
direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3]. Learning through
Reinforcement learning models can map states
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
tion of the environment, S T, and choose an
action, at. The policy determines the action to
be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The
model will arrive at a new state, S T + 1, based on
the action chosen. The environment then
provides the agent a reward, r T + 1, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model
records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors
required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (ht, at) as input, where ht

is a vector representation of a subquery and at
is a single relational action on ht. Importantly,
because ht is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NNST function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NNObserved
function. This NNObserved function learns to
predict observed variables by mapping a

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martín Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

1. Introduction

 Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least expensive alternative from
semantically equivalent arrangement options.

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic
programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence
are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We
will construct a model that can learn data and

are generating more and more attacks or are
automated. To date, attacks on commercial and
government organizations, such as
ransomware and malware, continue to pose a
significant threat and challenge. Such attacks
can come in various ways and sizes. An
enormous challenge is the ability of the global
security community to develop and provide
expertise in cybersecurity. There is widespread
awareness of the global scarcity of
cybersecurity and talent. Cybercrimes, such as
financial fraud, child exploitation online and
payment fraud, are so common that they
demand international 24-hour response and
collaboration between multi-national law
enforcement agencies [2]. For single users and
organizations, malware defense of computer
systems is therefore one of the most critical
cybersecurity activities, as even a single attack
may result in compromised data and sufficient
losses. This research explores how machine
learning can be used in the field of
cybersecurity, along with how it can be used to
detect malware. In order to detect malware, we
will examine the PE headers of malware and
non-malware samples or files by creating and
training a classifier that will determine whether
the file has been attacked by malware or not
after training.

2. Evolution of Malware

In order to protect networks and computer
systems from attacks, the diversity, sophistica-
tion and availability of malicious software
present enormous challenges. Malware is
continually changing and challenges security
researchers and scientists to strengthen their
cyber defenses to keep pace. Owing to the use
of polymorphic and metamorphic methods

used to avoid detection and conceal its true
intent, the prevalence of malware has increased.
To mutate the code while keeping the original
functionality intact, polymorphic malware uses
a polymorphic engine. The two most common
ways to conceal code are packaging and
encryption [3]. Through one or more layers of
compression, packers cover a program's real
code. Then the unpacking routines restore the
original code and execute it in memory at
runtime. To make it harder for researchers to
analyze the software, crypters encrypt and
manipulate malware or part of its code. A
crypter includes a stub that is used for
malicious code encryption and decryption.
Whenever it's propagated, metamorphic
malware rewrites the code to an equivalent.
Multiple transformation techniques, including
but not limited to, register renaming, code
permutation, code expansion, code shrinking
and insertion of garbage code, can be used by
malware authors. The combination of the
above techniques resulted in increasingly
increasing quantities of malware, making
time-consuming, expensive and more compli-
cated forensic investigations of malware cases.
There are some issues with conventional
antivirus solutions that rely on signature-based
and heuristic/behavioral methods. A signature
is a unique feature or collection of features that
like a fingerprint, uniquely differentiates an
executable. Signature-based approaches are
unable to identify unknown types of malware,
however. Security researchers suggested
behavior-based detection to overcome these
problems, which analyses the features and
behavior of the file to decide whether it is
indeed malware, although it may take some
time to search and evaluate. Researchers have

begun implementing machine learning to
supplement their solutions in order to solve
the previous drawbacks of conventional
antivirus engines and keep pace with new
attacks and variants, as machine learning is
well suited for processing large quantities of
data. [4]

3. Malware Detection

In such a way, hackers present malware aimed
at persuading people to install it. As it seems
legal, users also do not know what the program
is. Usually, we install it thinking that it is
secure, but on the contrary, it's a major threat.
That's how the malware gets into your system.
When on the screen, it disperses and hides in
numerous files, making it very difficult to
identify. In order to access and record personal
or useful information, it may connect directly
to the operating system and start encrypting it
[5]. Detection of malware is defined as the
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient
and reliable. Some of the general strategies for
malware detection are:

 i. Signature-based

 ii. Heuristic Analysis

 iii. Anti-malware Software

 iv. Sandbox

Several classifiers have been implemented,
such as linear classifiers (logistic regression,
naive Bayes classifier), support for vector
machinery, neural networks, random forests,
etc.

