NNinit. NNinit will take
(x0, a0) as input, where x0 represents a vector
that holds the properties of the database D
whereas a0 shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a0 on D. By
this we can achieve the optimal time on the
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x0: the
min value, the max value and the number of
distinct values.

4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement
learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum
plans.

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,
2008.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wang†, Meihui Zhang et al.
Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3]. Learning through
Reinforcement learning models can map states
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
tion of the environment, S T, and choose an
action, at. The policy determines the action to
be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The
model will arrive at a new state, S T + 1, based on
the action chosen. The environment then
provides the agent a reward, r T + 1, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model
records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors
required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (ht, at) as input, where ht

is a vector representation of a subquery and at
is a single relational action on ht. Importantly,
because ht is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NNST function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NNObserved
function. This NNObserved function learns to
predict observed variables by mapping a

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martín Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

1. Introduction

 Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least expensive alternative from
semantically equivalent arrangement options.

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic
programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence
are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We
will construct a model that can learn data and

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-
tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement
learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of
output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

Optimal Query Execution Plan with Deep Reinforcement Learning

24 LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 04 (2021)

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector ht.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NNST: (ht, at) →
ht+1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
plan. If we can learn a function, NNobserved, that
maps this state to projected cardinalities at
stage t, we should be able to learn a function,
NNobserved, that maps this state to predicted
cardinalities at stage t. In the figure below, we
display both NNST and NNobserved.

Figure 2: Representation of NNST and

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in
an optimal query execution plan.

2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the
proper output. Because the layers have no

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NNST model, we have to understand
an additional function, NNinit. NNinit will take
(x0, a0) as input, where x0 represents a vector
that holds the properties of the database D
whereas a0 shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a0 on D. By
this we can achieve the optimal time on the
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x0: the
min value, the max value and the number of
distinct values.

4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement
learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum
plans.

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,
2008.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wang†, Meihui Zhang et al.
Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3]. Learning through
Reinforcement learning models can map states
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
tion of the environment, S T, and choose an
action, at. The policy determines the action to
be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The
model will arrive at a new state, S T + 1, based on
the action chosen. The environment then
provides the agent a reward, r T + 1, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model
records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors
required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (ht, at) as input, where ht

is a vector representation of a subquery and at
is a single relational action on ht. Importantly,
because ht is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NNST function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NNObserved
function. This NNObserved function learns to
predict observed variables by mapping a

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martín Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

1. Introduction

 Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least expensive alternative from
semantically equivalent arrangement options.

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic
programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence
are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We
will construct a model that can learn data and

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-
tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement
learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of
output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector ht.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NNST: (ht, at) →
ht+1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
plan. If we can learn a function, NNobserved, that
maps this state to projected cardinalities at
stage t, we should be able to learn a function,
NNobserved, that maps this state to predicted
cardinalities at stage t. In the figure below, we
display both NNST and NNobserved.

Figure 2: Representation of NNST and

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in
an optimal query execution plan.

2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the
proper output. Because the layers have no

Optimal Query Execution Plan with Deep Reinforcement Learning

25LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 04 (2021)

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NNST model, we have to understand
an additional function, NNinit. NNinit will take
(x0, a0) as input, where x0 represents a vector
that holds the properties of the database D
whereas a0 shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a0 on D. By
this we can achieve the optimal time on the
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x0: the
min value, the max value and the number of
distinct values.

4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement
learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum
plans.

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,
2008.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wang†, Meihui Zhang et al.
Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3]. Learning through
Reinforcement learning models can map states
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
tion of the environment, S T, and choose an
action, at. The policy determines the action to
be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The
model will arrive at a new state, S T + 1, based on
the action chosen. The environment then
provides the agent a reward, r T + 1, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model
records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors
required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (ht, at) as input, where ht

is a vector representation of a subquery and at
is a single relational action on ht. Importantly,
because ht is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NNST function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NNObserved
function. This NNObserved function learns to
predict observed variables by mapping a

Optimal Query Execution Plan with Deep Reinforcement Learning

26 LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 04 (2021)

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martín Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

1. Introduction

 Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least expensive alternative from
semantically equivalent arrangement options.

