
direct interactions with the input training data, 
they are referred to as hidden layers [3]. These 
feedforward networks are crucial in represen-
tation learning. While training to perform a 
goal function, the hidden layers of a neural 
network might indirectly learn a representation 
that can later be employed for other tasks [3]. 
There is a trade-off between retaining as much 
information as possible and understanding 
relevant data qualities. The context of these 
representations might alter depending on the 
network output [3]. Learning through 
Reinforcement learning models can map states 
to appropriate actions with the objective of 
maximizing a larger reward. In contrast to 
supervised learning, the learner is not clearly 
informed which action is ideal; instead, the 
agent must determine the best action through 
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each 
time step, the learner will examine the condi-
tion of the environment, S T, and choose an 
action, at. The policy determines the action to 
be taken. This strategy has the potential to 
reconstruct a variety of behaviors. As a result, 
either behave greedily or strike a balance 
between discovering and utilizing through a 
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state, 
which the model must learn on the fly. The 
model will arrive at a new state, S T + 1, based on 
the action chosen. The environment then 
provides the agent a reward, r T + 1, signifying 
the "worthiness" of the chosen action. The goal 
of the agent is to maximize the overall reward 
[11]. One method is to employ a value-based 
iteration methodology in which the model 
records state-action values, such as QL (s, a). 

These values indicate the state's long-term 
worth by weighting rewards for states that are 
anticipated to follow.

3.  Methodology:

They are two approaches that we proposed to 
achieve the target solution for getting the 
optimal query execution plan. We will be 
supposed input database D and Query Q. we 
will apply deep reinforcement learning to 
derive compact but informative representation 
of queries, then we will try to train these repre-
sentations to predict the next action. In first 
approach we would suppose a feature vector 
containing (Q, D) as input and apply deep 
reinforcement learning to predict an output as 
cardinality values. There is problem with this 
approach that whenever the database and query 
complexity increase the input vector grow 
heavily. Thus, the long-extended vectors 
required large training datasets.

Instead of wasting our resources and never 
getting our required result, we will move 
forward and apply our better different 
approach, a recursive approach: We train a 
model to anticipate a query's cardinality. This 
model is fed a pair of (ht, at) as input, where ht 

is a vector representation of a subquery and at 
is a single relational action on ht. Importantly, 
because ht is the representation that the model 
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The 
NNST function, seen in the image above, builds 
these representations by modifying the weights 
in response to feedback from the NNObserved 
function. This NNObserved function learns to 
predict observed variables by mapping a 
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1. Introduction

 Inquiry advancement is still a big 
concern in the field of data sets. Existing 
DBMS select helpless execution strategies for 
certain queries. To make inquiries more 
competent, we wished to design them 
optimally, utilizing fewer assets. Existing 
DBMSs carry out a vital stage of cardinality 
evaluation by working on assumptions about 
the information (e.g., incorporation standard, 
consistency or freedom suppositions). When 
these concerns are not confirmed, cardinality 
evaluation errors occur, resulting in poor 
arrangement choices. [1]. By using cardinality 
gauges as input, the expenditure model selects 
the least expensive alternative from 
semantically equivalent arrangement options. 

To achieve an efficient inquiry strategy, a 
subset of the valid join orders is counted by the 
question enhancer, for example, using dynamic 
programming.

Theoretically this architecture can obtain the 
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based 
assumptions. But in real world databases the 
assumptions like uniformity and independence 
are wrong. 

In this research work, rather than banking on 
previously used formulas and data driven with 
the help of statistics, to predict the queries 
cardinalities we will train a deep reinforcement 
learning model for better execution plan. We 
will construct a model that can learn data and 

are generating more and more attacks or are 
automated. To date, attacks on commercial and 
government organizations, such as 
ransomware and malware, continue to pose a 
significant threat and challenge. Such attacks 
can come in various ways and sizes. An 
enormous challenge is the ability of the global 
security community to develop and provide 
expertise in cybersecurity. There is widespread 
awareness of the global scarcity of 
cybersecurity and talent. Cybercrimes, such as 
financial fraud, child exploitation online and 
payment fraud, are so common that they 
demand international 24-hour response and 
collaboration between multi-national law 
enforcement agencies [2]. For single users and 
organizations, malware defense of computer 
systems is therefore one of the most critical 
cybersecurity activities, as even a single attack 
may result in compromised data and sufficient 
losses. This research explores how machine 
learning can be used in the field of 
cybersecurity, along with how it can be used to 
detect malware. In order to detect malware, we 
will examine the PE headers of malware and 
non-malware samples or files by creating and 
training a classifier that will determine whether 
the file has been attacked by malware or not 
after training. 

2.  Evolution of Malware

In order to protect networks and computer 
systems from attacks, the diversity, sophistica-
tion and availability of malicious software 
present enormous challenges. Malware is 
continually changing and challenges security 
researchers and scientists to strengthen their 
cyber defenses to keep pace. Owing to the use 
of polymorphic and metamorphic methods 

used to avoid detection and conceal its true 
intent, the prevalence of malware has increased. 
To mutate the code while keeping the original 
functionality intact, polymorphic malware uses 
a polymorphic engine. The two most common 
ways to conceal code are packaging and 
encryption [3]. Through one or more layers of 
compression, packers cover a program's real 
code. Then the unpacking routines restore the 
original code and execute it in memory at 
runtime. To make it harder for researchers to 
analyze the software, crypters encrypt and 
manipulate malware or part of its code. A 
crypter includes a stub that is used for 
malicious code encryption and decryption. 
Whenever it's propagated, metamorphic 
malware rewrites the code to an equivalent. 
Multiple transformation techniques, including 
but not limited to, register renaming, code 
permutation, code expansion, code shrinking 
and insertion of garbage code, can be used by 
malware authors. The combination of the 
above techniques resulted in increasingly 
increasing quantities of malware, making 
time-consuming, expensive and more compli-
cated forensic investigations of malware cases. 
There are some issues with conventional 
antivirus solutions that rely on signature-based 
and heuristic/behavioral methods. A signature 
is a unique feature or collection of features that 
like a fingerprint, uniquely differentiates an 
executable. Signature-based approaches are 
unable to identify unknown types of malware, 
however. Security researchers suggested 
behavior-based detection to overcome these 
problems, which analyses the features and 
behavior of the file to decide whether it is 
indeed malware, although it may take some 
time to search and evaluate. Researchers have 

begun implementing machine learning to 
supplement their solutions in order to solve 
the previous drawbacks of conventional 
antivirus engines and keep pace with new 
attacks and variants, as machine learning is 
well suited for processing large quantities of 
data. [4]

3.  Malware Detection

In such a way, hackers present malware aimed 
at persuading people to install it. As it seems 
legal, users also do not know what the program 
is. Usually, we install it thinking that it is 
secure, but on the contrary, it's a major threat. 
That's how the malware gets into your system. 
When on the screen, it disperses and hides in 
numerous files, making it very difficult to 
identify. In order to access and record personal 
or useful information, it may connect directly 
to the operating system and start encrypting it 
[5]. Detection of malware is defined as the 
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient 
and reliable. Some of the general strategies for 
malware detection are:

      i. Signature-based

      ii. Heuristic Analysis

      iii. Anti-malware Software

      iv. Sandbox

Several classifiers have been implemented, 
such as linear classifiers (logistic regression, 
naive Bayes classifier), support for vector 
machinery, neural networks, random forests, 
etc.

Through both static and dynamic analysis, 
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4.  Need for Machine Learning in 
Malware Detection

Machine learning has created a drastic change 
in many industries, including cybersecurity, 
over the last decade. Among cybersecurity 
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect 
modern malware attacks and boost scanning 
engines. Proof of this belief is the number of 
studies on malware detection strategies that 
exploit machine learning reported in the last 
few years. The number of research papers 
released in 2018 is 7720, a 95 percent rise over 
2015 and a 476 percent increase over 2010, 
according to Google Scholar,1. This rise in the 
number of studies is the product of several 
factors, including but not limited to the 
increase in publicly labelled malware feeds, the 
increase in computing capacity at the same 
time as its price decrease, and the evolution of 

the field of machine learning, which has 
achieved ground-breaking success in a wide 
range of tasks such as computer vision and 
speech recognition [6]. Depending on the type 
of analysis, conventional machine learning 
methods can be categorized into two main 
categories, static and dynamic approaches. The 
primary difference between them is that static 
methods extract features from the static 
malware analysis, while dynamic methods 
extract features from the dynamic analysis. A 
third category may be considered, known as 
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw 
inputs in diverse fields have outshone neural 
networks. The performance of neural networks 
in the malware domain is mirrored by recent 
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is 
imported and the different columns are 
discussed in the dataset.

• Data cleaning: The required steps are 
taken after examining the dataset so that 
the dataset can be cleaned and all the null 
values and columns of not much signifi-
cance are removed so that they will not be 
of any concern in the training part.

• Data Training and Testing: When the 
information is transparent and ready for 
training, we spilled the information as a 
training dataset and testing dataset in an 
80:20 ratios so that the data was spilled in 

an 80:20 ratios.

In this paper, as we try to achieve the highest 
accuracy, we use two algorithms to see which 
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique 
of machine learning which uses regression and 
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker 
prediction models, usually decision trees. As other 
boosting techniques do it constructs the model in a 
phase-wise fashion and generalizes them by allowing 
an arbitrary differentiable loss function to be 
optimized. [7] For predictive model growth, gradient 
boosting is one of the most effective techniques. 
Gradient Boosting is teaching several models steadily, 
additively and sequentially. With gradients of loss 
function, gradient boosting takes place. What we 
strive to develop and maximize depends on a simple 
understanding of the loss function.

• In Gradient Boosting, three elements area 
feature for loss to be optimized or 
enhanced.

• A poor man who has learned to make 
predictions

• A supplementary model for 
incorporating disadvantaged students to 
minimize losses. [8][9]

It's important that we understand how the 
algorithm of Gradient Boost is implemented 
under the hood.

1. Calculate average of target label- We 
begin with a leaf that is the average value 
of the variable we want to forecast when 
solving regression problems. This leaf will 
be used in the procedural steps as a 
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the 
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the 
intention of predicting the residuals, we 
build a tree. In other words, a prediction of 
the residual value (not the desired label) 
will be found in every leaf. Any residuals 
will end up within the same leaf in the 
event that there are more residuals than 
leaves. We compute their average and 
position that inside the leaf when this 
happens.

4. Using the trees within the ensemble 
predict the target label. - Each sample 
passes through the newly developed tree's 
decision nodes before it reaches a given 
lead.

5. Compute the new residuals- The residuals 
will then be used as explained in step 3 for 
the leaves of the coming next decision 
tree.

6. Repeat steps 3 to 5 until the number of 
iterations matches the number (i.e. the 
number of estimators) defined by the 
hyper parameter.

7. To make a final prediction as to the value 
of the target variable, use all the trees in 
the ensemble once eligible. [10]

In the first step, the final forecast will be equal 
to the mean we determined, plus all the residu-
als predicted by the trees that make up the 
forest multiplied by the learning rate.

Random forests - Random forests or random 
decision forests are an ensemble learning 
method for classification, regression and other 
tasks that function by constructing a multitude 
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average 
prediction (regression) of the individual trees. 
Random forests are often used as "Blackbox" 
models in companies, as they produce rational 
predictions over a large range of data while 
requiring little configuration in packages such 
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps 
and diagrams below the working procedure 
can be explained:

1. From the training set select random K data 
points.

2. Use the selected data points to build 
decision trees associated with it (Subsets).

3. Choose a number N which represents the 
decision trees that you want to build.

4. Repeat Step 1 & 2.

5. Find the predictions for new data points 
for each decision tree and assign the new 
data points to the group that receives the 
majority votes. [12]

7.  Mplementation

We used a dataset that was made available 
from the Chiheb Chebbi - Mastering Machine 
Learning for Penetration Testing book for this 
work. There are approximately 138000 entries 
of legit and malware PE headers and 56 
columns as features in the dataset. In an 80 
percent preparation and 20 percent evaluation, 
the knowledge was divided.

We initially import and read the dataset, once 
that is done, we clean the dataset by dropping 
unnecessary features and null values. After that 
we split the dataset for training and testing. We 
import the necessary packages for making a 
decision tree, gradient boosted classifier and 
random forest classifier. Once done we fit that 
data respectively and predict the results.

Using a combination of these algorithms, after 
training and testing the algorithms, we were 
able to get a highly accurate outcome.

8.  Results

After training and testing both the algorithms, 
we can see that both of them give us a high 
accuracy output. 

9.  Conclusion

The algorithm used for training the data was 
Gradient Boosted classifier and random forest 
classifier which gives us an accuracy of 
98.764% and 99.311% respectively. After 
viewing the confusion matrix of the random 
forest classifier, we could conclude that the 
number of false positives were at 0.5505 and 
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of 
false positives were at 0.768 and false 
negatives were at 2.3099.

Our main objective was to come up with a 
system for machine learning that typically 
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero 
false positive rate. We have been really close to 
our target, but we still have a false positive rate 
that is non-zero. A variety of deterministic 
exemption mechanisms must be added in order 
for this system to become part of a highly 
competitive commercial product. In our view, 
machine learning detection of malware will not 
replace the existing methods of detection used 
by anti-virus vendors, but will come as an 
extension to them. Certain speed and memory 
limitations are placed on any commercial 
anti-virus product, so the most accurate 
algorithms should be used.
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1. Introduction

 Idealistic hackers attacked computers 
in the early days because they were eager to 
prove themselves. Cracking machines, 
however is an industry in today's world. 
Despite recent improvements in software and 
computer hardware security, both in frequency 
and sophistication, attacks on computer 
systems have increased. Regrettably, there are 
major drawbacks to current methods for 
detecting and analyzing unknown code 
samples. The Internet is a critical part of our 

everyday lives today. On the internet, there are 
many services and they are rising daily as well. 
Numerous reports indicate that malware's 
effect is worsening at an alarming pace. 
Although malware diversity is growing, anti- 
virus scanners are unable to fulfil security 
needs, resulting in attacks on millions of hosts. 
Around 65,63,145 different hosts were 
targeted, according to Kaspersky Labs, and in 
2015, 40,00,000 unique malware artefacts 
were found. Juniper Research (2016), in 
particular, projected that by 2019 the cost of 
data breaches will rise to $2.1 trillion globally 
[1]. Current studies show that script-kiddies 
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properties of data to be exact about the 
estimates. The major part of this model is that 
it will learn the subquery representations of 
complex queries which will be used to build 
query execution plan using deep reinforcement 
learning. Since the 1970s, information base 
analysts have been dealing with framework 
enhancement and large-scale information-driv-
en applications, which are strongly associated 
with the first two components. Although deep 
learning methodologies are not often used in 
dealing with DBMS challenges, it is natural to 
wonder about the linkages between informa-
tion bases and profound learning. 

First, we have to examine that is the database 
community ready to adapt deep learning for 
DBMS. However, there are fewer examples of 
using machine learning for traditional database 
problems that are less uncertain, like indexing 
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases 
that are probabilistic like crowdsourcing etc. In 
particular, we divide the method in two parts, 
first representation of state of table using deep 
learning and then we will present a way to 
computes plan for the given query using the 
above states together with deep reinforcement 
learning.

Challenge of this approach, to represent data 
and query. First, we develop an approach that 
will incrementally generate result of subque-
ries. Subqueries and a new operation will be 
provided as input that will further predict the 
representation of output. This representation of 
output subquery will be used to derive the 

subquery’s cardinality.

The major part is that we will present a method 
that will use this representation to enumerates 
the query execution plan through deep 
reinforcement learning. Support learning is a 
generally beneficial structure used for dynamic 
in circumstances where a framework is 
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this 
deep learning approach to build an optimal 
query execution plan by modelling it as 
Markov process; in which each decision has its 
dependency on each stage. The figure below 
will illustrate our method. The figure below 
has DB and a query, the model will generate an 
optimal query execution plan by determining 
the series of state transitions 

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will 
select as action using deep reinforcement 
learning, the model moves to a new state at t 
+1, We've now built a bigger subquery. Each 
action is a query operation, and each state 
reflects the intermediate results of the subque-
ry. To build this representation, we used a 
neural network, i.e. a state transition function, 
NNST. NNST is a recursive function that 
generates the subquery representation at time 

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered 
above. The query plan's dynamics are 
bottom-up, with one operation at a time. 
Assume a subquery has been constructed at 
any step t of the query plan, and the state at t is 
represented by an n-dimensional vector ht. 
When the next action applied to the setup, at to 
this current database state leads to the next 
state, ht+1. The mapping, NNST: (ht, at) → 
ht+1 is called the state transition function. This 
state and state transition function are well 
known in applications of deep reinforcement 
learning. For Example, in the game of Chess, 
each possible position is called state and the 
transition of these states from one board 
position to another is well-defined. However, 
in the case of a database, if the query execution 
plan is not sufficiently described, we cannot 
forecast the status of the query. The core of our 
proposed strategy is to identify each state using 
a finite dimensional vector and then learn the 
state transition function using a deep reinforce-
ment learning model. We employ input signals 
and context from observed variables linked 
with database status to drive the training proce-
dure for this network. Throughout this work, 
we will utilise the cardinality of each subquery 
as an observable variable at any point of the 
plan. If we can learn a function, NNobserved, that 
maps this state to projected cardinalities at 
stage t, we should be able to learn a function, 
NNobserved, that maps this state to predicted 
cardinalities at stage t. In the figure below, we 
display both NNST and NNobserved. 

Figure 2: Representation of NNST and 

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences. 
Each state will learn to precisely depict a repre-
sentation using this approach. Once the 
technique has been fully trained, we may 
correct it and use deep reinforcement learning 
to create a suitable action policy, resulting in 
an optimal query execution plan.

2.  Literature Review:

Extensive Learning Deep learning methods, 
commonly known as feedforward neural 
networks, may imprecisely approximate a 
nonlinear function, f [3]. Through a collection 
of learnt parameters spread across multiple 
layers, these models establish a mapping from 
an input x to an output y. The behavior of the 
interior layers is not dictated by the input data 
during training; instead, these models must 
learn how to employ the layers to create the 
proper output. Because the layers have no 

subquery representation. Back propagation is 
used to alter the weights for both functions 
while we train this model.

Before moving forward and start using the 
recursive NNST model, we have to understand 
an additional function, NNinit. NNinit will take 
(x0, a0) as input, where x0 represents a vector 
that holds the properties of the database D 
whereas a0 shows a relational operator. The 
model outputs the cardinality of the query that 
executes the operation encoded in a0 on D. By 
this we can achieve the optimal time on the 
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the 
database, D. For each attribute in the dataset D, 
we use the following features to define x0: the 
min value, the max value and the number of 
distinct values.

4.  Conclusion

In this paper, we provide a model for query 
optimization that uses deep reinforcement 
learning. We employ deep neural networks to 

gradually learn state representations of subque-
ries by storing fundamental information about 
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum 
plans.
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direct interactions with the input training data, 
they are referred to as hidden layers [3]. These 
feedforward networks are crucial in represen-
tation learning. While training to perform a 
goal function, the hidden layers of a neural 
network might indirectly learn a representation 
that can later be employed for other tasks [3]. 
There is a trade-off between retaining as much 
information as possible and understanding 
relevant data qualities. The context of these 
representations might alter depending on the 
network output [3]. Learning through 
Reinforcement learning models can map states 
to appropriate actions with the objective of 
maximizing a larger reward. In contrast to 
supervised learning, the learner is not clearly 
informed which action is ideal; instead, the 
agent must determine the best action through 
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each 
time step, the learner will examine the condi-
tion of the environment, S T, and choose an 
action, at. The policy determines the action to 
be taken. This strategy has the potential to 
reconstruct a variety of behaviors. As a result, 
either behave greedily or strike a balance 
between discovering and utilizing through a 
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state, 
which the model must learn on the fly. The 
model will arrive at a new state, S T + 1, based on 
the action chosen. The environment then 
provides the agent a reward, r T + 1, signifying 
the "worthiness" of the chosen action. The goal 
of the agent is to maximize the overall reward 
[11]. One method is to employ a value-based 
iteration methodology in which the model 
records state-action values, such as QL (s, a). 