Through both static and dynamic analysis,
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4. Need for Machine Learning in
Malware Detection

Machine learning has created a drastic change
in many industries, including cybersecurity,
over the last decade. Among cybersecurity
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect
modern malware attacks and boost scanning
engines. Proof of this belief is the number of
studies on malware detection strategies that
exploit machine learning reported in the last
few years. The number of research papers
released in 2018 is 7720, a 95 percent rise over
2015 and a 476 percent increase over 2010,
according to Google Scholar,1. This rise in the
number of studies is the product of several
factors, including but not limited to the
increase in publicly labelled malware feeds, the
increase in computing capacity at the same
time as its price decrease, and the evolution of

the field of machine learning, which has
achieved ground-breaking success in a wide
range of tasks such as computer vision and
speech recognition [6]. Depending on the type
of analysis, conventional machine learning
methods can be categorized into two main
categories, static and dynamic approaches. The
primary difference between them is that static
methods extract features from the static
malware analysis, while dynamic methods
extract features from the dynamic analysis. A
third category may be considered, known as
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw
inputs in diverse fields have outshone neural
networks. The performance of neural networks
in the malware domain is mirrored by recent
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is
imported and the different columns are
discussed in the dataset.

• Data cleaning: The required steps are
taken after examining the dataset so that
the dataset can be cleaned and all the null
values and columns of not much signifi-
cance are removed so that they will not be
of any concern in the training part.

• Data Training and Testing: When the
information is transparent and ready for
training, we spilled the information as a
training dataset and testing dataset in an
80:20 ratios so that the data was spilled in

an 80:20 ratios.

In this paper, as we try to achieve the highest
accuracy, we use two algorithms to see which
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique
of machine learning which uses regression and
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker
prediction models, usually decision trees. As other
boosting techniques do it constructs the model in a
phase-wise fashion and generalizes them by allowing
an arbitrary differentiable loss function to be
optimized. [7] For predictive model growth, gradient
boosting is one of the most effective techniques.
Gradient Boosting is teaching several models steadily,
additively and sequentially. With gradients of loss
function, gradient boosting takes place. What we
strive to develop and maximize depends on a simple
understanding of the loss function.

• In Gradient Boosting, three elements area
feature for loss to be optimized or
enhanced.

• A poor man who has learned to make
predictions

• A supplementary model for
incorporating disadvantaged students to
minimize losses. [8][9]

It's important that we understand how the
algorithm of Gradient Boost is implemented
under the hood.

1. Calculate average of target label- We
begin with a leaf that is the average value
of the variable we want to forecast when
solving regression problems. This leaf will
be used in the procedural steps as a
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the
intention of predicting the residuals, we
build a tree. In other words, a prediction of
the residual value (not the desired label)
will be found in every leaf. Any residuals
will end up within the same leaf in the
event that there are more residuals than
leaves. We compute their average and
position that inside the leaf when this
happens.

4. Using the trees within the ensemble
predict the target label. - Each sample
passes through the newly developed tree's
decision nodes before it reaches a given
lead.

5. Compute the new residuals- The residuals
will then be used as explained in step 3 for
the leaves of the coming next decision
tree.

6. Repeat steps 3 to 5 until the number of
iterations matches the number (i.e. the
number of estimators) defined by the
hyper parameter.

7. To make a final prediction as to the value
of the target variable, use all the trees in
the ensemble once eligible. [10]

In the first step, the final forecast will be equal
to the mean we determined, plus all the residu-
als predicted by the trees that make up the
forest multiplied by the learning rate.

Random forests - Random forests or random
decision forests are an ensemble learning
method for classification, regression and other
tasks that function by constructing a multitude
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average
prediction (regression) of the individual trees.
Random forests are often used as "Blackbox"
models in companies, as they produce rational
predictions over a large range of data while
requiring little configuration in packages such
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps
and diagrams below the working procedure
can be explained:

1. From the training set select random K data
points.

2. Use the selected data points to build
decision trees associated with it (Subsets).

3. Choose a number N which represents the
decision trees that you want to build.

4. Repeat Step 1 & 2.

5. Find the predictions for new data points
for each decision tree and assign the new
data points to the group that receives the
majority votes. [12]

7. Mplementation

We used a dataset that was made available
from the Chiheb Chebbi - Mastering Machine
Learning for Penetration Testing book for this
work. There are approximately 138000 entries
of legit and malware PE headers and 56
columns as features in the dataset. In an 80
percent preparation and 20 percent evaluation,
the knowledge was divided.