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic
programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence
are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We
will construct a model that can learn data and

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-
tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement
learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of
output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector ht.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NNST: (ht, at) →
ht+1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
plan. If we can learn a function, NNobserved, that
maps this state to projected cardinalities at
stage t, we should be able to learn a function,
NNobserved, that maps this state to predicted
cardinalities at stage t. In the figure below, we
display both NNST and NNobserved.

Figure 2: Representation of NNST and

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in
an optimal query execution plan.

2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the
proper output. Because the layers have no

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NNST model, we have to understand
an additional function, NNinit. NNinit will take
(x0, a0) as input, where x0 represents a vector
that holds the properties of the database D
whereas a0 shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a0 on D. By
this we can achieve the optimal time on the
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x0: the
min value, the max value and the number of
distinct values.

4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement
learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum
plans.

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,
2008.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wang†, Meihui Zhang et al.
Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3]. Learning through
Reinforcement learning models can map states
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
tion of the environment, S T, and choose an
action, at. The policy determines the action to
be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The
model will arrive at a new state, S T + 1, based on
the action chosen. The environment then
provides the agent a reward, r T + 1, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model
records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors
required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (ht, at) as input, where ht

is a vector representation of a subquery and at
is a single relational action on ht. Importantly,
because ht is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NNST function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NNObserved
function. This NNObserved function learns to
predict observed variables by mapping a

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martín Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

1. Introduction

 Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least expensive alternative from
semantically equivalent arrangement options.

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic
programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence
are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We
will construct a model that can learn data and

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-
tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement
learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of
output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector ht.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NNST: (ht, at) →
ht+1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
plan. If we can learn a function, NNobserved, that
maps this state to projected cardinalities at
stage t, we should be able to learn a function,
NNobserved, that maps this state to predicted
cardinalities at stage t. In the figure below, we
display both NNST and NNobserved.

Figure 2: Representation of NNST and

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in
an optimal query execution plan.

2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the
proper output. Because the layers have no

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NNST model, we have to understand
an additional function, NNinit. NNinit will take
(x0, a0) as input, where x0 represents a vector
that holds the properties of the database D
whereas a0 shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a0 on D. By
this we can achieve the optimal time on the
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x0: the
min value, the max value and the number of
distinct values.

4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement
learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum
plans.

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,
2008.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wang†, Meihui Zhang et al.
Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

Optimal Query Execution Plan with Deep Reinforcement Learning

27LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 04 (2021)

direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3]. Learning through
Reinforcement learning models can map states
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
tion of the environment, S T, and choose an
action, at. The policy determines the action to
be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The
model will arrive at a new state, S T + 1, based on
the action chosen. The environment then
provides the agent a reward, r T + 1, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model
records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors
required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (ht, at) as input, where ht

is a vector representation of a subquery and at
is a single relational action on ht. Importantly,
because ht is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NNST function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NNObserved
function. This NNObserved function learns to
predict observed variables by mapping a

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martín Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

Optimal Query Execution Plan with Deep Reinforcement Learning

28 LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 04 (2021)

1. Introduction

 Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least expensive alternative from
semantically equivalent arrangement options.

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic
programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence
are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We
will construct a model that can learn data and

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-
tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement
learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of
output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector ht.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NNST: (ht, at) →
ht+1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
plan. If we can learn a function, NNobserved, that
maps this state to projected cardinalities at
stage t, we should be able to learn a function,
NNobserved, that maps this state to predicted
cardinalities at stage t. In the figure below, we
display both NNST and NNobserved.

Figure 2: Representation of NNST and

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in
an optimal query execution plan.

2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the
proper output. Because the layers have no

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NNST model, we have to understand
an additional function, NNinit. NNinit will take
(x0, a0) as input, where x0 represents a vector
that holds the properties of the database D
whereas a0 shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a0 on D. By
this we can achieve the optimal time on the
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x0: the
min value, the max value and the number of
distinct values.

4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement
learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum
plans.

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,
2008.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wang†, Meihui Zhang et al.
Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