These values indicate the state's long-term 
worth by weighting rewards for states that are 
anticipated to follow.

3.  Methodology:

They are two approaches that we proposed to 
achieve the target solution for getting the 
optimal query execution plan. We will be 
supposed input database D and Query Q. we 
will apply deep reinforcement learning to 
derive compact but informative representation 
of queries, then we will try to train these repre-
sentations to predict the next action. In first 
approach we would suppose a feature vector 
containing (Q, D) as input and apply deep 
reinforcement learning to predict an output as 
cardinality values. There is problem with this 
approach that whenever the database and query 
complexity increase the input vector grow 
heavily. Thus, the long-extended vectors 
required large training datasets.

Instead of wasting our resources and never 
getting our required result, we will move 
forward and apply our better different 
approach, a recursive approach: We train a 
model to anticipate a query's cardinality. This 
model is fed a pair of (ht, at) as input, where ht 

is a vector representation of a subquery and at 
is a single relational action on ht. Importantly, 
because ht is the representation that the model 
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The 
NNST function, seen in the image above, builds 
these representations by modifying the weights 
in response to feedback from the NNObserved 
function. This NNObserved function learns to 
predict observed variables by mapping a 
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1. Introduction

 Inquiry advancement is still a big 
concern in the field of data sets. Existing 
DBMS select helpless execution strategies for 
certain queries. To make inquiries more 
competent, we wished to design them 
optimally, utilizing fewer assets. Existing 
DBMSs carry out a vital stage of cardinality 
evaluation by working on assumptions about 
the information (e.g., incorporation standard, 
consistency or freedom suppositions). When 
these concerns are not confirmed, cardinality 
evaluation errors occur, resulting in poor 
arrangement choices. [1]. By using cardinality 
gauges as input, the expenditure model selects 
the least expensive alternative from 
semantically equivalent arrangement options. 

To achieve an efficient inquiry strategy, a 
subset of the valid join orders is counted by the 
question enhancer, for example, using dynamic 
programming.

Theoretically this architecture can obtain the 
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based 
assumptions. But in real world databases the 
assumptions like uniformity and independence 
are wrong. 

In this research work, rather than banking on 
previously used formulas and data driven with 
the help of statistics, to predict the queries 
cardinalities we will train a deep reinforcement 
learning model for better execution plan. We 
will construct a model that can learn data and 

are generating more and more attacks or are 
automated. To date, attacks on commercial and 
government organizations, such as 
ransomware and malware, continue to pose a 
significant threat and challenge. Such attacks 
can come in various ways and sizes. An 
enormous challenge is the ability of the global 
security community to develop and provide 
expertise in cybersecurity. There is widespread 
awareness of the global scarcity of 
cybersecurity and talent. Cybercrimes, such as 
financial fraud, child exploitation online and 
payment fraud, are so common that they 
demand international 24-hour response and 
collaboration between multi-national law 
enforcement agencies [2]. For single users and 
organizations, malware defense of computer 
systems is therefore one of the most critical 
cybersecurity activities, as even a single attack 
may result in compromised data and sufficient 
losses. This research explores how machine 
learning can be used in the field of 
cybersecurity, along with how it can be used to 
detect malware. In order to detect malware, we 
will examine the PE headers of malware and 
non-malware samples or files by creating and 
training a classifier that will determine whether 
the file has been attacked by malware or not 
after training. 

2.  Evolution of Malware

In order to protect networks and computer 
systems from attacks, the diversity, sophistica-
tion and availability of malicious software 
present enormous challenges. Malware is 
continually changing and challenges security 
researchers and scientists to strengthen their 
cyber defenses to keep pace. Owing to the use 
of polymorphic and metamorphic methods 

used to avoid detection and conceal its true 
intent, the prevalence of malware has increased. 
To mutate the code while keeping the original 
functionality intact, polymorphic malware uses 
a polymorphic engine. The two most common 
ways to conceal code are packaging and 
encryption [3]. Through one or more layers of 
compression, packers cover a program's real 
code. Then the unpacking routines restore the 
original code and execute it in memory at 
runtime. To make it harder for researchers to 
analyze the software, crypters encrypt and 
manipulate malware or part of its code. A 
crypter includes a stub that is used for 
malicious code encryption and decryption. 
Whenever it's propagated, metamorphic 
malware rewrites the code to an equivalent. 
Multiple transformation techniques, including 
but not limited to, register renaming, code 
permutation, code expansion, code shrinking 
and insertion of garbage code, can be used by 
malware authors. The combination of the 
above techniques resulted in increasingly 
increasing quantities of malware, making 
time-consuming, expensive and more compli-
cated forensic investigations of malware cases. 
There are some issues with conventional 
antivirus solutions that rely on signature-based 
and heuristic/behavioral methods. A signature 
is a unique feature or collection of features that 
like a fingerprint, uniquely differentiates an 
executable. Signature-based approaches are 
unable to identify unknown types of malware, 
however. Security researchers suggested 
behavior-based detection to overcome these 
problems, which analyses the features and 
behavior of the file to decide whether it is 
indeed malware, although it may take some 
time to search and evaluate. Researchers have 
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begun implementing machine learning to 
supplement their solutions in order to solve 
the previous drawbacks of conventional 
antivirus engines and keep pace with new 
attacks and variants, as machine learning is 
well suited for processing large quantities of 
data. [4]

3.  Malware Detection

In such a way, hackers present malware aimed 
at persuading people to install it. As it seems 
legal, users also do not know what the program 
is. Usually, we install it thinking that it is 
secure, but on the contrary, it's a major threat. 
That's how the malware gets into your system. 
When on the screen, it disperses and hides in 
numerous files, making it very difficult to 
identify. In order to access and record personal 
or useful information, it may connect directly 
to the operating system and start encrypting it 
[5]. Detection of malware is defined as the 
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient 
and reliable. Some of the general strategies for 
malware detection are:

      i. Signature-based

      ii. Heuristic Analysis

      iii. Anti-malware Software

      iv. Sandbox

Several classifiers have been implemented, 
such as linear classifiers (logistic regression, 
naive Bayes classifier), support for vector 
machinery, neural networks, random forests, 
etc.

Through both static and dynamic analysis, 
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4.  Need for Machine Learning in 
Malware Detection

Machine learning has created a drastic change 
in many industries, including cybersecurity, 
over the last decade. Among cybersecurity 
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect 
modern malware attacks and boost scanning 
engines. Proof of this belief is the number of 
studies on malware detection strategies that 
exploit machine learning reported in the last 
few years. The number of research papers 
released in 2018 is 7720, a 95 percent rise over 
2015 and a 476 percent increase over 2010, 
according to Google Scholar,1. This rise in the 
number of studies is the product of several 
factors, including but not limited to the 
increase in publicly labelled malware feeds, the 
increase in computing capacity at the same 
time as its price decrease, and the evolution of 

the field of machine learning, which has 
achieved ground-breaking success in a wide 
range of tasks such as computer vision and 
speech recognition [6]. Depending on the type 
of analysis, conventional machine learning 
methods can be categorized into two main 
categories, static and dynamic approaches. The 
primary difference between them is that static 
methods extract features from the static 
malware analysis, while dynamic methods 
extract features from the dynamic analysis. A 
third category may be considered, known as 
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw 
inputs in diverse fields have outshone neural 
networks. The performance of neural networks 
in the malware domain is mirrored by recent 
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is 
imported and the different columns are 
discussed in the dataset.

• Data cleaning: The required steps are 
taken after examining the dataset so that 
the dataset can be cleaned and all the null 
values and columns of not much signifi-
cance are removed so that they will not be 
of any concern in the training part.

• Data Training and Testing: When the 
information is transparent and ready for 
training, we spilled the information as a 
training dataset and testing dataset in an 
80:20 ratios so that the data was spilled in 

an 80:20 ratios.

In this paper, as we try to achieve the highest 
accuracy, we use two algorithms to see which 
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique 
of machine learning which uses regression and 
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker 
prediction models, usually decision trees. As other 
boosting techniques do it constructs the model in a 
phase-wise fashion and generalizes them by allowing 
an arbitrary differentiable loss function to be 
optimized. [7] For predictive model growth, gradient 
boosting is one of the most effective techniques. 
Gradient Boosting is teaching several models steadily, 
additively and sequentially. With gradients of loss 
function, gradient boosting takes place. What we 
strive to develop and maximize depends on a simple 
understanding of the loss function.

• In Gradient Boosting, three elements area 
feature for loss to be optimized or 
enhanced.

• A poor man who has learned to make 
predictions

• A supplementary model for 
incorporating disadvantaged students to 
minimize losses. [8][9]

It's important that we understand how the 
algorithm of Gradient Boost is implemented 
under the hood.

1. Calculate average of target label- We 
begin with a leaf that is the average value 
of the variable we want to forecast when 
solving regression problems. This leaf will 
be used in the procedural steps as a 
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the 
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the 
intention of predicting the residuals, we 
build a tree. In other words, a prediction of 
the residual value (not the desired label) 
will be found in every leaf. Any residuals 
will end up within the same leaf in the 
event that there are more residuals than 
leaves. We compute their average and 
position that inside the leaf when this 
happens.

4. Using the trees within the ensemble 
predict the target label. - Each sample 
passes through the newly developed tree's 
decision nodes before it reaches a given 
lead.

5. Compute the new residuals- The residuals 
will then be used as explained in step 3 for 
the leaves of the coming next decision 
tree.

6. Repeat steps 3 to 5 until the number of 
iterations matches the number (i.e. the 
number of estimators) defined by the 
hyper parameter.

7. To make a final prediction as to the value 
of the target variable, use all the trees in 
the ensemble once eligible. [10]

In the first step, the final forecast will be equal 
to the mean we determined, plus all the residu-
als predicted by the trees that make up the 
forest multiplied by the learning rate.

Random forests - Random forests or random 
decision forests are an ensemble learning 
method for classification, regression and other 
tasks that function by constructing a multitude 
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average 
prediction (regression) of the individual trees. 
Random forests are often used as "Blackbox" 
models in companies, as they produce rational 
predictions over a large range of data while 
requiring little configuration in packages such 
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps 
and diagrams below the working procedure 
can be explained:

1. From the training set select random K data 
points.

2. Use the selected data points to build 
decision trees associated with it (Subsets).

3. Choose a number N which represents the 
decision trees that you want to build.

4. Repeat Step 1 & 2.

5. Find the predictions for new data points 
for each decision tree and assign the new 
data points to the group that receives the 
majority votes. [12]

7.  Mplementation

We used a dataset that was made available 
from the Chiheb Chebbi - Mastering Machine 
Learning for Penetration Testing book for this 
work. There are approximately 138000 entries 
of legit and malware PE headers and 56 
columns as features in the dataset. In an 80 
percent preparation and 20 percent evaluation, 
the knowledge was divided.

We initially import and read the dataset, once 
that is done, we clean the dataset by dropping 
unnecessary features and null values. After that 
we split the dataset for training and testing. We 
import the necessary packages for making a 
decision tree, gradient boosted classifier and 
random forest classifier. Once done we fit that 
data respectively and predict the results.

Using a combination of these algorithms, after 
training and testing the algorithms, we were 
able to get a highly accurate outcome.

8.  Results

After training and testing both the algorithms, 
we can see that both of them give us a high 
accuracy output. 

9.  Conclusion

The algorithm used for training the data was 
Gradient Boosted classifier and random forest 
classifier which gives us an accuracy of 
98.764% and 99.311% respectively. After 
viewing the confusion matrix of the random 
forest classifier, we could conclude that the 
number of false positives were at 0.5505 and 
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of 
false positives were at 0.768 and false 
negatives were at 2.3099.

Our main objective was to come up with a 
system for machine learning that typically 
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero 
false positive rate. We have been really close to 
our target, but we still have a false positive rate 
that is non-zero. A variety of deterministic 
exemption mechanisms must be added in order 
for this system to become part of a highly 
competitive commercial product. In our view, 
machine learning detection of malware will not 
replace the existing methods of detection used 
by anti-virus vendors, but will come as an 
extension to them. Certain speed and memory 
limitations are placed on any commercial 
anti-virus product, so the most accurate 
algorithms should be used.
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1. Introduction

 Idealistic hackers attacked computers 
in the early days because they were eager to 
prove themselves. Cracking machines, 
however is an industry in today's world. 
Despite recent improvements in software and 
computer hardware security, both in frequency 
and sophistication, attacks on computer 
systems have increased. Regrettably, there are 
major drawbacks to current methods for 
detecting and analyzing unknown code 
samples. The Internet is a critical part of our 

everyday lives today. On the internet, there are 
many services and they are rising daily as well. 
Numerous reports indicate that malware's 
effect is worsening at an alarming pace. 
Although malware diversity is growing, anti- 
virus scanners are unable to fulfil security 
needs, resulting in attacks on millions of hosts. 
Around 65,63,145 different hosts were 
targeted, according to Kaspersky Labs, and in 
2015, 40,00,000 unique malware artefacts 
were found. Juniper Research (2016), in 
particular, projected that by 2019 the cost of 
data breaches will rise to $2.1 trillion globally 
[1]. Current studies show that script-kiddies 

properties of data to be exact about the 
estimates. The major part of this model is that 
it will learn the subquery representations of 
complex queries which will be used to build 
query execution plan using deep reinforcement 
learning. Since the 1970s, information base 
analysts have been dealing with framework 
enhancement and large-scale information-driv-
en applications, which are strongly associated 
with the first two components. Although deep 
learning methodologies are not often used in 
dealing with DBMS challenges, it is natural to 
wonder about the linkages between informa-
tion bases and profound learning. 

First, we have to examine that is the database 
community ready to adapt deep learning for 
DBMS. However, there are fewer examples of 
using machine learning for traditional database 
problems that are less uncertain, like indexing 
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases 
that are probabilistic like crowdsourcing etc. In 
particular, we divide the method in two parts, 
first representation of state of table using deep 
learning and then we will present a way to 
computes plan for the given query using the 
above states together with deep reinforcement 
learning.

Challenge of this approach, to represent data 
and query. First, we develop an approach that 
will incrementally generate result of subque-
ries. Subqueries and a new operation will be 
provided as input that will further predict the 
representation of output. This representation of 
output subquery will be used to derive the 

subquery’s cardinality.

The major part is that we will present a method 
that will use this representation to enumerates 
the query execution plan through deep 
reinforcement learning. Support learning is a 
generally beneficial structure used for dynamic 
in circumstances where a framework is 
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this 
deep learning approach to build an optimal 
query execution plan by modelling it as 
Markov process; in which each decision has its 
dependency on each stage. The figure below 
will illustrate our method. The figure below 
has DB and a query, the model will generate an 
optimal query execution plan by determining 
the series of state transitions 

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will 
select as action using deep reinforcement 
learning, the model moves to a new state at t 
+1, We've now built a bigger subquery. Each 
action is a query operation, and each state 
reflects the intermediate results of the subque-
ry. To build this representation, we used a 
neural network, i.e. a state transition function, 
NNST. NNST is a recursive function that 
generates the subquery representation at time 

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered 
above. The query plan's dynamics are 
bottom-up, with one operation at a time. 
Assume a subquery has been constructed at 
any step t of the query plan, and the state at t is 
represented by an n-dimensional vector ht. 
When the next action applied to the setup, at to 
this current database state leads to the next 
state, ht+1. The mapping, NNST: (ht, at) → 
ht+1 is called the state transition function. This 
state and state transition function are well 
known in applications of deep reinforcement 
learning. For Example, in the game of Chess, 
each possible position is called state and the 
transition of these states from one board 
position to another is well-defined. However, 
in the case of a database, if the query execution 
plan is not sufficiently described, we cannot 
forecast the status of the query. The core of our 
proposed strategy is to identify each state using 
a finite dimensional vector and then learn the 
state transition function using a deep reinforce-
ment learning model. We employ input signals 
and context from observed variables linked 
with database status to drive the training proce-
dure for this network. Throughout this work, 
we will utilise the cardinality of each subquery 
as an observable variable at any point of the 
plan. If we can learn a function, NNobserved, that 
maps this state to projected cardinalities at 
stage t, we should be able to learn a function, 
NNobserved, that maps this state to predicted 
cardinalities at stage t. In the figure below, we 
display both NNST and NNobserved. 

Figure 2: Representation of NNST and 

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences. 
Each state will learn to precisely depict a repre-
sentation using this approach. Once the 
technique has been fully trained, we may 
correct it and use deep reinforcement learning 
to create a suitable action policy, resulting in 
an optimal query execution plan.

2.  Literature Review:

Extensive Learning Deep learning methods, 
commonly known as feedforward neural 
networks, may imprecisely approximate a 
nonlinear function, f [3]. Through a collection 
of learnt parameters spread across multiple 
layers, these models establish a mapping from 
an input x to an output y. The behavior of the 
interior layers is not dictated by the input data 
during training; instead, these models must 
learn how to employ the layers to create the 
proper output. Because the layers have no 

subquery representation. Back propagation is 
used to alter the weights for both functions 
while we train this model.

Before moving forward and start using the 
recursive NNST model, we have to understand 
an additional function, NNinit. NNinit will take 
(x0, a0) as input, where x0 represents a vector 
that holds the properties of the database D 
whereas a0 shows a relational operator. The 
model outputs the cardinality of the query that 
executes the operation encoded in a0 on D. By 
this we can achieve the optimal time on the 
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the 
database, D. For each attribute in the dataset D, 
we use the following features to define x0: the 
min value, the max value and the number of 
distinct values.

4.  Conclusion

In this paper, we provide a model for query 
optimization that uses deep reinforcement 
learning. We employ deep neural networks to 

gradually learn state representations of subque-
ries by storing fundamental information about 
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum 
plans.
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direct interactions with the input training data, 
they are referred to as hidden layers [3]. These 
feedforward networks are crucial in represen-
tation learning. While training to perform a 
goal function, the hidden layers of a neural 
network might indirectly learn a representation 
that can later be employed for other tasks [3]. 
There is a trade-off between retaining as much 
information as possible and understanding 
relevant data qualities. The context of these 
representations might alter depending on the 
network output [3]. Learning through 
Reinforcement learning models can map states 
to appropriate actions with the objective of 
maximizing a larger reward. In contrast to 
supervised learning, the learner is not clearly 
informed which action is ideal; instead, the 
agent must determine the best action through 
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each 
time step, the learner will examine the condi-
tion of the environment, S T, and choose an 
action, at. The policy determines the action to 
be taken. This strategy has the potential to 
reconstruct a variety of behaviors. As a result, 
either behave greedily or strike a balance 
between discovering and utilizing through a 
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state, 
which the model must learn on the fly. The 
model will arrive at a new state, S T + 1, based on 
the action chosen. The environment then 
provides the agent a reward, r T + 1, signifying 
the "worthiness" of the chosen action. The goal 
of the agent is to maximize the overall reward 
[11]. One method is to employ a value-based 
iteration methodology in which the model 
records state-action values, such as QL (s, a). 

These values indicate the state's long-term 
worth by weighting rewards for states that are 
anticipated to follow.