We initially import and read the dataset, once
that is done, we clean the dataset by dropping
unnecessary features and null values. After that
we split the dataset for training and testing. We
import the necessary packages for making a
decision tree, gradient boosted classifier and
random forest classifier. Once done we fit that
data respectively and predict the results.

Using a combination of these algorithms, after
training and testing the algorithms, we were
able to get a highly accurate outcome.

8. Results

After training and testing both the algorithms,
we can see that both of them give us a high
accuracy output.

9. Conclusion

The algorithm used for training the data was
Gradient Boosted classifier and random forest
classifier which gives us an accuracy of
98.764% and 99.311% respectively. After
viewing the confusion matrix of the random
forest classifier, we could conclude that the
number of false positives were at 0.5505 and
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of
false positives were at 0.768 and false
negatives were at 2.3099.

Our main objective was to come up with a
system for machine learning that typically
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero
false positive rate. We have been really close to
our target, but we still have a false positive rate
that is non-zero. A variety of deterministic
exemption mechanisms must be added in order
for this system to become part of a highly
competitive commercial product. In our view,
machine learning detection of malware will not
replace the existing methods of detection used
by anti-virus vendors, but will come as an
extension to them. Certain speed and memory
limitations are placed on any commercial
anti-virus product, so the most accurate
algorithms should be used.

10. References

[1] Ahmadi etal., 2016. M. Ahmadi, D.
Ulyanov, S. Semenov, M. Trofimov, G.
Giacinto - Novel feature extraction,
selection and fusion for effective
malware family classification

[2] AL-Hawawreh etal., 2018 M. AL-Ha-
wawreh, N. Moustafa, E. Sitnikova -
Identification of malicious activities in
industrial internet of things based on
deep learning models

[3] Athiwaratkun etal., 2017 B. Athiwarat-
kun, J.W. Stokes - Malware classifica-
tion with lstm and gru language models
and a character- level cnn

[4] D. Bekerman, B. Shapira, L. Rokach, A.
Bar - Unknown malware detection using
network traffic classification 09 2015

[5] B. Biggio, F. Roli - Wild patterns: ten
years after the rise of adversarial
machine learning

[6] I. Santos, Y. K. Penya, J. Devesa, and P.
G. Garcia, “N-grams- based file signa-
tures for malware detection,” 2009.

[7] K. Rieck, T. Holz, C. Willems, P. D¨us-
sel, and P. Laskov, “Learning and
classification of malware behavior,” in
DIMVA ’08: Proceedings of the 5th
international conference on Detection of
Intrusions and Malware, and Vulnerabil-
ity Assessment. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 108–125.

[8] E. Konstantinou, “Metamorphic virus:
Analysis and detection,” 2008, Techni-
cal Report RHUL-MA-2008-2, Search
Security Award M.Sc. thesis, 93 pages.

[9] Gibert etal., 2019 D. Gibert, C. Mateu, J.
Planes - A hierarchical convolutional
neural network for malware classifica-
tion. The International Joint Conference
on Neural Networks 2019, IEEE (2019),
pp. 1-8

[10] X. Guo, Y. Yin, C. Dong, G. Yang, G.
Zhou - On the class imbalance problem
2008 Fourth International Conference
on Natural Computation, vol. 4 (Oct
2008), pp. 192-201

[11] Hall, 1999 M.A. Hall - Correla-
tion-based Feature Selection for
Machine Learning Ph.D. thesis The
University of Waikato (1999)

[12] W. Han, J. Xue, Y. Wang, L. Huang, Z.
Kong, L. MaoMaldae: - Detecting and
explaining malware based on correlation
and fusion of static and dynamic charac-
teristics Comput. Secur., 83 (2019), pp.
208-233

[13] W. Han, J. Xue, Y. Wang, Z. Liu, Z.
KongMalinsight: a systematic profil-
ing-based malware detection framework
J. Netw. Comput. Appl., 125 (2019), pp.
236-250

[14] X. Hu, K.G. Shin, S. Bhatkar, K. Griffin
Mutantx-s: scalable malware clustering
based on static features Presented as Part
of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13),
USENIX, San Jose, CA (2013), pp.
187-198

[15] Huang and Stokes, 2016 W. Huang, J.W.
StokesMtnet: a multi- task neural
network for dynamic malware classifi-
cation Caballero J., Zurutuza U., Rodr-
guez R.J. (Eds.), Detection of Intrusions
and Malware, and Vulnerability Assess-
ment, Springer International Publishing,
Cham (2016), pp. 399-418

[16] X. Zhang, J. Zhao, Y. LeCun Charac-
ter-level convolutional networks for text
classification Proceedings of the 28th

International Conference on Neural
Information Processing Systems, ume 1,
MIT Press, Cambridge, MA, USA
(2015), pp.

[17] D. Uppal, R. Sinha, V. Mehra, V. Jain -
Malware detection and classification
based on extraction of api sequences
2014 International Conference on
Advances in Computing, Communica-
tions and Informatics (ICACCI) (Sep.
2014)

[18] A. Souri, R. Hosseini - A state-of-the-art
survey of malware detection approaches
using data mining techniques
Human-centric Computing and Informa-
tion Sciences, 8 (1) (Jan 2018),

[19] I E. Raff, J. Barker, J. Sylvester, R. Bran-
don, B. Catanzaro, C.K. Nicholas -
Malware detection by eating a whole
EXE - The Workshops of the the
Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans,
Louisiana, USA, February 2- 7, 2018
(2018)

[20] A. Moser, C. Kruegel, E. Kirda - Limits
of static analysis for malware detection
Twenty-Third Annual Computer Securi-
ty Applications Conference (ACSAC
2007) (Dec 2007), pp. 421-43

LGU International Journal for
Electronic Crime Investigation

LGU (IJECI)
ISSN: 2522-3429 (Print)
ISSN: 2616-6003 (Online)

Research Article

Shairoze et al.LGU (IJECI) 2020

Vol. 5 issue 3 Year 2021

1. Introduction

 Idealistic hackers attacked computers
in the early days because they were eager to
prove themselves. Cracking machines,
however is an industry in today's world.
Despite recent improvements in software and
computer hardware security, both in frequency
and sophistication, attacks on computer
systems have increased. Regrettably, there are
major drawbacks to current methods for
detecting and analyzing unknown code
samples. The Internet is a critical part of our

everyday lives today. On the internet, there are
many services and they are rising daily as well.
Numerous reports indicate that malware's
effect is worsening at an alarming pace.
Although malware diversity is growing, anti-
virus scanners are unable to fulfil security
needs, resulting in attacks on millions of hosts.
Around 65,63,145 different hosts were
targeted, according to Kaspersky Labs, and in
2015, 40,00,000 unique malware artefacts
were found. Juniper Research (2016), in
particular, projected that by 2019 the cost of
data breaches will rise to $2.1 trillion globally
[1]. Current studies show that script-kiddies

Machine Learning in Malware Detection
Muhammad Shairoze Malik*

13beemmalik@seecs.edu.pk
National University of Science

and Technology Islamabad

Abstract:
Malware has become one of the biggest cyber threats today with the rapid growth of the Internet.
Malware can be referred to as any program that performs malicious acts, including data theft, espio-
nage, etc. In a world of growing technology, protection should also increase at the same time.
Machine learning has played a significant role in operating systems over the years. Cybersecurity is
capable of using machine learning to boost organizations’ detection of malware, triage, breach recog-
nition and security alert. Machine learning will significantly change the cyber security climate. New
techniques such as machine learning must be used to solve the rising malware problem. This paper
aims to research how cybersecurity can be used for machine learning and how it can be used to detect
malware. We will look at the PE (portable executable) headers of samples of malware and non-mal-
ware samples and create a classifier for malware that can detect whether or not malware is present.

Keywords: Cybersecurity, detection, malware, machine learning, PE headers, classifier, prepara-
tion, boost

29LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 05 (2021)

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-
tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement
learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of
output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector ht.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NNST: (ht, at) →
ht+1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
plan. If we can learn a function, NNobserved, that
maps this state to projected cardinalities at
stage t, we should be able to learn a function,
NNobserved, that maps this state to predicted
cardinalities at stage t. In the figure below, we
display both NNST and NNobserved.

Figure 2: Representation of NNST and

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in
an optimal query execution plan.