3.  Methodology:

They are two approaches that we proposed to 
achieve the target solution for getting the 
optimal query execution plan. We will be 
supposed input database D and Query Q. we 
will apply deep reinforcement learning to 
derive compact but informative representation 
of queries, then we will try to train these repre-
sentations to predict the next action. In first 
approach we would suppose a feature vector 
containing (Q, D) as input and apply deep 
reinforcement learning to predict an output as 
cardinality values. There is problem with this 
approach that whenever the database and query 
complexity increase the input vector grow 
heavily. Thus, the long-extended vectors 
required large training datasets.

Instead of wasting our resources and never 
getting our required result, we will move 
forward and apply our better different 
approach, a recursive approach: We train a 
model to anticipate a query's cardinality. This 
model is fed a pair of (ht, at) as input, where ht 

is a vector representation of a subquery and at 
is a single relational action on ht. Importantly, 
because ht is the representation that the model 
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The 
NNST function, seen in the image above, builds 
these representations by modifying the weights 
in response to feedback from the NNObserved 
function. This NNObserved function learns to 
predict observed variables by mapping a 
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1. Introduction

 Inquiry advancement is still a big 
concern in the field of data sets. Existing 
DBMS select helpless execution strategies for 
certain queries. To make inquiries more 
competent, we wished to design them 
optimally, utilizing fewer assets. Existing 
DBMSs carry out a vital stage of cardinality 
evaluation by working on assumptions about 
the information (e.g., incorporation standard, 
consistency or freedom suppositions). When 
these concerns are not confirmed, cardinality 
evaluation errors occur, resulting in poor 
arrangement choices. [1]. By using cardinality 
gauges as input, the expenditure model selects 
the least expensive alternative from 
semantically equivalent arrangement options. 

To achieve an efficient inquiry strategy, a 
subset of the valid join orders is counted by the 
question enhancer, for example, using dynamic 
programming.

Theoretically this architecture can obtain the 
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based 
assumptions. But in real world databases the 
assumptions like uniformity and independence 
are wrong. 

In this research work, rather than banking on 
previously used formulas and data driven with 
the help of statistics, to predict the queries 
cardinalities we will train a deep reinforcement 
learning model for better execution plan. We 
will construct a model that can learn data and 

are generating more and more attacks or are 
automated. To date, attacks on commercial and 
government organizations, such as 
ransomware and malware, continue to pose a 
significant threat and challenge. Such attacks 
can come in various ways and sizes. An 
enormous challenge is the ability of the global 
security community to develop and provide 
expertise in cybersecurity. There is widespread 
awareness of the global scarcity of 
cybersecurity and talent. Cybercrimes, such as 
financial fraud, child exploitation online and 
payment fraud, are so common that they 
demand international 24-hour response and 
collaboration between multi-national law 
enforcement agencies [2]. For single users and 
organizations, malware defense of computer 
systems is therefore one of the most critical 
cybersecurity activities, as even a single attack 
may result in compromised data and sufficient 
losses. This research explores how machine 
learning can be used in the field of 
cybersecurity, along with how it can be used to 
detect malware. In order to detect malware, we 
will examine the PE headers of malware and 
non-malware samples or files by creating and 
training a classifier that will determine whether 
the file has been attacked by malware or not 
after training. 

2.  Evolution of Malware

In order to protect networks and computer 
systems from attacks, the diversity, sophistica-
tion and availability of malicious software 
present enormous challenges. Malware is 
continually changing and challenges security 
researchers and scientists to strengthen their 
cyber defenses to keep pace. Owing to the use 
of polymorphic and metamorphic methods 

used to avoid detection and conceal its true 
intent, the prevalence of malware has increased. 
To mutate the code while keeping the original 
functionality intact, polymorphic malware uses 
a polymorphic engine. The two most common 
ways to conceal code are packaging and 
encryption [3]. Through one or more layers of 
compression, packers cover a program's real 
code. Then the unpacking routines restore the 
original code and execute it in memory at 
runtime. To make it harder for researchers to 
analyze the software, crypters encrypt and 
manipulate malware or part of its code. A 
crypter includes a stub that is used for 
malicious code encryption and decryption. 
Whenever it's propagated, metamorphic 
malware rewrites the code to an equivalent. 
Multiple transformation techniques, including 
but not limited to, register renaming, code 
permutation, code expansion, code shrinking 
and insertion of garbage code, can be used by 
malware authors. The combination of the 
above techniques resulted in increasingly 
increasing quantities of malware, making 
time-consuming, expensive and more compli-
cated forensic investigations of malware cases. 
There are some issues with conventional 
antivirus solutions that rely on signature-based 
and heuristic/behavioral methods. A signature 
is a unique feature or collection of features that 
like a fingerprint, uniquely differentiates an 
executable. Signature-based approaches are 
unable to identify unknown types of malware, 
however. Security researchers suggested 
behavior-based detection to overcome these 
problems, which analyses the features and 
behavior of the file to decide whether it is 
indeed malware, although it may take some 
time to search and evaluate. Researchers have 

begun implementing machine learning to 
supplement their solutions in order to solve 
the previous drawbacks of conventional 
antivirus engines and keep pace with new 
attacks and variants, as machine learning is 
well suited for processing large quantities of 
data. [4]

3.  Malware Detection

In such a way, hackers present malware aimed 
at persuading people to install it. As it seems 
legal, users also do not know what the program 
is. Usually, we install it thinking that it is 
secure, but on the contrary, it's a major threat. 
That's how the malware gets into your system. 
When on the screen, it disperses and hides in 
numerous files, making it very difficult to 
identify. In order to access and record personal 
or useful information, it may connect directly 
to the operating system and start encrypting it 
[5]. Detection of malware is defined as the 
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient 
and reliable. Some of the general strategies for 
malware detection are:

      i. Signature-based

      ii. Heuristic Analysis

      iii. Anti-malware Software

      iv. Sandbox

Several classifiers have been implemented, 
such as linear classifiers (logistic regression, 
naive Bayes classifier), support for vector 
machinery, neural networks, random forests, 
etc.

Through both static and dynamic analysis, 
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4.  Need for Machine Learning in 
Malware Detection

Machine learning has created a drastic change 
in many industries, including cybersecurity, 
over the last decade. Among cybersecurity 
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect 
modern malware attacks and boost scanning 
engines. Proof of this belief is the number of 
studies on malware detection strategies that 
exploit machine learning reported in the last 
few years. The number of research papers 
released in 2018 is 7720, a 95 percent rise over 
2015 and a 476 percent increase over 2010, 
according to Google Scholar,1. This rise in the 
number of studies is the product of several 
factors, including but not limited to the 
increase in publicly labelled malware feeds, the 
increase in computing capacity at the same 
time as its price decrease, and the evolution of 
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the field of machine learning, which has 
achieved ground-breaking success in a wide 
range of tasks such as computer vision and 
speech recognition [6]. Depending on the type 
of analysis, conventional machine learning 
methods can be categorized into two main 
categories, static and dynamic approaches. The 
primary difference between them is that static 
methods extract features from the static 
malware analysis, while dynamic methods 
extract features from the dynamic analysis. A 
third category may be considered, known as 
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw 
inputs in diverse fields have outshone neural 
networks. The performance of neural networks 
in the malware domain is mirrored by recent 
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is 
imported and the different columns are 
discussed in the dataset.

• Data cleaning: The required steps are 
taken after examining the dataset so that 
the dataset can be cleaned and all the null 
values and columns of not much signifi-
cance are removed so that they will not be 
of any concern in the training part.

• Data Training and Testing: When the 
information is transparent and ready for 
training, we spilled the information as a 
training dataset and testing dataset in an 
80:20 ratios so that the data was spilled in 

an 80:20 ratios.

In this paper, as we try to achieve the highest 
accuracy, we use two algorithms to see which 
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique 
of machine learning which uses regression and 
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker 
prediction models, usually decision trees. As other 
boosting techniques do it constructs the model in a 
phase-wise fashion and generalizes them by allowing 
an arbitrary differentiable loss function to be 
optimized. [7] For predictive model growth, gradient 
boosting is one of the most effective techniques. 
Gradient Boosting is teaching several models steadily, 
additively and sequentially. With gradients of loss 
function, gradient boosting takes place. What we 
strive to develop and maximize depends on a simple 
understanding of the loss function.

• In Gradient Boosting, three elements area 
feature for loss to be optimized or 
enhanced.

• A poor man who has learned to make 
predictions

• A supplementary model for 
incorporating disadvantaged students to 
minimize losses. [8][9]

It's important that we understand how the 
algorithm of Gradient Boost is implemented 
under the hood.

1. Calculate average of target label- We 
begin with a leaf that is the average value 
of the variable we want to forecast when 
solving regression problems. This leaf will 
be used in the procedural steps as a 
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the 
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the 
intention of predicting the residuals, we 
build a tree. In other words, a prediction of 
the residual value (not the desired label) 
will be found in every leaf. Any residuals 
will end up within the same leaf in the 
event that there are more residuals than 
leaves. We compute their average and 
position that inside the leaf when this 
happens.

4. Using the trees within the ensemble 
predict the target label. - Each sample 
passes through the newly developed tree's 
decision nodes before it reaches a given 
lead.

5. Compute the new residuals- The residuals 
will then be used as explained in step 3 for 
the leaves of the coming next decision 
tree.

6. Repeat steps 3 to 5 until the number of 
iterations matches the number (i.e. the 
number of estimators) defined by the 
hyper parameter.

7. To make a final prediction as to the value 
of the target variable, use all the trees in 
the ensemble once eligible. [10]

In the first step, the final forecast will be equal 
to the mean we determined, plus all the residu-
als predicted by the trees that make up the 
forest multiplied by the learning rate.

Random forests - Random forests or random 
decision forests are an ensemble learning 
method for classification, regression and other 
tasks that function by constructing a multitude 
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average 
prediction (regression) of the individual trees. 
Random forests are often used as "Blackbox" 
models in companies, as they produce rational 
predictions over a large range of data while 
requiring little configuration in packages such 
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps 
and diagrams below the working procedure 
can be explained:

1. From the training set select random K data 
points.

2. Use the selected data points to build 
decision trees associated with it (Subsets).

3. Choose a number N which represents the 
decision trees that you want to build.

4. Repeat Step 1 & 2.

5. Find the predictions for new data points 
for each decision tree and assign the new 
data points to the group that receives the 
majority votes. [12]

7.  Mplementation

We used a dataset that was made available 
from the Chiheb Chebbi - Mastering Machine 
Learning for Penetration Testing book for this 
work. There are approximately 138000 entries 
of legit and malware PE headers and 56 
columns as features in the dataset. In an 80 
percent preparation and 20 percent evaluation, 
the knowledge was divided.

We initially import and read the dataset, once 
that is done, we clean the dataset by dropping 
unnecessary features and null values. After that 
we split the dataset for training and testing. We 
import the necessary packages for making a 
decision tree, gradient boosted classifier and 
random forest classifier. Once done we fit that 
data respectively and predict the results.

Using a combination of these algorithms, after 
training and testing the algorithms, we were 
able to get a highly accurate outcome.

8.  Results

After training and testing both the algorithms, 
we can see that both of them give us a high 
accuracy output. 

9.  Conclusion

The algorithm used for training the data was 
Gradient Boosted classifier and random forest 
classifier which gives us an accuracy of 
98.764% and 99.311% respectively. After 
viewing the confusion matrix of the random 
forest classifier, we could conclude that the 
number of false positives were at 0.5505 and 
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of 
false positives were at 0.768 and false 
negatives were at 2.3099.

Our main objective was to come up with a 
system for machine learning that typically 
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero 
false positive rate. We have been really close to 
our target, but we still have a false positive rate 
that is non-zero. A variety of deterministic 
exemption mechanisms must be added in order 
for this system to become part of a highly 
competitive commercial product. In our view, 
machine learning detection of malware will not 
replace the existing methods of detection used 
by anti-virus vendors, but will come as an 
extension to them. Certain speed and memory 
limitations are placed on any commercial 
anti-virus product, so the most accurate 
algorithms should be used.
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1. Introduction

 Idealistic hackers attacked computers 
in the early days because they were eager to 
prove themselves. Cracking machines, 
however is an industry in today's world. 
Despite recent improvements in software and 
computer hardware security, both in frequency 
and sophistication, attacks on computer 
systems have increased. Regrettably, there are 
major drawbacks to current methods for 
detecting and analyzing unknown code 
samples. The Internet is a critical part of our 

everyday lives today. On the internet, there are 
many services and they are rising daily as well. 
Numerous reports indicate that malware's 
effect is worsening at an alarming pace. 
Although malware diversity is growing, anti- 
virus scanners are unable to fulfil security 
needs, resulting in attacks on millions of hosts. 
Around 65,63,145 different hosts were 
targeted, according to Kaspersky Labs, and in 
2015, 40,00,000 unique malware artefacts 
were found. Juniper Research (2016), in 
particular, projected that by 2019 the cost of 
data breaches will rise to $2.1 trillion globally 
[1]. Current studies show that script-kiddies 

properties of data to be exact about the 
estimates. The major part of this model is that 
it will learn the subquery representations of 
complex queries which will be used to build 
query execution plan using deep reinforcement 
learning. Since the 1970s, information base 
analysts have been dealing with framework 
enhancement and large-scale information-driv-
en applications, which are strongly associated 
with the first two components. Although deep 
learning methodologies are not often used in 
dealing with DBMS challenges, it is natural to 
wonder about the linkages between informa-
tion bases and profound learning. 

First, we have to examine that is the database 
community ready to adapt deep learning for 
DBMS. However, there are fewer examples of 
using machine learning for traditional database 
problems that are less uncertain, like indexing 
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases 
that are probabilistic like crowdsourcing etc. In 
particular, we divide the method in two parts, 
first representation of state of table using deep 
learning and then we will present a way to 
computes plan for the given query using the 
above states together with deep reinforcement 
learning.

Challenge of this approach, to represent data 
and query. First, we develop an approach that 
will incrementally generate result of subque-
ries. Subqueries and a new operation will be 
provided as input that will further predict the 
representation of output. This representation of 
output subquery will be used to derive the 

subquery’s cardinality.

The major part is that we will present a method 
that will use this representation to enumerates 
the query execution plan through deep 
reinforcement learning. Support learning is a 
generally beneficial structure used for dynamic 
in circumstances where a framework is 
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this 
deep learning approach to build an optimal 
query execution plan by modelling it as 
Markov process; in which each decision has its 
dependency on each stage. The figure below 
will illustrate our method. The figure below 
has DB and a query, the model will generate an 
optimal query execution plan by determining 
the series of state transitions 

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will 
select as action using deep reinforcement 
learning, the model moves to a new state at t 
+1, We've now built a bigger subquery. Each 
action is a query operation, and each state 
reflects the intermediate results of the subque-
ry. To build this representation, we used a 
neural network, i.e. a state transition function, 
NNST. NNST is a recursive function that 
generates the subquery representation at time 

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered 
above. The query plan's dynamics are 
bottom-up, with one operation at a time. 
Assume a subquery has been constructed at 
any step t of the query plan, and the state at t is 
represented by an n-dimensional vector ht. 
When the next action applied to the setup, at to 
this current database state leads to the next 
state, ht+1. The mapping, NNST: (ht, at) → 
ht+1 is called the state transition function. This 
state and state transition function are well 
known in applications of deep reinforcement 
learning. For Example, in the game of Chess, 
each possible position is called state and the 
transition of these states from one board 
position to another is well-defined. However, 
in the case of a database, if the query execution 
plan is not sufficiently described, we cannot 
forecast the status of the query. The core of our 
proposed strategy is to identify each state using 
a finite dimensional vector and then learn the 
state transition function using a deep reinforce-
ment learning model. We employ input signals 
and context from observed variables linked 
with database status to drive the training proce-
dure for this network. Throughout this work, 
we will utilise the cardinality of each subquery 
as an observable variable at any point of the 
plan. If we can learn a function, NNobserved, that 
maps this state to projected cardinalities at 
stage t, we should be able to learn a function, 
NNobserved, that maps this state to predicted 
cardinalities at stage t. In the figure below, we 
display both NNST and NNobserved. 

Figure 2: Representation of NNST and 

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences. 
Each state will learn to precisely depict a repre-
sentation using this approach. Once the 
technique has been fully trained, we may 
correct it and use deep reinforcement learning 
to create a suitable action policy, resulting in 
an optimal query execution plan.

2.  Literature Review:

Extensive Learning Deep learning methods, 
commonly known as feedforward neural 
networks, may imprecisely approximate a 
nonlinear function, f [3]. Through a collection 
of learnt parameters spread across multiple 
layers, these models establish a mapping from 
an input x to an output y. The behavior of the 
interior layers is not dictated by the input data 
during training; instead, these models must 
learn how to employ the layers to create the 
proper output. Because the layers have no 

subquery representation. Back propagation is 
used to alter the weights for both functions 
while we train this model.

Before moving forward and start using the 
recursive NNST model, we have to understand 
an additional function, NNinit. NNinit will take 
(x0, a0) as input, where x0 represents a vector 
that holds the properties of the database D 
whereas a0 shows a relational operator. The 
model outputs the cardinality of the query that 
executes the operation encoded in a0 on D. By 
this we can achieve the optimal time on the 
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the 
database, D. For each attribute in the dataset D, 
we use the following features to define x0: the 
min value, the max value and the number of 
distinct values.

4.  Conclusion

In this paper, we provide a model for query 
optimization that uses deep reinforcement 
learning. We employ deep neural networks to 

gradually learn state representations of subque-
ries by storing fundamental information about 
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum 
plans.
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direct interactions with the input training data, 
they are referred to as hidden layers [3]. These 
feedforward networks are crucial in represen-
tation learning. While training to perform a 
goal function, the hidden layers of a neural 
network might indirectly learn a representation 
that can later be employed for other tasks [3]. 
There is a trade-off between retaining as much 
information as possible and understanding 
relevant data qualities. The context of these 
representations might alter depending on the 
network output [3]. Learning through 
Reinforcement learning models can map states 
to appropriate actions with the objective of 
maximizing a larger reward. In contrast to 
supervised learning, the learner is not clearly 
informed which action is ideal; instead, the 
agent must determine the best action through 
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each 
time step, the learner will examine the condi-
tion of the environment, S T, and choose an 
action, at. The policy determines the action to 
be taken. This strategy has the potential to 
reconstruct a variety of behaviors. As a result, 
either behave greedily or strike a balance 
between discovering and utilizing through a 
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state, 
which the model must learn on the fly. The 
model will arrive at a new state, S T + 1, based on 
the action chosen. The environment then 
provides the agent a reward, r T + 1, signifying 
the "worthiness" of the chosen action. The goal 
of the agent is to maximize the overall reward 
[11]. One method is to employ a value-based 
iteration methodology in which the model 
records state-action values, such as QL (s, a). 

These values indicate the state's long-term 
worth by weighting rewards for states that are 
anticipated to follow.

3.  Methodology:

They are two approaches that we proposed to 
achieve the target solution for getting the 
optimal query execution plan. We will be 
supposed input database D and Query Q. we 
will apply deep reinforcement learning to 
derive compact but informative representation 
of queries, then we will try to train these repre-
sentations to predict the next action. In first 
approach we would suppose a feature vector 
containing (Q, D) as input and apply deep 
reinforcement learning to predict an output as 
cardinality values. There is problem with this 
approach that whenever the database and query 
complexity increase the input vector grow 
heavily. Thus, the long-extended vectors 
required large training datasets.