2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the
proper output. Because the layers have no

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NNST model, we have to understand
an additional function, NNinit. NNinit will take
(x0, a0) as input, where x0 represents a vector
that holds the properties of the database D
whereas a0 shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a0 on D. By
this we can achieve the optimal time on the
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x0: the
min value, the max value and the number of
distinct values.

4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement
learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum
plans.

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,
2008.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wang†, Meihui Zhang et al.
Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3]. Learning through
Reinforcement learning models can map states
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
tion of the environment, S T, and choose an
action, at. The policy determines the action to
be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The
model will arrive at a new state, S T + 1, based on
the action chosen. The environment then
provides the agent a reward, r T + 1, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model
records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors
required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (ht, at) as input, where ht

is a vector representation of a subquery and at
is a single relational action on ht. Importantly,
because ht is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NNST function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NNObserved
function. This NNObserved function learns to
predict observed variables by mapping a

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martín Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

1. Introduction

 Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least expensive alternative from
semantically equivalent arrangement options.

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic
programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence
are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We
will construct a model that can learn data and

are generating more and more attacks or are
automated. To date, attacks on commercial and
government organizations, such as
ransomware and malware, continue to pose a
significant threat and challenge. Such attacks
can come in various ways and sizes. An
enormous challenge is the ability of the global
security community to develop and provide
expertise in cybersecurity. There is widespread
awareness of the global scarcity of
cybersecurity and talent. Cybercrimes, such as
financial fraud, child exploitation online and
payment fraud, are so common that they
demand international 24-hour response and
collaboration between multi-national law
enforcement agencies [2]. For single users and
organizations, malware defense of computer
systems is therefore one of the most critical
cybersecurity activities, as even a single attack
may result in compromised data and sufficient
losses. This research explores how machine
learning can be used in the field of
cybersecurity, along with how it can be used to
detect malware. In order to detect malware, we
will examine the PE headers of malware and
non-malware samples or files by creating and
training a classifier that will determine whether
the file has been attacked by malware or not
after training.

2. Evolution of Malware

In order to protect networks and computer
systems from attacks, the diversity, sophistica-
tion and availability of malicious software
present enormous challenges. Malware is
continually changing and challenges security
researchers and scientists to strengthen their
cyber defenses to keep pace. Owing to the use
of polymorphic and metamorphic methods

used to avoid detection and conceal its true
intent, the prevalence of malware has increased.
To mutate the code while keeping the original
functionality intact, polymorphic malware uses
a polymorphic engine. The two most common
ways to conceal code are packaging and
encryption [3]. Through one or more layers of
compression, packers cover a program's real
code. Then the unpacking routines restore the
original code and execute it in memory at
runtime. To make it harder for researchers to
analyze the software, crypters encrypt and
manipulate malware or part of its code. A
crypter includes a stub that is used for
malicious code encryption and decryption.
Whenever it's propagated, metamorphic
malware rewrites the code to an equivalent.
Multiple transformation techniques, including
but not limited to, register renaming, code
permutation, code expansion, code shrinking
and insertion of garbage code, can be used by
malware authors. The combination of the
above techniques resulted in increasingly
increasing quantities of malware, making
time-consuming, expensive and more compli-
cated forensic investigations of malware cases.
There are some issues with conventional
antivirus solutions that rely on signature-based
and heuristic/behavioral methods. A signature
is a unique feature or collection of features that
like a fingerprint, uniquely differentiates an
executable. Signature-based approaches are
unable to identify unknown types of malware,
however. Security researchers suggested
behavior-based detection to overcome these
problems, which analyses the features and
behavior of the file to decide whether it is
indeed malware, although it may take some
time to search and evaluate. Researchers have

Machine Learning in Malware Detection

30 LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 05 (2021)

begun implementing machine learning to
supplement their solutions in order to solve
the previous drawbacks of conventional
antivirus engines and keep pace with new
attacks and variants, as machine learning is
well suited for processing large quantities of
data. [4]

3. Malware Detection

In such a way, hackers present malware aimed
at persuading people to install it. As it seems
legal, users also do not know what the program
is. Usually, we install it thinking that it is
secure, but on the contrary, it's a major threat.
That's how the malware gets into your system.
When on the screen, it disperses and hides in
numerous files, making it very difficult to
identify. In order to access and record personal
or useful information, it may connect directly
to the operating system and start encrypting it
[5]. Detection of malware is defined as the
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient
and reliable. Some of the general strategies for
malware detection are:

 i. Signature-based

 ii. Heuristic Analysis

 iii. Anti-malware Software

 iv. Sandbox

Several classifiers have been implemented,
such as linear classifiers (logistic regression,
naive Bayes classifier), support for vector
machinery, neural networks, random forests,
etc.

Through both static and dynamic analysis,
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4. Need for Machine Learning in
Malware Detection

Machine learning has created a drastic change
in many industries, including cybersecurity,
over the last decade. Among cybersecurity
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect
modern malware attacks and boost scanning
engines. Proof of this belief is the number of
studies on malware detection strategies that
exploit machine learning reported in the last
few years. The number of research papers
released in 2018 is 7720, a 95 percent rise over
2015 and a 476 percent increase over 2010,
according to Google Scholar,1. This rise in the
number of studies is the product of several
factors, including but not limited to the
increase in publicly labelled malware feeds, the
increase in computing capacity at the same
time as its price decrease, and the evolution of

the field of machine learning, which has
achieved ground-breaking success in a wide
range of tasks such as computer vision and
speech recognition [6]. Depending on the type
of analysis, conventional machine learning
methods can be categorized into two main
categories, static and dynamic approaches. The
primary difference between them is that static
methods extract features from the static
malware analysis, while dynamic methods
extract features from the dynamic analysis. A
third category may be considered, known as
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw
inputs in diverse fields have outshone neural
networks. The performance of neural networks
in the malware domain is mirrored by recent
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is
imported and the different columns are
discussed in the dataset.

• Data cleaning: The required steps are
taken after examining the dataset so that
the dataset can be cleaned and all the null
values and columns of not much signifi-
cance are removed so that they will not be
of any concern in the training part.

• Data Training and Testing: When the
information is transparent and ready for
training, we spilled the information as a
training dataset and testing dataset in an
80:20 ratios so that the data was spilled in

an 80:20 ratios.

In this paper, as we try to achieve the highest
accuracy, we use two algorithms to see which
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique
of machine learning which uses regression and
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker
prediction models, usually decision trees. As other
boosting techniques do it constructs the model in a
phase-wise fashion and generalizes them by allowing
an arbitrary differentiable loss function to be
optimized. [7] For predictive model growth, gradient
boosting is one of the most effective techniques.
Gradient Boosting is teaching several models steadily,
additively and sequentially. With gradients of loss
function, gradient boosting takes place. What we
strive to develop and maximize depends on a simple
understanding of the loss function.

• In Gradient Boosting, three elements area
feature for loss to be optimized or
enhanced.

• A poor man who has learned to make
predictions

• A supplementary model for
incorporating disadvantaged students to
minimize losses. [8][9]

It's important that we understand how the
algorithm of Gradient Boost is implemented
under the hood.

1. Calculate average of target label- We
begin with a leaf that is the average value
of the variable we want to forecast when
solving regression problems. This leaf will
be used in the procedural steps as a
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the
intention of predicting the residuals, we
build a tree. In other words, a prediction of
the residual value (not the desired label)
will be found in every leaf. Any residuals
will end up within the same leaf in the
event that there are more residuals than
leaves. We compute their average and
position that inside the leaf when this
happens.

4. Using the trees within the ensemble
predict the target label. - Each sample
passes through the newly developed tree's
decision nodes before it reaches a given
lead.

5. Compute the new residuals- The residuals
will then be used as explained in step 3 for
the leaves of the coming next decision
tree.

6. Repeat steps 3 to 5 until the number of
iterations matches the number (i.e. the
number of estimators) defined by the
hyper parameter.

7. To make a final prediction as to the value
of the target variable, use all the trees in
the ensemble once eligible. [10]

In the first step, the final forecast will be equal
to the mean we determined, plus all the residu-
als predicted by the trees that make up the
forest multiplied by the learning rate.