Instead of wasting our resources and never 
getting our required result, we will move 
forward and apply our better different 
approach, a recursive approach: We train a 
model to anticipate a query's cardinality. This 
model is fed a pair of (ht, at) as input, where ht 

is a vector representation of a subquery and at 
is a single relational action on ht. Importantly, 
because ht is the representation that the model 
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The 
NNST function, seen in the image above, builds 
these representations by modifying the weights 
in response to feedback from the NNObserved 
function. This NNObserved function learns to 
predict observed variables by mapping a 
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1. Introduction

 Inquiry advancement is still a big 
concern in the field of data sets. Existing 
DBMS select helpless execution strategies for 
certain queries. To make inquiries more 
competent, we wished to design them 
optimally, utilizing fewer assets. Existing 
DBMSs carry out a vital stage of cardinality 
evaluation by working on assumptions about 
the information (e.g., incorporation standard, 
consistency or freedom suppositions). When 
these concerns are not confirmed, cardinality 
evaluation errors occur, resulting in poor 
arrangement choices. [1]. By using cardinality 
gauges as input, the expenditure model selects 
the least expensive alternative from 
semantically equivalent arrangement options. 

To achieve an efficient inquiry strategy, a 
subset of the valid join orders is counted by the 
question enhancer, for example, using dynamic 
programming.

Theoretically this architecture can obtain the 
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based 
assumptions. But in real world databases the 
assumptions like uniformity and independence 
are wrong. 

In this research work, rather than banking on 
previously used formulas and data driven with 
the help of statistics, to predict the queries 
cardinalities we will train a deep reinforcement 
learning model for better execution plan. We 
will construct a model that can learn data and 

are generating more and more attacks or are 
automated. To date, attacks on commercial and 
government organizations, such as 
ransomware and malware, continue to pose a 
significant threat and challenge. Such attacks 
can come in various ways and sizes. An 
enormous challenge is the ability of the global 
security community to develop and provide 
expertise in cybersecurity. There is widespread 
awareness of the global scarcity of 
cybersecurity and talent. Cybercrimes, such as 
financial fraud, child exploitation online and 
payment fraud, are so common that they 
demand international 24-hour response and 
collaboration between multi-national law 
enforcement agencies [2]. For single users and 
organizations, malware defense of computer 
systems is therefore one of the most critical 
cybersecurity activities, as even a single attack 
may result in compromised data and sufficient 
losses. This research explores how machine 
learning can be used in the field of 
cybersecurity, along with how it can be used to 
detect malware. In order to detect malware, we 
will examine the PE headers of malware and 
non-malware samples or files by creating and 
training a classifier that will determine whether 
the file has been attacked by malware or not 
after training. 

2.  Evolution of Malware

In order to protect networks and computer 
systems from attacks, the diversity, sophistica-
tion and availability of malicious software 
present enormous challenges. Malware is 
continually changing and challenges security 
researchers and scientists to strengthen their 
cyber defenses to keep pace. Owing to the use 
of polymorphic and metamorphic methods 

used to avoid detection and conceal its true 
intent, the prevalence of malware has increased. 
To mutate the code while keeping the original 
functionality intact, polymorphic malware uses 
a polymorphic engine. The two most common 
ways to conceal code are packaging and 
encryption [3]. Through one or more layers of 
compression, packers cover a program's real 
code. Then the unpacking routines restore the 
original code and execute it in memory at 
runtime. To make it harder for researchers to 
analyze the software, crypters encrypt and 
manipulate malware or part of its code. A 
crypter includes a stub that is used for 
malicious code encryption and decryption. 
Whenever it's propagated, metamorphic 
malware rewrites the code to an equivalent. 
Multiple transformation techniques, including 
but not limited to, register renaming, code 
permutation, code expansion, code shrinking 
and insertion of garbage code, can be used by 
malware authors. The combination of the 
above techniques resulted in increasingly 
increasing quantities of malware, making 
time-consuming, expensive and more compli-
cated forensic investigations of malware cases. 
There are some issues with conventional 
antivirus solutions that rely on signature-based 
and heuristic/behavioral methods. A signature 
is a unique feature or collection of features that 
like a fingerprint, uniquely differentiates an 
executable. Signature-based approaches are 
unable to identify unknown types of malware, 
however. Security researchers suggested 
behavior-based detection to overcome these 
problems, which analyses the features and 
behavior of the file to decide whether it is 
indeed malware, although it may take some 
time to search and evaluate. Researchers have 

begun implementing machine learning to 
supplement their solutions in order to solve 
the previous drawbacks of conventional 
antivirus engines and keep pace with new 
attacks and variants, as machine learning is 
well suited for processing large quantities of 
data. [4]

3.  Malware Detection

In such a way, hackers present malware aimed 
at persuading people to install it. As it seems 
legal, users also do not know what the program 
is. Usually, we install it thinking that it is 
secure, but on the contrary, it's a major threat. 
That's how the malware gets into your system. 
When on the screen, it disperses and hides in 
numerous files, making it very difficult to 
identify. In order to access and record personal 
or useful information, it may connect directly 
to the operating system and start encrypting it 
[5]. Detection of malware is defined as the 
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient 
and reliable. Some of the general strategies for 
malware detection are:

      i. Signature-based

      ii. Heuristic Analysis

      iii. Anti-malware Software

      iv. Sandbox

Several classifiers have been implemented, 
such as linear classifiers (logistic regression, 
naive Bayes classifier), support for vector 
machinery, neural networks, random forests, 
etc.

Through both static and dynamic analysis, 
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4.  Need for Machine Learning in 
Malware Detection

Machine learning has created a drastic change 
in many industries, including cybersecurity, 
over the last decade. Among cybersecurity 
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect 
modern malware attacks and boost scanning 
engines. Proof of this belief is the number of 
studies on malware detection strategies that 
exploit machine learning reported in the last 
few years. The number of research papers 
released in 2018 is 7720, a 95 percent rise over 
2015 and a 476 percent increase over 2010, 
according to Google Scholar,1. This rise in the 
number of studies is the product of several 
factors, including but not limited to the 
increase in publicly labelled malware feeds, the 
increase in computing capacity at the same 
time as its price decrease, and the evolution of 

the field of machine learning, which has 
achieved ground-breaking success in a wide 
range of tasks such as computer vision and 
speech recognition [6]. Depending on the type 
of analysis, conventional machine learning 
methods can be categorized into two main 
categories, static and dynamic approaches. The 
primary difference between them is that static 
methods extract features from the static 
malware analysis, while dynamic methods 
extract features from the dynamic analysis. A 
third category may be considered, known as 
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw 
inputs in diverse fields have outshone neural 
networks. The performance of neural networks 
in the malware domain is mirrored by recent 
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is 
imported and the different columns are 
discussed in the dataset.

• Data cleaning: The required steps are 
taken after examining the dataset so that 
the dataset can be cleaned and all the null 
values and columns of not much signifi-
cance are removed so that they will not be 
of any concern in the training part.

• Data Training and Testing: When the 
information is transparent and ready for 
training, we spilled the information as a 
training dataset and testing dataset in an 
80:20 ratios so that the data was spilled in 

an 80:20 ratios.

In this paper, as we try to achieve the highest 
accuracy, we use two algorithms to see which 
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique 
of machine learning which uses regression and 
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker 
prediction models, usually decision trees. As other 
boosting techniques do it constructs the model in a 
phase-wise fashion and generalizes them by allowing 
an arbitrary differentiable loss function to be 
optimized. [7] For predictive model growth, gradient 
boosting is one of the most effective techniques. 
Gradient Boosting is teaching several models steadily, 
additively and sequentially. With gradients of loss 
function, gradient boosting takes place. What we 
strive to develop and maximize depends on a simple 
understanding of the loss function.

• In Gradient Boosting, three elements area 
feature for loss to be optimized or 
enhanced.

• A poor man who has learned to make 
predictions

• A supplementary model for 
incorporating disadvantaged students to 
minimize losses. [8][9]

It's important that we understand how the 
algorithm of Gradient Boost is implemented 
under the hood.
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1. Calculate average of target label- We 
begin with a leaf that is the average value 
of the variable we want to forecast when 
solving regression problems. This leaf will 
be used in the procedural steps as a 
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the 
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the 
intention of predicting the residuals, we 
build a tree. In other words, a prediction of 
the residual value (not the desired label) 
will be found in every leaf. Any residuals 
will end up within the same leaf in the 
event that there are more residuals than 
leaves. We compute their average and 
position that inside the leaf when this 
happens.

4. Using the trees within the ensemble 
predict the target label. - Each sample 
passes through the newly developed tree's 
decision nodes before it reaches a given 
lead.

5. Compute the new residuals- The residuals 
will then be used as explained in step 3 for 
the leaves of the coming next decision 
tree.

6. Repeat steps 3 to 5 until the number of 
iterations matches the number (i.e. the 
number of estimators) defined by the 
hyper parameter.

7. To make a final prediction as to the value 
of the target variable, use all the trees in 
the ensemble once eligible. [10]

In the first step, the final forecast will be equal 
to the mean we determined, plus all the residu-
als predicted by the trees that make up the 
forest multiplied by the learning rate.

Random forests - Random forests or random 
decision forests are an ensemble learning 
method for classification, regression and other 
tasks that function by constructing a multitude 
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average 
prediction (regression) of the individual trees. 
Random forests are often used as "Blackbox" 
models in companies, as they produce rational 
predictions over a large range of data while 
requiring little configuration in packages such 
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps 
and diagrams below the working procedure 
can be explained:

1. From the training set select random K data 
points.

2. Use the selected data points to build 
decision trees associated with it (Subsets).

3. Choose a number N which represents the 
decision trees that you want to build.

4. Repeat Step 1 & 2.

5. Find the predictions for new data points 
for each decision tree and assign the new 
data points to the group that receives the 
majority votes. [12]

7.  Mplementation

We used a dataset that was made available 
from the Chiheb Chebbi - Mastering Machine 
Learning for Penetration Testing book for this 
work. There are approximately 138000 entries 
of legit and malware PE headers and 56 
columns as features in the dataset. In an 80 
percent preparation and 20 percent evaluation, 
the knowledge was divided.

We initially import and read the dataset, once 
that is done, we clean the dataset by dropping 
unnecessary features and null values. After that 
we split the dataset for training and testing. We 
import the necessary packages for making a 
decision tree, gradient boosted classifier and 
random forest classifier. Once done we fit that 
data respectively and predict the results.

Using a combination of these algorithms, after 
training and testing the algorithms, we were 
able to get a highly accurate outcome.

8.  Results

After training and testing both the algorithms, 
we can see that both of them give us a high 
accuracy output. 

9.  Conclusion

The algorithm used for training the data was 
Gradient Boosted classifier and random forest 
classifier which gives us an accuracy of 
98.764% and 99.311% respectively. After 
viewing the confusion matrix of the random 
forest classifier, we could conclude that the 
number of false positives were at 0.5505 and 
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of 
false positives were at 0.768 and false 
negatives were at 2.3099.

Our main objective was to come up with a 
system for machine learning that typically 
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero 
false positive rate. We have been really close to 
our target, but we still have a false positive rate 
that is non-zero. A variety of deterministic 
exemption mechanisms must be added in order 
for this system to become part of a highly 
competitive commercial product. In our view, 
machine learning detection of malware will not 
replace the existing methods of detection used 
by anti-virus vendors, but will come as an 
extension to them. Certain speed and memory 
limitations are placed on any commercial 
anti-virus product, so the most accurate 
algorithms should be used.
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1. Introduction

 Idealistic hackers attacked computers 
in the early days because they were eager to 
prove themselves. Cracking machines, 
however is an industry in today's world. 
Despite recent improvements in software and 
computer hardware security, both in frequency 
and sophistication, attacks on computer 
systems have increased. Regrettably, there are 
major drawbacks to current methods for 
detecting and analyzing unknown code 
samples. The Internet is a critical part of our 

everyday lives today. On the internet, there are 
many services and they are rising daily as well. 
Numerous reports indicate that malware's 
effect is worsening at an alarming pace. 
Although malware diversity is growing, anti- 
virus scanners are unable to fulfil security 
needs, resulting in attacks on millions of hosts. 
Around 65,63,145 different hosts were 
targeted, according to Kaspersky Labs, and in 
2015, 40,00,000 unique malware artefacts 
were found. Juniper Research (2016), in 
particular, projected that by 2019 the cost of 
data breaches will rise to $2.1 trillion globally 
[1]. Current studies show that script-kiddies 

properties of data to be exact about the 
estimates. The major part of this model is that 
it will learn the subquery representations of 
complex queries which will be used to build 
query execution plan using deep reinforcement 
learning. Since the 1970s, information base 
analysts have been dealing with framework 
enhancement and large-scale information-driv-
en applications, which are strongly associated 
with the first two components. Although deep 
learning methodologies are not often used in 
dealing with DBMS challenges, it is natural to 
wonder about the linkages between informa-
tion bases and profound learning. 

First, we have to examine that is the database 
community ready to adapt deep learning for 
DBMS. However, there are fewer examples of 
using machine learning for traditional database 
problems that are less uncertain, like indexing 
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases 
that are probabilistic like crowdsourcing etc. In 
particular, we divide the method in two parts, 
first representation of state of table using deep 
learning and then we will present a way to 
computes plan for the given query using the 
above states together with deep reinforcement 
learning.

Challenge of this approach, to represent data 
and query. First, we develop an approach that 
will incrementally generate result of subque-
ries. Subqueries and a new operation will be 
provided as input that will further predict the 
representation of output. This representation of 
output subquery will be used to derive the 

subquery’s cardinality.

The major part is that we will present a method 
that will use this representation to enumerates 
the query execution plan through deep 
reinforcement learning. Support learning is a 
generally beneficial structure used for dynamic 
in circumstances where a framework is 
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this 
deep learning approach to build an optimal 
query execution plan by modelling it as 
Markov process; in which each decision has its 
dependency on each stage. The figure below 
will illustrate our method. The figure below 
has DB and a query, the model will generate an 
optimal query execution plan by determining 
the series of state transitions 

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will 
select as action using deep reinforcement 
learning, the model moves to a new state at t 
+1, We've now built a bigger subquery. Each 
action is a query operation, and each state 
reflects the intermediate results of the subque-
ry. To build this representation, we used a 
neural network, i.e. a state transition function, 
NNST. NNST is a recursive function that 
generates the subquery representation at time 

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered 
above. The query plan's dynamics are 
bottom-up, with one operation at a time. 
Assume a subquery has been constructed at 
any step t of the query plan, and the state at t is 
represented by an n-dimensional vector ht. 
When the next action applied to the setup, at to 
this current database state leads to the next 
state, ht+1. The mapping, NNST: (ht, at) → 
ht+1 is called the state transition function. This 
state and state transition function are well 
known in applications of deep reinforcement 
learning. For Example, in the game of Chess, 
each possible position is called state and the 
transition of these states from one board 
position to another is well-defined. However, 
in the case of a database, if the query execution 
plan is not sufficiently described, we cannot 
forecast the status of the query. The core of our 
proposed strategy is to identify each state using 
a finite dimensional vector and then learn the 
state transition function using a deep reinforce-
ment learning model. We employ input signals 
and context from observed variables linked 
with database status to drive the training proce-
dure for this network. Throughout this work, 
we will utilise the cardinality of each subquery 
as an observable variable at any point of the 
plan. If we can learn a function, NNobserved, that 
maps this state to projected cardinalities at 
stage t, we should be able to learn a function, 
NNobserved, that maps this state to predicted 
cardinalities at stage t. In the figure below, we 
display both NNST and NNobserved. 

Figure 2: Representation of NNST and 

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences. 
Each state will learn to precisely depict a repre-
sentation using this approach. Once the 
technique has been fully trained, we may 
correct it and use deep reinforcement learning 
to create a suitable action policy, resulting in 
an optimal query execution plan.

2.  Literature Review:

Extensive Learning Deep learning methods, 
commonly known as feedforward neural 
networks, may imprecisely approximate a 
nonlinear function, f [3]. Through a collection 
of learnt parameters spread across multiple 
layers, these models establish a mapping from 
an input x to an output y. The behavior of the 
interior layers is not dictated by the input data 
during training; instead, these models must 
learn how to employ the layers to create the 
proper output. Because the layers have no 

subquery representation. Back propagation is 
used to alter the weights for both functions 
while we train this model.

Before moving forward and start using the 
recursive NNST model, we have to understand 
an additional function, NNinit. NNinit will take 
(x0, a0) as input, where x0 represents a vector 
that holds the properties of the database D 
whereas a0 shows a relational operator. The 
model outputs the cardinality of the query that 
executes the operation encoded in a0 on D. By 
this we can achieve the optimal time on the 
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the 
database, D. For each attribute in the dataset D, 
we use the following features to define x0: the 
min value, the max value and the number of 
distinct values.

4.  Conclusion

In this paper, we provide a model for query 
optimization that uses deep reinforcement 
learning. We employ deep neural networks to 

gradually learn state representations of subque-
ries by storing fundamental information about 
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum 
plans.
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direct interactions with the input training data, 
they are referred to as hidden layers [3]. These 
feedforward networks are crucial in represen-
tation learning. While training to perform a 
goal function, the hidden layers of a neural 
network might indirectly learn a representation 
that can later be employed for other tasks [3]. 
There is a trade-off between retaining as much 
information as possible and understanding 
relevant data qualities. The context of these 
representations might alter depending on the 
network output [3]. Learning through 
Reinforcement learning models can map states 
to appropriate actions with the objective of 
maximizing a larger reward. In contrast to 
supervised learning, the learner is not clearly 
informed which action is ideal; instead, the 
agent must determine the best action through 
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each 
time step, the learner will examine the condi-
tion of the environment, S T, and choose an 
action, at. The policy determines the action to 
be taken. This strategy has the potential to 
reconstruct a variety of behaviors. As a result, 
either behave greedily or strike a balance 
between discovering and utilizing through a 
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state, 
which the model must learn on the fly. The 
model will arrive at a new state, S T + 1, based on 
the action chosen. The environment then 
provides the agent a reward, r T + 1, signifying 
the "worthiness" of the chosen action. The goal 
of the agent is to maximize the overall reward 
[11]. One method is to employ a value-based 
iteration methodology in which the model 
records state-action values, such as QL (s, a). 

These values indicate the state's long-term 
worth by weighting rewards for states that are 
anticipated to follow.

3.  Methodology:

They are two approaches that we proposed to 
achieve the target solution for getting the 
optimal query execution plan. We will be 
supposed input database D and Query Q. we 
will apply deep reinforcement learning to 
derive compact but informative representation 
of queries, then we will try to train these repre-
sentations to predict the next action. In first 
approach we would suppose a feature vector 
containing (Q, D) as input and apply deep 
reinforcement learning to predict an output as 
cardinality values. There is problem with this 
approach that whenever the database and query 
complexity increase the input vector grow 
heavily. Thus, the long-extended vectors 
required large training datasets.

Instead of wasting our resources and never 
getting our required result, we will move 
forward and apply our better different 
approach, a recursive approach: We train a 
model to anticipate a query's cardinality. This 
model is fed a pair of (ht, at) as input, where ht 

is a vector representation of a subquery and at 
is a single relational action on ht. Importantly, 
because ht is the representation that the model 
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The 
NNST function, seen in the image above, builds 
these representations by modifying the weights 
in response to feedback from the NNObserved 
function. This NNObserved function learns to 
predict observed variables by mapping a 
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1. Introduction

 Inquiry advancement is still a big 
concern in the field of data sets. Existing 
DBMS select helpless execution strategies for 
certain queries. To make inquiries more 
competent, we wished to design them 
optimally, utilizing fewer assets. Existing 
DBMSs carry out a vital stage of cardinality 
evaluation by working on assumptions about 
the information (e.g., incorporation standard, 
consistency or freedom suppositions). When 
these concerns are not confirmed, cardinality 
evaluation errors occur, resulting in poor 
arrangement choices. [1]. By using cardinality 
gauges as input, the expenditure model selects 
the least expensive alternative from 
semantically equivalent arrangement options. 