Random forests - Random forests or random
decision forests are an ensemble learning
method for classification, regression and other
tasks that function by constructing a multitude
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average
prediction (regression) of the individual trees.
Random forests are often used as "Blackbox"
models in companies, as they produce rational
predictions over a large range of data while
requiring little configuration in packages such
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps
and diagrams below the working procedure
can be explained:

1. From the training set select random K data
points.

2. Use the selected data points to build
decision trees associated with it (Subsets).

3. Choose a number N which represents the
decision trees that you want to build.

4. Repeat Step 1 & 2.

5. Find the predictions for new data points
for each decision tree and assign the new
data points to the group that receives the
majority votes. [12]

7. Mplementation

We used a dataset that was made available
from the Chiheb Chebbi - Mastering Machine
Learning for Penetration Testing book for this
work. There are approximately 138000 entries
of legit and malware PE headers and 56
columns as features in the dataset. In an 80
percent preparation and 20 percent evaluation,
the knowledge was divided.

We initially import and read the dataset, once
that is done, we clean the dataset by dropping
unnecessary features and null values. After that
we split the dataset for training and testing. We
import the necessary packages for making a
decision tree, gradient boosted classifier and
random forest classifier. Once done we fit that
data respectively and predict the results.

Using a combination of these algorithms, after
training and testing the algorithms, we were
able to get a highly accurate outcome.

8. Results

After training and testing both the algorithms,
we can see that both of them give us a high
accuracy output.

9. Conclusion

The algorithm used for training the data was
Gradient Boosted classifier and random forest
classifier which gives us an accuracy of
98.764% and 99.311% respectively. After
viewing the confusion matrix of the random
forest classifier, we could conclude that the
number of false positives were at 0.5505 and
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of
false positives were at 0.768 and false
negatives were at 2.3099.

Our main objective was to come up with a
system for machine learning that typically
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero
false positive rate. We have been really close to
our target, but we still have a false positive rate
that is non-zero. A variety of deterministic
exemption mechanisms must be added in order
for this system to become part of a highly
competitive commercial product. In our view,
machine learning detection of malware will not
replace the existing methods of detection used
by anti-virus vendors, but will come as an
extension to them. Certain speed and memory
limitations are placed on any commercial
anti-virus product, so the most accurate
algorithms should be used.

10. References

[1] Ahmadi etal., 2016. M. Ahmadi, D.
Ulyanov, S. Semenov, M. Trofimov, G.
Giacinto - Novel feature extraction,
selection and fusion for effective
malware family classification

[2] AL-Hawawreh etal., 2018 M. AL-Ha-
wawreh, N. Moustafa, E. Sitnikova -
Identification of malicious activities in
industrial internet of things based on
deep learning models

[3] Athiwaratkun etal., 2017 B. Athiwarat-
kun, J.W. Stokes - Malware classifica-
tion with lstm and gru language models
and a character- level cnn

[4] D. Bekerman, B. Shapira, L. Rokach, A.
Bar - Unknown malware detection using
network traffic classification 09 2015

[5] B. Biggio, F. Roli - Wild patterns: ten
years after the rise of adversarial
machine learning

[6] I. Santos, Y. K. Penya, J. Devesa, and P.
G. Garcia, “N-grams- based file signa-
tures for malware detection,” 2009.

[7] K. Rieck, T. Holz, C. Willems, P. D¨us-
sel, and P. Laskov, “Learning and
classification of malware behavior,” in
DIMVA ’08: Proceedings of the 5th
international conference on Detection of
Intrusions and Malware, and Vulnerabil-
ity Assessment. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 108–125.

[8] E. Konstantinou, “Metamorphic virus:
Analysis and detection,” 2008, Techni-
cal Report RHUL-MA-2008-2, Search
Security Award M.Sc. thesis, 93 pages.

[9] Gibert etal., 2019 D. Gibert, C. Mateu, J.
Planes - A hierarchical convolutional
neural network for malware classifica-
tion. The International Joint Conference
on Neural Networks 2019, IEEE (2019),
pp. 1-8

[10] X. Guo, Y. Yin, C. Dong, G. Yang, G.
Zhou - On the class imbalance problem
2008 Fourth International Conference
on Natural Computation, vol. 4 (Oct
2008), pp. 192-201

[11] Hall, 1999 M.A. Hall - Correla-
tion-based Feature Selection for
Machine Learning Ph.D. thesis The
University of Waikato (1999)

[12] W. Han, J. Xue, Y. Wang, L. Huang, Z.
Kong, L. MaoMaldae: - Detecting and
explaining malware based on correlation
and fusion of static and dynamic charac-
teristics Comput. Secur., 83 (2019), pp.
208-233