To achieve an efficient inquiry strategy, a 
subset of the valid join orders is counted by the 
question enhancer, for example, using dynamic 
programming.

Theoretically this architecture can obtain the 
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based 
assumptions. But in real world databases the 
assumptions like uniformity and independence 
are wrong. 

In this research work, rather than banking on 
previously used formulas and data driven with 
the help of statistics, to predict the queries 
cardinalities we will train a deep reinforcement 
learning model for better execution plan. We 
will construct a model that can learn data and 

are generating more and more attacks or are 
automated. To date, attacks on commercial and 
government organizations, such as 
ransomware and malware, continue to pose a 
significant threat and challenge. Such attacks 
can come in various ways and sizes. An 
enormous challenge is the ability of the global 
security community to develop and provide 
expertise in cybersecurity. There is widespread 
awareness of the global scarcity of 
cybersecurity and talent. Cybercrimes, such as 
financial fraud, child exploitation online and 
payment fraud, are so common that they 
demand international 24-hour response and 
collaboration between multi-national law 
enforcement agencies [2]. For single users and 
organizations, malware defense of computer 
systems is therefore one of the most critical 
cybersecurity activities, as even a single attack 
may result in compromised data and sufficient 
losses. This research explores how machine 
learning can be used in the field of 
cybersecurity, along with how it can be used to 
detect malware. In order to detect malware, we 
will examine the PE headers of malware and 
non-malware samples or files by creating and 
training a classifier that will determine whether 
the file has been attacked by malware or not 
after training. 

2.  Evolution of Malware

In order to protect networks and computer 
systems from attacks, the diversity, sophistica-
tion and availability of malicious software 
present enormous challenges. Malware is 
continually changing and challenges security 
researchers and scientists to strengthen their 
cyber defenses to keep pace. Owing to the use 
of polymorphic and metamorphic methods 

used to avoid detection and conceal its true 
intent, the prevalence of malware has increased. 
To mutate the code while keeping the original 
functionality intact, polymorphic malware uses 
a polymorphic engine. The two most common 
ways to conceal code are packaging and 
encryption [3]. Through one or more layers of 
compression, packers cover a program's real 
code. Then the unpacking routines restore the 
original code and execute it in memory at 
runtime. To make it harder for researchers to 
analyze the software, crypters encrypt and 
manipulate malware or part of its code. A 
crypter includes a stub that is used for 
malicious code encryption and decryption. 
Whenever it's propagated, metamorphic 
malware rewrites the code to an equivalent. 
Multiple transformation techniques, including 
but not limited to, register renaming, code 
permutation, code expansion, code shrinking 
and insertion of garbage code, can be used by 
malware authors. The combination of the 
above techniques resulted in increasingly 
increasing quantities of malware, making 
time-consuming, expensive and more compli-
cated forensic investigations of malware cases. 
There are some issues with conventional 
antivirus solutions that rely on signature-based 
and heuristic/behavioral methods. A signature 
is a unique feature or collection of features that 
like a fingerprint, uniquely differentiates an 
executable. Signature-based approaches are 
unable to identify unknown types of malware, 
however. Security researchers suggested 
behavior-based detection to overcome these 
problems, which analyses the features and 
behavior of the file to decide whether it is 
indeed malware, although it may take some 
time to search and evaluate. Researchers have 

begun implementing machine learning to 
supplement their solutions in order to solve 
the previous drawbacks of conventional 
antivirus engines and keep pace with new 
attacks and variants, as machine learning is 
well suited for processing large quantities of 
data. [4]

3.  Malware Detection

In such a way, hackers present malware aimed 
at persuading people to install it. As it seems 
legal, users also do not know what the program 
is. Usually, we install it thinking that it is 
secure, but on the contrary, it's a major threat. 
That's how the malware gets into your system. 
When on the screen, it disperses and hides in 
numerous files, making it very difficult to 
identify. In order to access and record personal 
or useful information, it may connect directly 
to the operating system and start encrypting it 
[5]. Detection of malware is defined as the 
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient 
and reliable. Some of the general strategies for 
malware detection are:

      i. Signature-based

      ii. Heuristic Analysis

      iii. Anti-malware Software

      iv. Sandbox

Several classifiers have been implemented, 
such as linear classifiers (logistic regression, 
naive Bayes classifier), support for vector 
machinery, neural networks, random forests, 
etc.

Through both static and dynamic analysis, 
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4.  Need for Machine Learning in 
Malware Detection

Machine learning has created a drastic change 
in many industries, including cybersecurity, 
over the last decade. Among cybersecurity 
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect 
modern malware attacks and boost scanning 
engines. Proof of this belief is the number of 
studies on malware detection strategies that 
exploit machine learning reported in the last 
few years. The number of research papers 
released in 2018 is 7720, a 95 percent rise over 
2015 and a 476 percent increase over 2010, 
according to Google Scholar,1. This rise in the 
number of studies is the product of several 
factors, including but not limited to the 
increase in publicly labelled malware feeds, the 
increase in computing capacity at the same 
time as its price decrease, and the evolution of 

the field of machine learning, which has 
achieved ground-breaking success in a wide 
range of tasks such as computer vision and 
speech recognition [6]. Depending on the type 
of analysis, conventional machine learning 
methods can be categorized into two main 
categories, static and dynamic approaches. The 
primary difference between them is that static 
methods extract features from the static 
malware analysis, while dynamic methods 
extract features from the dynamic analysis. A 
third category may be considered, known as 
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw 
inputs in diverse fields have outshone neural 
networks. The performance of neural networks 
in the malware domain is mirrored by recent 
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is 
imported and the different columns are 
discussed in the dataset.

• Data cleaning: The required steps are 
taken after examining the dataset so that 
the dataset can be cleaned and all the null 
values and columns of not much signifi-
cance are removed so that they will not be 
of any concern in the training part.

• Data Training and Testing: When the 
information is transparent and ready for 
training, we spilled the information as a 
training dataset and testing dataset in an 
80:20 ratios so that the data was spilled in 

an 80:20 ratios.

In this paper, as we try to achieve the highest 
accuracy, we use two algorithms to see which 
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique 
of machine learning which uses regression and 
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker 
prediction models, usually decision trees. As other 
boosting techniques do it constructs the model in a 
phase-wise fashion and generalizes them by allowing 
an arbitrary differentiable loss function to be 
optimized. [7] For predictive model growth, gradient 
boosting is one of the most effective techniques. 
Gradient Boosting is teaching several models steadily, 
additively and sequentially. With gradients of loss 
function, gradient boosting takes place. What we 
strive to develop and maximize depends on a simple 
understanding of the loss function.

• In Gradient Boosting, three elements area 
feature for loss to be optimized or 
enhanced.

• A poor man who has learned to make 
predictions

• A supplementary model for 
incorporating disadvantaged students to 
minimize losses. [8][9]

It's important that we understand how the 
algorithm of Gradient Boost is implemented 
under the hood.

1. Calculate average of target label- We 
begin with a leaf that is the average value 
of the variable we want to forecast when 
solving regression problems. This leaf will 
be used in the procedural steps as a 
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the 
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the 
intention of predicting the residuals, we 
build a tree. In other words, a prediction of 
the residual value (not the desired label) 
will be found in every leaf. Any residuals 
will end up within the same leaf in the 
event that there are more residuals than 
leaves. We compute their average and 
position that inside the leaf when this 
happens.

4. Using the trees within the ensemble 
predict the target label. - Each sample 
passes through the newly developed tree's 
decision nodes before it reaches a given 
lead.

5. Compute the new residuals- The residuals 
will then be used as explained in step 3 for 
the leaves of the coming next decision 
tree.

6. Repeat steps 3 to 5 until the number of 
iterations matches the number (i.e. the 
number of estimators) defined by the 
hyper parameter.

7. To make a final prediction as to the value 
of the target variable, use all the trees in 
the ensemble once eligible. [10]

In the first step, the final forecast will be equal 
to the mean we determined, plus all the residu-
als predicted by the trees that make up the 
forest multiplied by the learning rate.

Random forests - Random forests or random 
decision forests are an ensemble learning 
method for classification, regression and other 
tasks that function by constructing a multitude 
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average 
prediction (regression) of the individual trees. 
Random forests are often used as "Blackbox" 
models in companies, as they produce rational 
predictions over a large range of data while 
requiring little configuration in packages such 
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps 
and diagrams below the working procedure 
can be explained:

1. From the training set select random K data 
points.

2. Use the selected data points to build 
decision trees associated with it (Subsets).

3. Choose a number N which represents the 
decision trees that you want to build.
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4. Repeat Step 1 & 2.

5. Find the predictions for new data points 
for each decision tree and assign the new 
data points to the group that receives the 
majority votes. [12]

7.  Mplementation

We used a dataset that was made available 
from the Chiheb Chebbi - Mastering Machine 
Learning for Penetration Testing book for this 
work. There are approximately 138000 entries 
of legit and malware PE headers and 56 
columns as features in the dataset. In an 80 
percent preparation and 20 percent evaluation, 
the knowledge was divided.

We initially import and read the dataset, once 
that is done, we clean the dataset by dropping 
unnecessary features and null values. After that 
we split the dataset for training and testing. We 
import the necessary packages for making a 
decision tree, gradient boosted classifier and 
random forest classifier. Once done we fit that 
data respectively and predict the results.

Using a combination of these algorithms, after 
training and testing the algorithms, we were 
able to get a highly accurate outcome.

8.  Results

After training and testing both the algorithms, 
we can see that both of them give us a high 
accuracy output. 

9.  Conclusion

The algorithm used for training the data was 
Gradient Boosted classifier and random forest 
classifier which gives us an accuracy of 
98.764% and 99.311% respectively. After 
viewing the confusion matrix of the random 
forest classifier, we could conclude that the 
number of false positives were at 0.5505 and 
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of 
false positives were at 0.768 and false 
negatives were at 2.3099.

Our main objective was to come up with a 
system for machine learning that typically 
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero 
false positive rate. We have been really close to 
our target, but we still have a false positive rate 
that is non-zero. A variety of deterministic 
exemption mechanisms must be added in order 
for this system to become part of a highly 
competitive commercial product. In our view, 
machine learning detection of malware will not 
replace the existing methods of detection used 
by anti-virus vendors, but will come as an 
extension to them. Certain speed and memory 
limitations are placed on any commercial 
anti-virus product, so the most accurate 
algorithms should be used.

10.  References

[1] Ahmadi etal., 2016. M. Ahmadi, D. 
Ulyanov, S. Semenov, M. Trofimov, G. 
Giacinto - Novel feature extraction, 
selection and fusion for effective 
malware family classification

[2] AL-Hawawreh etal., 2018 M. AL-Ha-
wawreh, N. Moustafa, E. Sitnikova - 
Identification of malicious activities in 
industrial internet of things based on 
deep learning models

[3] Athiwaratkun etal., 2017 B. Athiwarat-
kun, J.W. Stokes - Malware classifica-
tion with lstm and gru language models 
and a character- level cnn

[4] D. Bekerman, B. Shapira, L. Rokach, A. 
Bar - Unknown malware detection using 
network traffic classification 09 2015

[5] B. Biggio, F. Roli - Wild patterns: ten 
years after the rise of adversarial 
machine learning

[6] I. Santos, Y. K. Penya, J. Devesa, and P. 
G. Garcia, “N-grams- based file signa-
tures for malware detection,” 2009.

[7] K. Rieck, T. Holz, C. Willems, P. D¨us-
sel, and P. Laskov, “Learning and 
classification of malware behavior,” in 
DIMVA ’08: Proceedings of the 5th 
international conference on Detection of 
Intrusions and Malware, and Vulnerabil-
ity Assessment. Berlin, Heidelberg: 
Springer-Verlag, 2008, pp. 108–125.

[8] E. Konstantinou, “Metamorphic virus: 
Analysis and detection,” 2008, Techni-
cal Report RHUL-MA-2008-2, Search 
Security Award M.Sc. thesis, 93 pages.

[9] Gibert etal., 2019 D. Gibert, C. Mateu, J. 
Planes - A hierarchical convolutional 
neural network for malware classifica-
tion. The International Joint Conference 
on Neural Networks 2019, IEEE (2019), 
pp. 1-8

[10] X. Guo, Y. Yin, C. Dong, G. Yang, G. 
Zhou - On the class imbalance problem 
2008 Fourth International Conference 
on Natural Computation, vol. 4 (Oct 
2008), pp. 192-201

[11] Hall, 1999 M.A. Hall - Correla-
tion-based Feature Selection for 
Machine Learning Ph.D. thesis The 
University of Waikato (1999)

[12] W. Han, J. Xue, Y. Wang, L. Huang, Z. 
Kong, L. MaoMaldae: - Detecting and 
explaining malware based on correlation 
and fusion of static and dynamic charac-
teristics Comput. Secur., 83 (2019), pp. 
208-233

[13] W. Han, J. Xue, Y. Wang, Z. Liu, Z. 
KongMalinsight: a systematic profil-
ing-based malware detection framework 
J. Netw. Comput. Appl., 125 (2019), pp. 
236-250

[14] X. Hu, K.G. Shin, S. Bhatkar, K. Griffin 
Mutantx-s: scalable malware clustering 
based on static features Presented as Part 
of the 2013 USENIX Annual Technical 
Conference (USENIX ATC 13), 
USENIX, San Jose, CA (2013), pp. 
187-198

[15] Huang and Stokes, 2016 W. Huang, J.W. 
StokesMtnet: a multi- task neural 
network for dynamic malware classifi-
cation Caballero J., Zurutuza U., Rodr-
guez R.J. (Eds.), Detection of Intrusions 
and Malware, and Vulnerability Assess-
ment, Springer International Publishing, 
Cham (2016), pp. 399-418

[16] X. Zhang, J. Zhao, Y. LeCun Charac-
ter-level convolutional networks for text 
classification Proceedings of the 28th 

International Conference on Neural 
Information Processing Systems, ume 1, 
MIT Press, Cambridge, MA, USA 
(2015), pp.

[17] D. Uppal, R. Sinha, V. Mehra, V. Jain - 
Malware detection and classification 
based on extraction of api sequences 
2014 International Conference on 
Advances in Computing, Communica-
tions and Informatics (ICACCI) (Sep. 
2014)

[18] A. Souri, R. Hosseini - A state-of-the-art 
survey of malware detection approaches 
using data mining techniques 
Human-centric Computing and Informa-
tion Sciences, 8 (1) (Jan 2018),

[19] I E. Raff, J. Barker, J. Sylvester, R. Bran-
don, B. Catanzaro, C.K. Nicholas - 
Malware detection by eating a whole 
EXE - The Workshops of the the 
Thirty-Second AAAI Conference on 
Artificial Intelligence, New Orleans, 
Louisiana, USA, February 2- 7, 2018 
(2018)

[20] A. Moser, C. Kruegel, E. Kirda - Limits 
of static analysis for malware detection 
Twenty-Third Annual Computer Securi-
ty Applications Conference (ACSAC 
2007) (Dec 2007), pp. 421-43

1. Introduction

 Idealistic hackers attacked computers 
in the early days because they were eager to 
prove themselves. Cracking machines, 
however is an industry in today's world. 
Despite recent improvements in software and 
computer hardware security, both in frequency 
and sophistication, attacks on computer 
systems have increased. Regrettably, there are 
major drawbacks to current methods for 
detecting and analyzing unknown code 
samples. The Internet is a critical part of our 

everyday lives today. On the internet, there are 
many services and they are rising daily as well. 
Numerous reports indicate that malware's 
effect is worsening at an alarming pace. 
Although malware diversity is growing, anti- 
virus scanners are unable to fulfil security 
needs, resulting in attacks on millions of hosts. 
Around 65,63,145 different hosts were 
targeted, according to Kaspersky Labs, and in 
2015, 40,00,000 unique malware artefacts 
were found. Juniper Research (2016), in 
particular, projected that by 2019 the cost of 
data breaches will rise to $2.1 trillion globally 
[1]. Current studies show that script-kiddies 

properties of data to be exact about the 
estimates. The major part of this model is that 
it will learn the subquery representations of 
complex queries which will be used to build 
query execution plan using deep reinforcement 
learning. Since the 1970s, information base 
analysts have been dealing with framework 
enhancement and large-scale information-driv-
en applications, which are strongly associated 
with the first two components. Although deep 
learning methodologies are not often used in 
dealing with DBMS challenges, it is natural to 
wonder about the linkages between informa-
tion bases and profound learning. 

First, we have to examine that is the database 
community ready to adapt deep learning for 
DBMS. However, there are fewer examples of 
using machine learning for traditional database 
problems that are less uncertain, like indexing 
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases 
that are probabilistic like crowdsourcing etc. In 
particular, we divide the method in two parts, 
first representation of state of table using deep 
learning and then we will present a way to 
computes plan for the given query using the 
above states together with deep reinforcement 
learning.

Challenge of this approach, to represent data 
and query. First, we develop an approach that 
will incrementally generate result of subque-
ries. Subqueries and a new operation will be 
provided as input that will further predict the 
representation of output. This representation of 
output subquery will be used to derive the 

subquery’s cardinality.

The major part is that we will present a method 
that will use this representation to enumerates 
the query execution plan through deep 
reinforcement learning. Support learning is a 
generally beneficial structure used for dynamic 
in circumstances where a framework is 
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this 
deep learning approach to build an optimal 
query execution plan by modelling it as 
Markov process; in which each decision has its 
dependency on each stage. The figure below 
will illustrate our method. The figure below 
has DB and a query, the model will generate an 
optimal query execution plan by determining 
the series of state transitions 

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will 
select as action using deep reinforcement 
learning, the model moves to a new state at t 
+1, We've now built a bigger subquery. Each 
action is a query operation, and each state 
reflects the intermediate results of the subque-
ry. To build this representation, we used a 
neural network, i.e. a state transition function, 
NNST. NNST is a recursive function that 
generates the subquery representation at time 

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered 
above. The query plan's dynamics are 
bottom-up, with one operation at a time. 
Assume a subquery has been constructed at 
any step t of the query plan, and the state at t is 
represented by an n-dimensional vector ht. 
When the next action applied to the setup, at to 
this current database state leads to the next 
state, ht+1. The mapping, NNST: (ht, at) → 
ht+1 is called the state transition function. This 
state and state transition function are well 
known in applications of deep reinforcement 
learning. For Example, in the game of Chess, 
each possible position is called state and the 
transition of these states from one board 
position to another is well-defined. However, 
in the case of a database, if the query execution 
plan is not sufficiently described, we cannot 
forecast the status of the query. The core of our 
proposed strategy is to identify each state using 
a finite dimensional vector and then learn the 
state transition function using a deep reinforce-
ment learning model. We employ input signals 
and context from observed variables linked 
with database status to drive the training proce-
dure for this network. Throughout this work, 
we will utilise the cardinality of each subquery 
as an observable variable at any point of the 
plan. If we can learn a function, NNobserved, that 
maps this state to projected cardinalities at 
stage t, we should be able to learn a function, 
NNobserved, that maps this state to predicted 
cardinalities at stage t. In the figure below, we 
display both NNST and NNobserved. 

Figure 2: Representation of NNST and 

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences. 
Each state will learn to precisely depict a repre-
sentation using this approach. Once the 
technique has been fully trained, we may 
correct it and use deep reinforcement learning 
to create a suitable action policy, resulting in 
an optimal query execution plan.

2.  Literature Review:

Extensive Learning Deep learning methods, 
commonly known as feedforward neural 
networks, may imprecisely approximate a 
nonlinear function, f [3]. Through a collection 
of learnt parameters spread across multiple 
layers, these models establish a mapping from 
an input x to an output y. The behavior of the 
interior layers is not dictated by the input data 
during training; instead, these models must 
learn how to employ the layers to create the 
proper output. Because the layers have no 

subquery representation. Back propagation is 
used to alter the weights for both functions 
while we train this model.

Before moving forward and start using the 
recursive NNST model, we have to understand 
an additional function, NNinit. NNinit will take 
(x0, a0) as input, where x0 represents a vector 
that holds the properties of the database D 
whereas a0 shows a relational operator. The 
model outputs the cardinality of the query that 
executes the operation encoded in a0 on D. By 
this we can achieve the optimal time on the 
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the 
database, D. For each attribute in the dataset D, 
we use the following features to define x0: the 
min value, the max value and the number of 
distinct values.

4.  Conclusion

In this paper, we provide a model for query 
optimization that uses deep reinforcement 
learning. We employ deep neural networks to 

gradually learn state representations of subque-
ries by storing fundamental information about 
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum 
plans.
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direct interactions with the input training data, 
they are referred to as hidden layers [3]. These 
feedforward networks are crucial in represen-
tation learning. While training to perform a 
goal function, the hidden layers of a neural 
network might indirectly learn a representation 
that can later be employed for other tasks [3]. 
There is a trade-off between retaining as much 
information as possible and understanding 
relevant data qualities. The context of these 
representations might alter depending on the 
network output [3]. Learning through 
Reinforcement learning models can map states 
to appropriate actions with the objective of 
maximizing a larger reward. In contrast to 
supervised learning, the learner is not clearly 
informed which action is ideal; instead, the 
agent must determine the best action through 
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each 
time step, the learner will examine the condi-
tion of the environment, S T, and choose an 
action, at. The policy determines the action to 
be taken. This strategy has the potential to 
reconstruct a variety of behaviors. As a result, 
either behave greedily or strike a balance 
between discovering and utilizing through a 
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state, 
which the model must learn on the fly. The 
model will arrive at a new state, S T + 1, based on 
the action chosen. The environment then 
provides the agent a reward, r T + 1, signifying 
the "worthiness" of the chosen action. The goal 
of the agent is to maximize the overall reward 
[11]. One method is to employ a value-based 
iteration methodology in which the model 
records state-action values, such as QL (s, a). 

These values indicate the state's long-term 
worth by weighting rewards for states that are 
anticipated to follow.

3.  Methodology:

They are two approaches that we proposed to 
achieve the target solution for getting the 
optimal query execution plan. We will be 
supposed input database D and Query Q. we 
will apply deep reinforcement learning to 
derive compact but informative representation 
of queries, then we will try to train these repre-
sentations to predict the next action. In first 
approach we would suppose a feature vector 
containing (Q, D) as input and apply deep 
reinforcement learning to predict an output as 
cardinality values. There is problem with this 
approach that whenever the database and query 
complexity increase the input vector grow 
heavily. Thus, the long-extended vectors 
required large training datasets.

Instead of wasting our resources and never 
getting our required result, we will move 
forward and apply our better different 
approach, a recursive approach: We train a 
model to anticipate a query's cardinality. This 
model is fed a pair of (ht, at) as input, where ht 

is a vector representation of a subquery and at 
is a single relational action on ht. Importantly, 
because ht is the representation that the model 
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The 
NNST function, seen in the image above, builds 
these representations by modifying the weights 
in response to feedback from the NNObserved 
function. This NNObserved function learns to 
predict observed variables by mapping a 
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1. Introduction

 Inquiry advancement is still a big 
concern in the field of data sets. Existing 
DBMS select helpless execution strategies for 
certain queries. To make inquiries more 
competent, we wished to design them 
optimally, utilizing fewer assets. Existing 
DBMSs carry out a vital stage of cardinality 
evaluation by working on assumptions about 
the information (e.g., incorporation standard, 
consistency or freedom suppositions). When 
these concerns are not confirmed, cardinality 
evaluation errors occur, resulting in poor 
arrangement choices. [1]. By using cardinality 
gauges as input, the expenditure model selects 
the least expensive alternative from 
semantically equivalent arrangement options. 

To achieve an efficient inquiry strategy, a 
subset of the valid join orders is counted by the 
question enhancer, for example, using dynamic 
programming.

Theoretically this architecture can obtain the 
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based 
assumptions. But in real world databases the 
assumptions like uniformity and independence 
are wrong. 

In this research work, rather than banking on 
previously used formulas and data driven with 
the help of statistics, to predict the queries 
cardinalities we will train a deep reinforcement 
learning model for better execution plan. We 
will construct a model that can learn data and 

are generating more and more attacks or are 
automated. To date, attacks on commercial and 
government organizations, such as 
ransomware and malware, continue to pose a 
significant threat and challenge. Such attacks 
can come in various ways and sizes. An 
enormous challenge is the ability of the global 
security community to develop and provide 
expertise in cybersecurity. There is widespread 
awareness of the global scarcity of 
cybersecurity and talent. Cybercrimes, such as 
financial fraud, child exploitation online and 
payment fraud, are so common that they 
demand international 24-hour response and 
collaboration between multi-national law 
enforcement agencies [2]. For single users and 
organizations, malware defense of computer 
systems is therefore one of the most critical 
cybersecurity activities, as even a single attack 
may result in compromised data and sufficient 
losses. This research explores how machine 
learning can be used in the field of 
cybersecurity, along with how it can be used to 
detect malware. In order to detect malware, we 
will examine the PE headers of malware and 
non-malware samples or files by creating and 
training a classifier that will determine whether 
the file has been attacked by malware or not 
after training. 

2.  Evolution of Malware

In order to protect networks and computer 
systems from attacks, the diversity, sophistica-
tion and availability of malicious software 
present enormous challenges. Malware is 
continually changing and challenges security 
researchers and scientists to strengthen their 
cyber defenses to keep pace. Owing to the use 
of polymorphic and metamorphic methods 

used to avoid detection and conceal its true 
intent, the prevalence of malware has increased. 
To mutate the code while keeping the original 
functionality intact, polymorphic malware uses 
a polymorphic engine. The two most common 
ways to conceal code are packaging and 
encryption [3]. Through one or more layers of 
compression, packers cover a program's real 
code. Then the unpacking routines restore the 
original code and execute it in memory at 
runtime. To make it harder for researchers to 
analyze the software, crypters encrypt and 
manipulate malware or part of its code. A 
crypter includes a stub that is used for 
malicious code encryption and decryption. 
Whenever it's propagated, metamorphic 
malware rewrites the code to an equivalent. 
Multiple transformation techniques, including 
but not limited to, register renaming, code 
permutation, code expansion, code shrinking 
and insertion of garbage code, can be used by 
malware authors. The combination of the 
above techniques resulted in increasingly 
increasing quantities of malware, making 
time-consuming, expensive and more compli-
cated forensic investigations of malware cases. 
There are some issues with conventional 
antivirus solutions that rely on signature-based 
and heuristic/behavioral methods. A signature 
is a unique feature or collection of features that 
like a fingerprint, uniquely differentiates an 
executable. Signature-based approaches are 
unable to identify unknown types of malware, 
however. Security researchers suggested 
behavior-based detection to overcome these 
problems, which analyses the features and 
behavior of the file to decide whether it is 
indeed malware, although it may take some 
time to search and evaluate. Researchers have 

begun implementing machine learning to 
supplement their solutions in order to solve 
the previous drawbacks of conventional 
antivirus engines and keep pace with new 
attacks and variants, as machine learning is 
well suited for processing large quantities of 
data. [4]

3.  Malware Detection

In such a way, hackers present malware aimed 
at persuading people to install it. As it seems 
legal, users also do not know what the program 
is. Usually, we install it thinking that it is 
secure, but on the contrary, it's a major threat. 
That's how the malware gets into your system. 
When on the screen, it disperses and hides in 
numerous files, making it very difficult to 
identify. In order to access and record personal 
or useful information, it may connect directly 
to the operating system and start encrypting it 
[5]. Detection of malware is defined as the 
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient 
and reliable. Some of the general strategies for 
malware detection are:

      i. Signature-based

      ii. Heuristic Analysis

      iii. Anti-malware Software

      iv. Sandbox

Several classifiers have been implemented, 
such as linear classifiers (logistic regression, 
naive Bayes classifier), support for vector 
machinery, neural networks, random forests, 
etc.

Through both static and dynamic analysis, 
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4.  Need for Machine Learning in 
Malware Detection

Machine learning has created a drastic change 
in many industries, including cybersecurity, 
over the last decade. Among cybersecurity 
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect 
modern malware attacks and boost scanning 
engines. Proof of this belief is the number of 
studies on malware detection strategies that 
exploit machine learning reported in the last 
few years. The number of research papers 
released in 2018 is 7720, a 95 percent rise over 
2015 and a 476 percent increase over 2010, 
according to Google Scholar,1. This rise in the 
number of studies is the product of several 
factors, including but not limited to the 
increase in publicly labelled malware feeds, the 
increase in computing capacity at the same 
time as its price decrease, and the evolution of 

the field of machine learning, which has 
achieved ground-breaking success in a wide 
range of tasks such as computer vision and 
speech recognition [6]. Depending on the type 
of analysis, conventional machine learning 
methods can be categorized into two main 
categories, static and dynamic approaches. The 
primary difference between them is that static 
methods extract features from the static 
malware analysis, while dynamic methods 
extract features from the dynamic analysis. A 
third category may be considered, known as 
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw 
inputs in diverse fields have outshone neural 
networks. The performance of neural networks 
in the malware domain is mirrored by recent 
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is 
imported and the different columns are 
discussed in the dataset.

• Data cleaning: The required steps are 
taken after examining the dataset so that 
the dataset can be cleaned and all the null 
values and columns of not much signifi-
cance are removed so that they will not be 
of any concern in the training part.

• Data Training and Testing: When the 
information is transparent and ready for 
training, we spilled the information as a 
training dataset and testing dataset in an 
80:20 ratios so that the data was spilled in 

an 80:20 ratios.

In this paper, as we try to achieve the highest 
accuracy, we use two algorithms to see which 
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique 
of machine learning which uses regression and 
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker 
prediction models, usually decision trees. As other 
boosting techniques do it constructs the model in a 
phase-wise fashion and generalizes them by allowing 
an arbitrary differentiable loss function to be 
optimized. [7] For predictive model growth, gradient 
boosting is one of the most effective techniques. 
Gradient Boosting is teaching several models steadily, 
additively and sequentially. With gradients of loss 
function, gradient boosting takes place. What we 
strive to develop and maximize depends on a simple 
understanding of the loss function.

• In Gradient Boosting, three elements area 
feature for loss to be optimized or 
enhanced.

• A poor man who has learned to make 
predictions

• A supplementary model for 
incorporating disadvantaged students to 
minimize losses. [8][9]

It's important that we understand how the 
algorithm of Gradient Boost is implemented 
under the hood.

1. Calculate average of target label- We 
begin with a leaf that is the average value 
of the variable we want to forecast when 
solving regression problems. This leaf will 
be used in the procedural steps as a 
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the 
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the 
intention of predicting the residuals, we 
build a tree. In other words, a prediction of 
the residual value (not the desired label) 
will be found in every leaf. Any residuals 
will end up within the same leaf in the 
event that there are more residuals than 
leaves. We compute their average and 
position that inside the leaf when this 
happens.

4. Using the trees within the ensemble 
predict the target label. - Each sample 
passes through the newly developed tree's 
decision nodes before it reaches a given 
lead.

5. Compute the new residuals- The residuals 
will then be used as explained in step 3 for 
the leaves of the coming next decision 
tree.

6. Repeat steps 3 to 5 until the number of 
iterations matches the number (i.e. the 
number of estimators) defined by the 
hyper parameter.

7. To make a final prediction as to the value 
of the target variable, use all the trees in 
the ensemble once eligible. [10]

In the first step, the final forecast will be equal 
to the mean we determined, plus all the residu-
als predicted by the trees that make up the 
forest multiplied by the learning rate.

Random forests - Random forests or random 
decision forests are an ensemble learning 
method for classification, regression and other 
tasks that function by constructing a multitude 
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average 
prediction (regression) of the individual trees. 
Random forests are often used as "Blackbox" 
models in companies, as they produce rational 
predictions over a large range of data while 
requiring little configuration in packages such 
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps 
and diagrams below the working procedure 
can be explained:

1. From the training set select random K data 
points.

2. Use the selected data points to build 
decision trees associated with it (Subsets).

3. Choose a number N which represents the 
decision trees that you want to build.

4. Repeat Step 1 & 2.

5. Find the predictions for new data points 
for each decision tree and assign the new 
data points to the group that receives the 
majority votes. [12]

7.  Mplementation

We used a dataset that was made available 
from the Chiheb Chebbi - Mastering Machine 
Learning for Penetration Testing book for this 
work. There are approximately 138000 entries 
of legit and malware PE headers and 56 
columns as features in the dataset. In an 80 
percent preparation and 20 percent evaluation, 
the knowledge was divided.

We initially import and read the dataset, once 
that is done, we clean the dataset by dropping 
unnecessary features and null values. After that 
we split the dataset for training and testing. We 
import the necessary packages for making a 
decision tree, gradient boosted classifier and 
random forest classifier. Once done we fit that 
data respectively and predict the results.

Using a combination of these algorithms, after 
training and testing the algorithms, we were 
able to get a highly accurate outcome.

8.  Results

After training and testing both the algorithms, 
we can see that both of them give us a high 
accuracy output. 
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9.  Conclusion

The algorithm used for training the data was 
Gradient Boosted classifier and random forest 
classifier which gives us an accuracy of 
98.764% and 99.311% respectively. After 
viewing the confusion matrix of the random 
forest classifier, we could conclude that the 
number of false positives were at 0.5505 and 
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of 
false positives were at 0.768 and false 
negatives were at 2.3099.

Our main objective was to come up with a 
system for machine learning that typically 
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero 
false positive rate. We have been really close to 
our target, but we still have a false positive rate 
that is non-zero. A variety of deterministic 
exemption mechanisms must be added in order 
for this system to become part of a highly 
competitive commercial product. In our view, 
machine learning detection of malware will not 
replace the existing methods of detection used 
by anti-virus vendors, but will come as an 
extension to them. Certain speed and memory 
limitations are placed on any commercial 
anti-virus product, so the most accurate 
algorithms should be used.
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1. Introduction

 Idealistic hackers attacked computers 
in the early days because they were eager to 
prove themselves. Cracking machines, 
however is an industry in today's world. 
Despite recent improvements in software and 
computer hardware security, both in frequency 
and sophistication, attacks on computer 
systems have increased. Regrettably, there are 
major drawbacks to current methods for 
detecting and analyzing unknown code 
samples. The Internet is a critical part of our 

everyday lives today. On the internet, there are 
many services and they are rising daily as well. 
Numerous reports indicate that malware's 
effect is worsening at an alarming pace. 
Although malware diversity is growing, anti- 
virus scanners are unable to fulfil security 
needs, resulting in attacks on millions of hosts. 
Around 65,63,145 different hosts were 
targeted, according to Kaspersky Labs, and in 
2015, 40,00,000 unique malware artefacts 
were found. Juniper Research (2016), in 
particular, projected that by 2019 the cost of 
data breaches will rise to $2.1 trillion globally 
[1]. Current studies show that script-kiddies 

properties of data to be exact about the 
estimates. The major part of this model is that 
it will learn the subquery representations of 
complex queries which will be used to build 
query execution plan using deep reinforcement 
learning. Since the 1970s, information base 
analysts have been dealing with framework 
enhancement and large-scale information-driv-
en applications, which are strongly associated 
with the first two components. Although deep 
learning methodologies are not often used in 
dealing with DBMS challenges, it is natural to 
wonder about the linkages between informa-
tion bases and profound learning. 

First, we have to examine that is the database 
community ready to adapt deep learning for 
DBMS. However, there are fewer examples of 
using machine learning for traditional database 
problems that are less uncertain, like indexing 
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases 
that are probabilistic like crowdsourcing etc. In 
particular, we divide the method in two parts, 
first representation of state of table using deep 
learning and then we will present a way to 
computes plan for the given query using the 
above states together with deep reinforcement 
learning.

Challenge of this approach, to represent data 
and query. First, we develop an approach that 
will incrementally generate result of subque-
ries. Subqueries and a new operation will be 
provided as input that will further predict the 
representation of output. This representation of 
output subquery will be used to derive the 

subquery’s cardinality.

The major part is that we will present a method 
that will use this representation to enumerates 
the query execution plan through deep 
reinforcement learning. Support learning is a 
generally beneficial structure used for dynamic 
in circumstances where a framework is 
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this 
deep learning approach to build an optimal 
query execution plan by modelling it as 
Markov process; in which each decision has its 
dependency on each stage. The figure below 
will illustrate our method. The figure below 
has DB and a query, the model will generate an 
optimal query execution plan by determining 
the series of state transitions 

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will 
select as action using deep reinforcement 
learning, the model moves to a new state at t 
+1, We've now built a bigger subquery. Each 
action is a query operation, and each state 
reflects the intermediate results of the subque-
ry. To build this representation, we used a 
neural network, i.e. a state transition function, 
NNST. NNST is a recursive function that 
generates the subquery representation at time 

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered 
above. The query plan's dynamics are 
bottom-up, with one operation at a time. 
Assume a subquery has been constructed at 
any step t of the query plan, and the state at t is 
represented by an n-dimensional vector ht. 
When the next action applied to the setup, at to 
this current database state leads to the next 
state, ht+1. The mapping, NNST: (ht, at) → 
ht+1 is called the state transition function. This 
state and state transition function are well 
known in applications of deep reinforcement 
learning. For Example, in the game of Chess, 
each possible position is called state and the 
transition of these states from one board 
position to another is well-defined. However, 
in the case of a database, if the query execution 
plan is not sufficiently described, we cannot 
forecast the status of the query. The core of our 
proposed strategy is to identify each state using 
a finite dimensional vector and then learn the 
state transition function using a deep reinforce-
ment learning model. We employ input signals 
and context from observed variables linked 
with database status to drive the training proce-
dure for this network. Throughout this work, 
we will utilise the cardinality of each subquery 
as an observable variable at any point of the 
plan. If we can learn a function, NNobserved, that 
maps this state to projected cardinalities at 
stage t, we should be able to learn a function, 
NNobserved, that maps this state to predicted 
cardinalities at stage t. In the figure below, we 
display both NNST and NNobserved. 

Figure 2: Representation of NNST and 

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences. 
Each state will learn to precisely depict a repre-
sentation using this approach. Once the 
technique has been fully trained, we may 
correct it and use deep reinforcement learning 
to create a suitable action policy, resulting in 
an optimal query execution plan.

2.  Literature Review:

Extensive Learning Deep learning methods, 
commonly known as feedforward neural 
networks, may imprecisely approximate a 
nonlinear function, f [3]. Through a collection 
of learnt parameters spread across multiple 
layers, these models establish a mapping from 
an input x to an output y. The behavior of the 
interior layers is not dictated by the input data 
during training; instead, these models must 
learn how to employ the layers to create the 
proper output. Because the layers have no 

subquery representation. Back propagation is 
used to alter the weights for both functions 
while we train this model.

Before moving forward and start using the 
recursive NNST model, we have to understand 
an additional function, NNinit. NNinit will take 
(x0, a0) as input, where x0 represents a vector 
that holds the properties of the database D 
whereas a0 shows a relational operator. The 
model outputs the cardinality of the query that 
executes the operation encoded in a0 on D. By 
this we can achieve the optimal time on the 
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the 
database, D. For each attribute in the dataset D, 
we use the following features to define x0: the 
min value, the max value and the number of 
distinct values.

4.  Conclusion

In this paper, we provide a model for query 
optimization that uses deep reinforcement 
learning. We employ deep neural networks to 

gradually learn state representations of subque-
ries by storing fundamental information about 
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum 
plans.
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direct interactions with the input training data, 
they are referred to as hidden layers [3]. These 
feedforward networks are crucial in represen-
tation learning. While training to perform a 
goal function, the hidden layers of a neural 
network might indirectly learn a representation 
that can later be employed for other tasks [3]. 
There is a trade-off between retaining as much 
information as possible and understanding 
relevant data qualities. The context of these 
representations might alter depending on the 
network output [3]. Learning through 
Reinforcement learning models can map states 
to appropriate actions with the objective of 
maximizing a larger reward. In contrast to 
supervised learning, the learner is not clearly 
informed which action is ideal; instead, the 
agent must determine the best action through 
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each 
time step, the learner will examine the condi-
tion of the environment, S T, and choose an 
action, at. The policy determines the action to 
be taken. This strategy has the potential to 
reconstruct a variety of behaviors. As a result, 
either behave greedily or strike a balance 
between discovering and utilizing through a 
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state, 
which the model must learn on the fly. The 
model will arrive at a new state, S T + 1, based on 
the action chosen. The environment then 
provides the agent a reward, r T + 1, signifying 
the "worthiness" of the chosen action. The goal 
of the agent is to maximize the overall reward 
[11]. One method is to employ a value-based 
iteration methodology in which the model 
records state-action values, such as QL (s, a). 

These values indicate the state's long-term 
worth by weighting rewards for states that are 
anticipated to follow.

3.  Methodology:

They are two approaches that we proposed to 
achieve the target solution for getting the 
optimal query execution plan. We will be 
supposed input database D and Query Q. we 
will apply deep reinforcement learning to 
derive compact but informative representation 
of queries, then we will try to train these repre-
sentations to predict the next action. In first 
approach we would suppose a feature vector 
containing (Q, D) as input and apply deep 
reinforcement learning to predict an output as 
cardinality values. There is problem with this 
approach that whenever the database and query 
complexity increase the input vector grow 
heavily. Thus, the long-extended vectors 
required large training datasets.

Instead of wasting our resources and never 
getting our required result, we will move 
forward and apply our better different 
approach, a recursive approach: We train a 
model to anticipate a query's cardinality. This 
model is fed a pair of (ht, at) as input, where ht 

is a vector representation of a subquery and at 
is a single relational action on ht. Importantly, 
because ht is the representation that the model 
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The 
NNST function, seen in the image above, builds 
these representations by modifying the weights 
in response to feedback from the NNObserved 
function. This NNObserved function learns to 
predict observed variables by mapping a 

[7]  Ryan Marcusetal. Deep reinforcement 
learning for join order enumeration. 
CoRR, 2018. 

[8]  Ian Goodfellow et al. Deep Learning. 
MIT Press, 2016. http://www. 
deeplearningbook.org. 

[9]  David Silver. UCL Course on Reinforce-
ment Learning, 2015. 

[10]  Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001. 

[11]  Viktor Leis et al. How good are query 
optimizers, really? Proc. VLDB Endow., 
2015. 

[12] Csaba Szepesvari. Algorithms for 
reinforcement learning. Morgan and 
Claypool Publishers, 2009. 

[13] Martín Abadi et al. TensorFlow: 
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org. 

[14] Wei Wang et al. Database Meets Deep 
Learning: Challenges and Opportunities. 
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation 
using neural networks. In CASCON 
2015

1. Introduction

 Inquiry advancement is still a big 
concern in the field of data sets. Existing 
DBMS select helpless execution strategies for 
certain queries. To make inquiries more 
competent, we wished to design them 
optimally, utilizing fewer assets. Existing 
DBMSs carry out a vital stage of cardinality 
evaluation by working on assumptions about 
the information (e.g., incorporation standard, 
consistency or freedom suppositions). When 
these concerns are not confirmed, cardinality 
evaluation errors occur, resulting in poor 
arrangement choices. [1]. By using cardinality 
gauges as input, the expenditure model selects 
the least expensive alternative from 
semantically equivalent arrangement options. 

To achieve an efficient inquiry strategy, a 
subset of the valid join orders is counted by the 
question enhancer, for example, using dynamic 
programming.

Theoretically this architecture can obtain the 
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based 
assumptions. But in real world databases the 
assumptions like uniformity and independence 
are wrong. 

In this research work, rather than banking on 
previously used formulas and data driven with 
the help of statistics, to predict the queries 
cardinalities we will train a deep reinforcement 
learning model for better execution plan. We 
will construct a model that can learn data and 

are generating more and more attacks or are 
automated. To date, attacks on commercial and 
government organizations, such as 
ransomware and malware, continue to pose a 
significant threat and challenge. Such attacks 
can come in various ways and sizes. An 
enormous challenge is the ability of the global 
security community to develop and provide 
expertise in cybersecurity. There is widespread 
awareness of the global scarcity of 
cybersecurity and talent. Cybercrimes, such as 
financial fraud, child exploitation online and 
payment fraud, are so common that they 
demand international 24-hour response and 
collaboration between multi-national law 
enforcement agencies [2]. For single users and 
organizations, malware defense of computer 
systems is therefore one of the most critical 
cybersecurity activities, as even a single attack 
may result in compromised data and sufficient 
losses. This research explores how machine 
learning can be used in the field of 
cybersecurity, along with how it can be used to 
detect malware. In order to detect malware, we 
will examine the PE headers of malware and 
non-malware samples or files by creating and 
training a classifier that will determine whether 
the file has been attacked by malware or not 
after training. 

2.  Evolution of Malware

In order to protect networks and computer 
systems from attacks, the diversity, sophistica-
tion and availability of malicious software 
present enormous challenges. Malware is 
continually changing and challenges security 
researchers and scientists to strengthen their 
cyber defenses to keep pace. Owing to the use 
of polymorphic and metamorphic methods 

used to avoid detection and conceal its true 
intent, the prevalence of malware has increased. 
To mutate the code while keeping the original 
functionality intact, polymorphic malware uses 
a polymorphic engine. The two most common 
ways to conceal code are packaging and 
encryption [3]. Through one or more layers of 
compression, packers cover a program's real 
code. Then the unpacking routines restore the 
original code and execute it in memory at 
runtime. To make it harder for researchers to 
analyze the software, crypters encrypt and 
manipulate malware or part of its code. A 
crypter includes a stub that is used for 
malicious code encryption and decryption. 
Whenever it's propagated, metamorphic 
malware rewrites the code to an equivalent. 
Multiple transformation techniques, including 
but not limited to, register renaming, code 
permutation, code expansion, code shrinking 
and insertion of garbage code, can be used by 
malware authors. The combination of the 
above techniques resulted in increasingly 
increasing quantities of malware, making 
time-consuming, expensive and more compli-
cated forensic investigations of malware cases. 
There are some issues with conventional 
antivirus solutions that rely on signature-based 
and heuristic/behavioral methods. A signature 
is a unique feature or collection of features that 
like a fingerprint, uniquely differentiates an 
executable. Signature-based approaches are 
unable to identify unknown types of malware, 
however. Security researchers suggested 
behavior-based detection to overcome these 
problems, which analyses the features and 
behavior of the file to decide whether it is 
indeed malware, although it may take some 
time to search and evaluate. Researchers have 

begun implementing machine learning to 
supplement their solutions in order to solve 
the previous drawbacks of conventional 
antivirus engines and keep pace with new 
attacks and variants, as machine learning is 
well suited for processing large quantities of 
data. [4]

3.  Malware Detection

In such a way, hackers present malware aimed 
at persuading people to install it. As it seems 
legal, users also do not know what the program 
is. Usually, we install it thinking that it is 
secure, but on the contrary, it's a major threat. 
That's how the malware gets into your system. 
When on the screen, it disperses and hides in 
numerous files, making it very difficult to 
identify. In order to access and record personal 
or useful information, it may connect directly 
to the operating system and start encrypting it 
[5]. Detection of malware is defined as the 
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient 
and reliable. Some of the general strategies for 
malware detection are:

      i. Signature-based

      ii. Heuristic Analysis

      iii. Anti-malware Software

      iv. Sandbox

Several classifiers have been implemented, 
such as linear classifiers (logistic regression, 
naive Bayes classifier), support for vector 
machinery, neural networks, random forests, 
etc.

Through both static and dynamic analysis, 
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4.  Need for Machine Learning in 
Malware Detection

Machine learning has created a drastic change 
in many industries, including cybersecurity, 
over the last decade. Among cybersecurity 
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect 
modern malware attacks and boost scanning 
engines. Proof of this belief is the number of 
studies on malware detection strategies that 
exploit machine learning reported in the last 
few years. The number of research papers 
released in 2018 is 7720, a 95 percent rise over 
2015 and a 476 percent increase over 2010, 
according to Google Scholar,1. This rise in the 
number of studies is the product of several 
factors, including but not limited to the 
increase in publicly labelled malware feeds, the 
increase in computing capacity at the same 
time as its price decrease, and the evolution of 

the field of machine learning, which has 
achieved ground-breaking success in a wide 
range of tasks such as computer vision and 
speech recognition [6]. Depending on the type 
of analysis, conventional machine learning 
methods can be categorized into two main 
categories, static and dynamic approaches. The 
primary difference between them is that static 
methods extract features from the static 
malware analysis, while dynamic methods 
extract features from the dynamic analysis. A 
third category may be considered, known as 
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw 
inputs in diverse fields have outshone neural 
networks. The performance of neural networks 
in the malware domain is mirrored by recent 
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is 
imported and the different columns are 
discussed in the dataset.

• Data cleaning: The required steps are 
taken after examining the dataset so that 
the dataset can be cleaned and all the null 
values and columns of not much signifi-
cance are removed so that they will not be 
of any concern in the training part.

• Data Training and Testing: When the 
information is transparent and ready for 
training, we spilled the information as a 
training dataset and testing dataset in an 
80:20 ratios so that the data was spilled in 

an 80:20 ratios.

In this paper, as we try to achieve the highest 
accuracy, we use two algorithms to see which 
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique 
of machine learning which uses regression and 
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker 
prediction models, usually decision trees. As other 
boosting techniques do it constructs the model in a 
phase-wise fashion and generalizes them by allowing 
an arbitrary differentiable loss function to be 
optimized. [7] For predictive model growth, gradient 
boosting is one of the most effective techniques. 
Gradient Boosting is teaching several models steadily, 
additively and sequentially. With gradients of loss 
function, gradient boosting takes place. What we 
strive to develop and maximize depends on a simple 
understanding of the loss function.

• In Gradient Boosting, three elements area 
feature for loss to be optimized or 
enhanced.

• A poor man who has learned to make 
predictions

• A supplementary model for 
incorporating disadvantaged students to 
minimize losses. [8][9]

It's important that we understand how the 
algorithm of Gradient Boost is implemented 
under the hood.

1. Calculate average of target label- We 
begin with a leaf that is the average value 
of the variable we want to forecast when 
solving regression problems. This leaf will 
be used in the procedural steps as a 
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the 
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the 
intention of predicting the residuals, we 
build a tree. In other words, a prediction of 
the residual value (not the desired label) 
will be found in every leaf. Any residuals 
will end up within the same leaf in the 
event that there are more residuals than 
leaves. We compute their average and 
position that inside the leaf when this 
happens.

4. Using the trees within the ensemble 
predict the target label. - Each sample 
passes through the newly developed tree's 
decision nodes before it reaches a given 
lead.

5. Compute the new residuals- The residuals 
will then be used as explained in step 3 for 
the leaves of the coming next decision 
tree.

6. Repeat steps 3 to 5 until the number of 
iterations matches the number (i.e. the 
number of estimators) defined by the 
hyper parameter.

7. To make a final prediction as to the value 
of the target variable, use all the trees in 
the ensemble once eligible. [10]

In the first step, the final forecast will be equal 
to the mean we determined, plus all the residu-
als predicted by the trees that make up the 
forest multiplied by the learning rate.

Random forests - Random forests or random 
decision forests are an ensemble learning 
method for classification, regression and other 
tasks that function by constructing a multitude 
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average 
prediction (regression) of the individual trees. 
Random forests are often used as "Blackbox" 
models in companies, as they produce rational 
predictions over a large range of data while 
requiring little configuration in packages such 
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps 
and diagrams below the working procedure 
can be explained:

1. From the training set select random K data 
points.

2. Use the selected data points to build 
decision trees associated with it (Subsets).

3. Choose a number N which represents the 
decision trees that you want to build.

4. Repeat Step 1 & 2.

5. Find the predictions for new data points 
for each decision tree and assign the new 
data points to the group that receives the 
majority votes. [12]

7.  Mplementation

We used a dataset that was made available 
from the Chiheb Chebbi - Mastering Machine 
Learning for Penetration Testing book for this 
work. There are approximately 138000 entries 
of legit and malware PE headers and 56 
columns as features in the dataset. In an 80 
percent preparation and 20 percent evaluation, 
the knowledge was divided.

We initially import and read the dataset, once 
that is done, we clean the dataset by dropping 
unnecessary features and null values. After that 
we split the dataset for training and testing. We 
import the necessary packages for making a 
decision tree, gradient boosted classifier and 
random forest classifier. Once done we fit that 
data respectively and predict the results.

Using a combination of these algorithms, after 
training and testing the algorithms, we were 
able to get a highly accurate outcome.

8.  Results

After training and testing both the algorithms, 
we can see that both of them give us a high 
accuracy output. 

9.  Conclusion

The algorithm used for training the data was 
Gradient Boosted classifier and random forest 
classifier which gives us an accuracy of 
98.764% and 99.311% respectively. After 
viewing the confusion matrix of the random 
forest classifier, we could conclude that the 
number of false positives were at 0.5505 and 
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of 
false positives were at 0.768 and false 
negatives were at 2.3099.

Our main objective was to come up with a 
system for machine learning that typically 
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero 
false positive rate. We have been really close to 
our target, but we still have a false positive rate 
that is non-zero. A variety of deterministic 
exemption mechanisms must be added in order 
for this system to become part of a highly 
competitive commercial product. In our view, 
machine learning detection of malware will not 
replace the existing methods of detection used 
by anti-virus vendors, but will come as an 
extension to them. Certain speed and memory 
limitations are placed on any commercial 
anti-virus product, so the most accurate 
algorithms should be used.
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1. Introduction

 Idealistic hackers attacked computers 
in the early days because they were eager to 
prove themselves. Cracking machines, 
however is an industry in today's world. 
Despite recent improvements in software and 
computer hardware security, both in frequency 
and sophistication, attacks on computer 
systems have increased. Regrettably, there are 
major drawbacks to current methods for 
detecting and analyzing unknown code 
samples. The Internet is a critical part of our 

everyday lives today. On the internet, there are 
many services and they are rising daily as well. 
Numerous reports indicate that malware's 
effect is worsening at an alarming pace. 
Although malware diversity is growing, anti- 
virus scanners are unable to fulfil security 
needs, resulting in attacks on millions of hosts. 
Around 65,63,145 different hosts were 
targeted, according to Kaspersky Labs, and in 
2015, 40,00,000 unique malware artefacts 
were found. Juniper Research (2016), in 
particular, projected that by 2019 the cost of 
data breaches will rise to $2.1 trillion globally 
[1]. Current studies show that script-kiddies 

properties of data to be exact about the 
estimates. The major part of this model is that 
it will learn the subquery representations of 
complex queries which will be used to build 
query execution plan using deep reinforcement 
learning. Since the 1970s, information base 
analysts have been dealing with framework 
enhancement and large-scale information-driv-
en applications, which are strongly associated 
with the first two components. Although deep 
learning methodologies are not often used in 
dealing with DBMS challenges, it is natural to 
wonder about the linkages between informa-
tion bases and profound learning. 

First, we have to examine that is the database 
community ready to adapt deep learning for 
DBMS. However, there are fewer examples of 
using machine learning for traditional database 
problems that are less uncertain, like indexing 
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases 
that are probabilistic like crowdsourcing etc. In 
particular, we divide the method in two parts, 
first representation of state of table using deep 
learning and then we will present a way to 
computes plan for the given query using the 
above states together with deep reinforcement 
learning.

Challenge of this approach, to represent data 
and query. First, we develop an approach that 
will incrementally generate result of subque-
ries. Subqueries and a new operation will be 
provided as input that will further predict the 
representation of output. This representation of 
output subquery will be used to derive the 

subquery’s cardinality.

The major part is that we will present a method 
that will use this representation to enumerates 
the query execution plan through deep 
reinforcement learning. Support learning is a 
generally beneficial structure used for dynamic 
in circumstances where a framework is 
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this 
deep learning approach to build an optimal 
query execution plan by modelling it as 
Markov process; in which each decision has its 
dependency on each stage. The figure below 
will illustrate our method. The figure below 
has DB and a query, the model will generate an 
optimal query execution plan by determining 
the series of state transitions 

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will 
select as action using deep reinforcement 
learning, the model moves to a new state at t 
+1, We've now built a bigger subquery. Each 
action is a query operation, and each state 
reflects the intermediate results of the subque-
ry. To build this representation, we used a 
neural network, i.e. a state transition function, 
NNST. NNST is a recursive function that 
generates the subquery representation at time 

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered 
above. The query plan's dynamics are 
bottom-up, with one operation at a time. 
Assume a subquery has been constructed at 
any step t of the query plan, and the state at t is 
represented by an n-dimensional vector ht. 
When the next action applied to the setup, at to 
this current database state leads to the next 
state, ht+1. The mapping, NNST: (ht, at) → 
ht+1 is called the state transition function. This 
state and state transition function are well 
known in applications of deep reinforcement 
learning. For Example, in the game of Chess, 
each possible position is called state and the 
transition of these states from one board 
position to another is well-defined. However, 
in the case of a database, if the query execution 
plan is not sufficiently described, we cannot 
forecast the status of the query. The core of our 
proposed strategy is to identify each state using 
a finite dimensional vector and then learn the 
state transition function using a deep reinforce-
ment learning model. We employ input signals 
and context from observed variables linked 
with database status to drive the training proce-
dure for this network. Throughout this work, 
we will utilise the cardinality of each subquery 
as an observable variable at any point of the 
plan. If we can learn a function, NNobserved, that 
maps this state to projected cardinalities at 
stage t, we should be able to learn a function, 
NNobserved, that maps this state to predicted 
cardinalities at stage t. In the figure below, we 
display both NNST and NNobserved. 

Figure 2: Representation of NNST and 

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences. 
Each state will learn to precisely depict a repre-
sentation using this approach. Once the 
technique has been fully trained, we may 
correct it and use deep reinforcement learning 
to create a suitable action policy, resulting in 
an optimal query execution plan.

2.  Literature Review:

Extensive Learning Deep learning methods, 
commonly known as feedforward neural 
networks, may imprecisely approximate a 
nonlinear function, f [3]. Through a collection 
of learnt parameters spread across multiple 
layers, these models establish a mapping from 
an input x to an output y. The behavior of the 
interior layers is not dictated by the input data 
during training; instead, these models must 
learn how to employ the layers to create the 
proper output. Because the layers have no 

subquery representation. Back propagation is 
used to alter the weights for both functions 
while we train this model.

Before moving forward and start using the 
recursive NNST model, we have to understand 
an additional function, NNinit. NNinit will take 
(x0, a0) as input, where x0 represents a vector 
that holds the properties of the database D 
whereas a0 shows a relational operator. The 
model outputs the cardinality of the query that 
executes the operation encoded in a0 on D. By 
this we can achieve the optimal time on the 
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the 
database, D. For each attribute in the dataset D, 
we use the following features to define x0: the 
min value, the max value and the number of 
distinct values.

4.  Conclusion

In this paper, we provide a model for query 
optimization that uses deep reinforcement 
learning. We employ deep neural networks to 

gradually learn state representations of subque-
ries by storing fundamental information about 
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum 
plans.
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direct interactions with the input training data, 
they are referred to as hidden layers [3]. These 
feedforward networks are crucial in represen-
tation learning. While training to perform a 
goal function, the hidden layers of a neural 
network might indirectly learn a representation 
that can later be employed for other tasks [3]. 
There is a trade-off between retaining as much 
information as possible and understanding 
relevant data qualities. The context of these 
representations might alter depending on the 
network output [3]. Learning through 
Reinforcement learning models can map states 
to appropriate actions with the objective of 
maximizing a larger reward. In contrast to 
supervised learning, the learner is not clearly 
informed which action is ideal; instead, the 
agent must determine the best action through 
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each 
time step, the learner will examine the condi-
tion of the environment, S T, and choose an 
action, at. The policy determines the action to 
be taken. This strategy has the potential to 
reconstruct a variety of behaviors. As a result, 
either behave greedily or strike a balance 
between discovering and utilizing through a 
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state, 
which the model must learn on the fly. The 
model will arrive at a new state, S T + 1, based on 
the action chosen. The environment then 
provides the agent a reward, r T + 1, signifying 
the "worthiness" of the chosen action. The goal 
of the agent is to maximize the overall reward 
[11]. One method is to employ a value-based 
iteration methodology in which the model 
records state-action values, such as QL (s, a). 

These values indicate the state's long-term 
worth by weighting rewards for states that are 
anticipated to follow.

3.  Methodology:

They are two approaches that we proposed to 
achieve the target solution for getting the 
optimal query execution plan. We will be 
supposed input database D and Query Q. we 
will apply deep reinforcement learning to 
derive compact but informative representation 
of queries, then we will try to train these repre-
sentations to predict the next action. In first 
approach we would suppose a feature vector 
containing (Q, D) as input and apply deep 
reinforcement learning to predict an output as 
cardinality values. There is problem with this 
approach that whenever the database and query 
complexity increase the input vector grow 
heavily. Thus, the long-extended vectors 
required large training datasets.

Instead of wasting our resources and never 
getting our required result, we will move 
forward and apply our better different 
approach, a recursive approach: We train a 
model to anticipate a query's cardinality. This 
model is fed a pair of (ht, at) as input, where ht 

is a vector representation of a subquery and at 
is a single relational action on ht. Importantly, 
because ht is the representation that the model 
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The 
NNST function, seen in the image above, builds 
these representations by modifying the weights 
in response to feedback from the NNObserved 
function. This NNObserved function learns to 
predict observed variables by mapping a 
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1. Introduction

 Inquiry advancement is still a big 
concern in the field of data sets. Existing 
DBMS select helpless execution strategies for 
certain queries. To make inquiries more 
competent, we wished to design them 
optimally, utilizing fewer assets. Existing 
DBMSs carry out a vital stage of cardinality 
evaluation by working on assumptions about 
the information (e.g., incorporation standard, 
consistency or freedom suppositions). When 
these concerns are not confirmed, cardinality 
evaluation errors occur, resulting in poor 
arrangement choices. [1]. By using cardinality 
gauges as input, the expenditure model selects 
the least expensive alternative from 
semantically equivalent arrangement options. 

To achieve an efficient inquiry strategy, a 
subset of the valid join orders is counted by the 
question enhancer, for example, using dynamic 
programming.

Theoretically this architecture can obtain the 
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based 
assumptions. But in real world databases the 
assumptions like uniformity and independence 
are wrong. 

In this research work, rather than banking on 
previously used formulas and data driven with 
the help of statistics, to predict the queries 
cardinalities we will train a deep reinforcement 
learning model for better execution plan. We 
will construct a model that can learn data and 

are generating more and more attacks or are 
automated. To date, attacks on commercial and 
government organizations, such as 
ransomware and malware, continue to pose a 
significant threat and challenge. Such attacks 
can come in various ways and sizes. An 
enormous challenge is the ability of the global 
security community to develop and provide 
expertise in cybersecurity. There is widespread 
awareness of the global scarcity of 
cybersecurity and talent. Cybercrimes, such as 
financial fraud, child exploitation online and 
payment fraud, are so common that they 
demand international 24-hour response and 
collaboration between multi-national law 
enforcement agencies [2]. For single users and 
organizations, malware defense of computer 
systems is therefore one of the most critical 
cybersecurity activities, as even a single attack 
may result in compromised data and sufficient 
losses. This research explores how machine 
learning can be used in the field of 
cybersecurity, along with how it can be used to 
detect malware. In order to detect malware, we 
will examine the PE headers of malware and 
non-malware samples or files by creating and 
training a classifier that will determine whether 
the file has been attacked by malware or not 
after training. 

2.  Evolution of Malware

In order to protect networks and computer 
systems from attacks, the diversity, sophistica-
tion and availability of malicious software 
present enormous challenges. Malware is 
continually changing and challenges security 
researchers and scientists to strengthen their 
cyber defenses to keep pace. Owing to the use 
of polymorphic and metamorphic methods 

used to avoid detection and conceal its true 
intent, the prevalence of malware has increased. 
To mutate the code while keeping the original 
functionality intact, polymorphic malware uses 
a polymorphic engine. The two most common 
ways to conceal code are packaging and 
encryption [3]. Through one or more layers of 
compression, packers cover a program's real 
code. Then the unpacking routines restore the 
original code and execute it in memory at 
runtime. To make it harder for researchers to 
analyze the software, crypters encrypt and 
manipulate malware or part of its code. A 
crypter includes a stub that is used for 
malicious code encryption and decryption. 
Whenever it's propagated, metamorphic 
malware rewrites the code to an equivalent. 
Multiple transformation techniques, including 
but not limited to, register renaming, code 
permutation, code expansion, code shrinking 
and insertion of garbage code, can be used by 
malware authors. The combination of the 
above techniques resulted in increasingly 
increasing quantities of malware, making 
time-consuming, expensive and more compli-
cated forensic investigations of malware cases. 
There are some issues with conventional 
antivirus solutions that rely on signature-based 
and heuristic/behavioral methods. A signature 
is a unique feature or collection of features that 
like a fingerprint, uniquely differentiates an 
executable. Signature-based approaches are 
unable to identify unknown types of malware, 
however. Security researchers suggested 
behavior-based detection to overcome these 
problems, which analyses the features and 
behavior of the file to decide whether it is 
indeed malware, although it may take some 
time to search and evaluate. Researchers have 

begun implementing machine learning to 
supplement their solutions in order to solve 
the previous drawbacks of conventional 
antivirus engines and keep pace with new 
attacks and variants, as machine learning is 
well suited for processing large quantities of 
data. [4]

3.  Malware Detection

In such a way, hackers present malware aimed 
at persuading people to install it. As it seems 
legal, users also do not know what the program 
is. Usually, we install it thinking that it is 
secure, but on the contrary, it's a major threat. 
That's how the malware gets into your system. 
When on the screen, it disperses and hides in 
numerous files, making it very difficult to 
identify. In order to access and record personal 
or useful information, it may connect directly 
to the operating system and start encrypting it 
[5]. Detection of malware is defined as the 
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient 
and reliable. Some of the general strategies for 
malware detection are:

      i. Signature-based

      ii. Heuristic Analysis

      iii. Anti-malware Software

      iv. Sandbox

Several classifiers have been implemented, 
such as linear classifiers (logistic regression, 
naive Bayes classifier), support for vector 
machinery, neural networks, random forests, 
etc.

Through both static and dynamic analysis, 
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4.  Need for Machine Learning in 
Malware Detection

Machine learning has created a drastic change 
in many industries, including cybersecurity, 
over the last decade. Among cybersecurity 
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect 
modern malware attacks and boost scanning 
engines. Proof of this belief is the number of 
studies on malware detection strategies that 
exploit machine learning reported in the last 
few years. The number of research papers 
released in 2018 is 7720, a 95 percent rise over 
2015 and a 476 percent increase over 2010, 
according to Google Scholar,1. This rise in the 
number of studies is the product of several 
factors, including but not limited to the 
increase in publicly labelled malware feeds, the 
increase in computing capacity at the same 
time as its price decrease, and the evolution of 

the field of machine learning, which has 
achieved ground-breaking success in a wide 
range of tasks such as computer vision and 
speech recognition [6]. Depending on the type 
of analysis, conventional machine learning 
methods can be categorized into two main 
categories, static and dynamic approaches. The 
primary difference between them is that static 
methods extract features from the static 
malware analysis, while dynamic methods 
extract features from the dynamic analysis. A 
third category may be considered, known as 
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw 
inputs in diverse fields have outshone neural 
networks. The performance of neural networks 
in the malware domain is mirrored by recent 
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is 
imported and the different columns are 
discussed in the dataset.

• Data cleaning: The required steps are 
taken after examining the dataset so that 
the dataset can be cleaned and all the null 
values and columns of not much signifi-
cance are removed so that they will not be 
of any concern in the training part.

• Data Training and Testing: When the 
information is transparent and ready for 
training, we spilled the information as a 
training dataset and testing dataset in an 
80:20 ratios so that the data was spilled in 

an 80:20 ratios.

In this paper, as we try to achieve the highest 
accuracy, we use two algorithms to see which 
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique 
of machine learning which uses regression and 
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker 
prediction models, usually decision trees. As other 
boosting techniques do it constructs the model in a 
phase-wise fashion and generalizes them by allowing 
an arbitrary differentiable loss function to be 
optimized. [7] For predictive model growth, gradient 
boosting is one of the most effective techniques. 
Gradient Boosting is teaching several models steadily, 
additively and sequentially. With gradients of loss 
function, gradient boosting takes place. What we 
strive to develop and maximize depends on a simple 
understanding of the loss function.

• In Gradient Boosting, three elements area 
feature for loss to be optimized or 
enhanced.

• A poor man who has learned to make 
predictions

• A supplementary model for 
incorporating disadvantaged students to 
minimize losses. [8][9]

It's important that we understand how the 
algorithm of Gradient Boost is implemented 
under the hood.

1. Calculate average of target label- We 
begin with a leaf that is the average value 
of the variable we want to forecast when 
solving regression problems. This leaf will 
be used in the procedural steps as a 
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the 
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the 
intention of predicting the residuals, we 
build a tree. In other words, a prediction of 
the residual value (not the desired label) 
will be found in every leaf. Any residuals 
will end up within the same leaf in the 
event that there are more residuals than 
leaves. We compute their average and 
position that inside the leaf when this 
happens.

4. Using the trees within the ensemble 
predict the target label. - Each sample 
passes through the newly developed tree's 
decision nodes before it reaches a given 
lead.

5. Compute the new residuals- The residuals 
will then be used as explained in step 3 for 
the leaves of the coming next decision 
tree.

6. Repeat steps 3 to 5 until the number of 
iterations matches the number (i.e. the 
number of estimators) defined by the 
hyper parameter.

7. To make a final prediction as to the value 
of the target variable, use all the trees in 
the ensemble once eligible. [10]

In the first step, the final forecast will be equal 
to the mean we determined, plus all the residu-
als predicted by the trees that make up the 
forest multiplied by the learning rate.

Random forests - Random forests or random 
decision forests are an ensemble learning 
method for classification, regression and other 
tasks that function by constructing a multitude 
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average 
prediction (regression) of the individual trees. 
Random forests are often used as "Blackbox" 
models in companies, as they produce rational 
predictions over a large range of data while 
requiring little configuration in packages such 
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps 
and diagrams below the working procedure 
can be explained:

1. From the training set select random K data 
points.

2. Use the selected data points to build 
decision trees associated with it (Subsets).

3. Choose a number N which represents the 
decision trees that you want to build.

4. Repeat Step 1 & 2.

5. Find the predictions for new data points 
for each decision tree and assign the new 
data points to the group that receives the 
majority votes. [12]

7.  Mplementation

We used a dataset that was made available 
from the Chiheb Chebbi - Mastering Machine 
Learning for Penetration Testing book for this 
work. There are approximately 138000 entries 
of legit and malware PE headers and 56 
columns as features in the dataset. In an 80 
percent preparation and 20 percent evaluation, 
the knowledge was divided.

We initially import and read the dataset, once 
that is done, we clean the dataset by dropping 
unnecessary features and null values. After that 
we split the dataset for training and testing. We 
import the necessary packages for making a 
decision tree, gradient boosted classifier and 
random forest classifier. Once done we fit that 
data respectively and predict the results.

Using a combination of these algorithms, after 
training and testing the algorithms, we were 
able to get a highly accurate outcome.

8.  Results

After training and testing both the algorithms, 
we can see that both of them give us a high 
accuracy output. 

9.  Conclusion

The algorithm used for training the data was 
Gradient Boosted classifier and random forest 
classifier which gives us an accuracy of 
98.764% and 99.311% respectively. After 
viewing the confusion matrix of the random 
forest classifier, we could conclude that the 
number of false positives were at 0.5505 and 
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of 
false positives were at 0.768 and false 
negatives were at 2.3099.

Our main objective was to come up with a 
system for machine learning that typically 
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero 
false positive rate. We have been really close to 
our target, but we still have a false positive rate 
that is non-zero. A variety of deterministic 
exemption mechanisms must be added in order 
for this system to become part of a highly 
competitive commercial product. In our view, 
machine learning detection of malware will not 
replace the existing methods of detection used 
by anti-virus vendors, but will come as an 
extension to them. Certain speed and memory 
limitations are placed on any commercial 
anti-virus product, so the most accurate 
algorithms should be used.
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1. Introduction

 Idealistic hackers attacked computers 
in the early days because they were eager to 
prove themselves. Cracking machines, 
however is an industry in today's world. 
Despite recent improvements in software and 
computer hardware security, both in frequency 
and sophistication, attacks on computer 
systems have increased. Regrettably, there are 
major drawbacks to current methods for 
detecting and analyzing unknown code 
samples. The Internet is a critical part of our 

everyday lives today. On the internet, there are 
many services and they are rising daily as well. 
Numerous reports indicate that malware's 
effect is worsening at an alarming pace. 
Although malware diversity is growing, anti- 
virus scanners are unable to fulfil security 
needs, resulting in attacks on millions of hosts. 
Around 65,63,145 different hosts were 
targeted, according to Kaspersky Labs, and in 
2015, 40,00,000 unique malware artefacts 
were found. Juniper Research (2016), in 
particular, projected that by 2019 the cost of 
data breaches will rise to $2.1 trillion globally 
[1]. Current studies show that script-kiddies 

properties of data to be exact about the 
estimates. The major part of this model is that 
it will learn the subquery representations of 
complex queries which will be used to build 
query execution plan using deep reinforcement 
learning. Since the 1970s, information base 
analysts have been dealing with framework 
enhancement and large-scale information-driv-
en applications, which are strongly associated 
with the first two components. Although deep 
learning methodologies are not often used in 
dealing with DBMS challenges, it is natural to 
wonder about the linkages between informa-
tion bases and profound learning. 

First, we have to examine that is the database 
community ready to adapt deep learning for 
DBMS. However, there are fewer examples of 
using machine learning for traditional database 
problems that are less uncertain, like indexing 
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases 
that are probabilistic like crowdsourcing etc. In 
particular, we divide the method in two parts, 
first representation of state of table using deep 
learning and then we will present a way to 
computes plan for the given query using the 
above states together with deep reinforcement 
learning.

Challenge of this approach, to represent data 
and query. First, we develop an approach that 
will incrementally generate result of subque-
ries. Subqueries and a new operation will be 
provided as input that will further predict the 
representation of output. This representation of 
output subquery will be used to derive the 

subquery’s cardinality.

The major part is that we will present a method 
that will use this representation to enumerates 
the query execution plan through deep 
reinforcement learning. Support learning is a 
generally beneficial structure used for dynamic 
in circumstances where a framework is 
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this 
deep learning approach to build an optimal 
query execution plan by modelling it as 
Markov process; in which each decision has its 
dependency on each stage. The figure below 
will illustrate our method. The figure below 
has DB and a query, the model will generate an 
optimal query execution plan by determining 
the series of state transitions 

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will 
select as action using deep reinforcement 
learning, the model moves to a new state at t 
+1, We've now built a bigger subquery. Each 
action is a query operation, and each state 
reflects the intermediate results of the subque-
ry. To build this representation, we used a 
neural network, i.e. a state transition function, 
NNST. NNST is a recursive function that 
generates the subquery representation at time 

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered 
above. The query plan's dynamics are 
bottom-up, with one operation at a time. 
Assume a subquery has been constructed at 
any step t of the query plan, and the state at t is 
represented by an n-dimensional vector ht. 
When the next action applied to the setup, at to 
this current database state leads to the next 
state, ht+1. The mapping, NNST: (ht, at) → 
ht+1 is called the state transition function. This 
state and state transition function are well 
known in applications of deep reinforcement 
learning. For Example, in the game of Chess, 
each possible position is called state and the 
transition of these states from one board 
position to another is well-defined. However, 
in the case of a database, if the query execution 
plan is not sufficiently described, we cannot 
forecast the status of the query. The core of our 
proposed strategy is to identify each state using 
a finite dimensional vector and then learn the 
state transition function using a deep reinforce-
ment learning model. We employ input signals 
and context from observed variables linked 
with database status to drive the training proce-
dure for this network. Throughout this work, 
we will utilise the cardinality of each subquery 
as an observable variable at any point of the 
plan. If we can learn a function, NNobserved, that 
maps this state to projected cardinalities at 
stage t, we should be able to learn a function, 
NNobserved, that maps this state to predicted 
cardinalities at stage t. In the figure below, we 
display both NNST and NNobserved. 

Figure 2: Representation of NNST and 

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences. 
Each state will learn to precisely depict a repre-
sentation using this approach. Once the 
technique has been fully trained, we may 
correct it and use deep reinforcement learning 
to create a suitable action policy, resulting in 
an optimal query execution plan.

2.  Literature Review:

Extensive Learning Deep learning methods, 
commonly known as feedforward neural 
networks, may imprecisely approximate a 
nonlinear function, f [3]. Through a collection 
of learnt parameters spread across multiple 
layers, these models establish a mapping from 
an input x to an output y. The behavior of the 
interior layers is not dictated by the input data 
during training; instead, these models must 
learn how to employ the layers to create the 
proper output. Because the layers have no 

subquery representation. Back propagation is 
used to alter the weights for both functions 
while we train this model.

Before moving forward and start using the 
recursive NNST model, we have to understand 
an additional function, NNinit. NNinit will take 
(x0, a0) as input, where x0 represents a vector 
that holds the properties of the database D 
whereas a0 shows a relational operator. The 
model outputs the cardinality of the query that 
executes the operation encoded in a0 on D. By 
this we can achieve the optimal time on the 
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the 
database, D. For each attribute in the dataset D, 
we use the following features to define x0: the 
min value, the max value and the number of 
distinct values.

4.  Conclusion

In this paper, we provide a model for query 
optimization that uses deep reinforcement 
learning. We employ deep neural networks to 

gradually learn state representations of subque-
ries by storing fundamental information about 
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum 
plans.
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