[13] W. Han, J. Xue, Y. Wang, Z. Liu, Z.
KongMalinsight: a systematic profil-
ing-based malware detection framework
J. Netw. Comput. Appl., 125 (2019), pp.
236-250

[14] X. Hu, K.G. Shin, S. Bhatkar, K. Griffin
Mutantx-s: scalable malware clustering
based on static features Presented as Part
of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13),
USENIX, San Jose, CA (2013), pp.
187-198

[15] Huang and Stokes, 2016 W. Huang, J.W.
StokesMtnet: a multi- task neural
network for dynamic malware classifi-
cation Caballero J., Zurutuza U., Rodr-
guez R.J. (Eds.), Detection of Intrusions
and Malware, and Vulnerability Assess-
ment, Springer International Publishing,
Cham (2016), pp. 399-418

[16] X. Zhang, J. Zhao, Y. LeCun Charac-
ter-level convolutional networks for text
classification Proceedings of the 28th

International Conference on Neural
Information Processing Systems, ume 1,
MIT Press, Cambridge, MA, USA
(2015), pp.

[17] D. Uppal, R. Sinha, V. Mehra, V. Jain -
Malware detection and classification
based on extraction of api sequences
2014 International Conference on
Advances in Computing, Communica-
tions and Informatics (ICACCI) (Sep.
2014)

[18] A. Souri, R. Hosseini - A state-of-the-art
survey of malware detection approaches
using data mining techniques
Human-centric Computing and Informa-
tion Sciences, 8 (1) (Jan 2018),

[19] I E. Raff, J. Barker, J. Sylvester, R. Bran-
don, B. Catanzaro, C.K. Nicholas -
Malware detection by eating a whole
EXE - The Workshops of the the
Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans,
Louisiana, USA, February 2- 7, 2018
(2018)

[20] A. Moser, C. Kruegel, E. Kirda - Limits
of static analysis for malware detection
Twenty-Third Annual Computer Securi-
ty Applications Conference (ACSAC
2007) (Dec 2007), pp. 421-43

1. Introduction

 Idealistic hackers attacked computers
in the early days because they were eager to
prove themselves. Cracking machines,
however is an industry in today's world.
Despite recent improvements in software and
computer hardware security, both in frequency
and sophistication, attacks on computer
systems have increased. Regrettably, there are
major drawbacks to current methods for
detecting and analyzing unknown code
samples. The Internet is a critical part of our

everyday lives today. On the internet, there are
many services and they are rising daily as well.
Numerous reports indicate that malware's
effect is worsening at an alarming pace.
Although malware diversity is growing, anti-
virus scanners are unable to fulfil security
needs, resulting in attacks on millions of hosts.
Around 65,63,145 different hosts were
targeted, according to Kaspersky Labs, and in
2015, 40,00,000 unique malware artefacts
were found. Juniper Research (2016), in
particular, projected that by 2019 the cost of
data breaches will rise to $2.1 trillion globally
[1]. Current studies show that script-kiddies

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-
tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement
learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of
output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector ht.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NNST: (ht, at) →
ht+1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
plan. If we can learn a function, NNobserved, that
maps this state to projected cardinalities at
stage t, we should be able to learn a function,
NNobserved, that maps this state to predicted
cardinalities at stage t. In the figure below, we
display both NNST and NNobserved.

Figure 2: Representation of NNST and

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in
an optimal query execution plan.

2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the
proper output. Because the layers have no

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NNST model, we have to understand
an additional function, NNinit. NNinit will take
(x0, a0) as input, where x0 represents a vector
that holds the properties of the database D
whereas a0 shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a0 on D. By
this we can achieve the optimal time on the
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x0: the
min value, the max value and the number of
distinct values.

4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement
learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum
plans.

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,
2008.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wang†, Meihui Zhang et al.
Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3]. Learning through
Reinforcement learning models can map states
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
tion of the environment, S T, and choose an
action, at. The policy determines the action to
be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The
model will arrive at a new state, S T + 1, based on
the action chosen. The environment then
provides the agent a reward, r T + 1, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model
records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors
required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (ht, at) as input, where ht

is a vector representation of a subquery and at
is a single relational action on ht. Importantly,
because ht is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NNST function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NNObserved
function. This NNObserved function learns to
predict observed variables by mapping a

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martín Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

1. Introduction

 Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least expensive alternative from
semantically equivalent arrangement options.

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic
programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence
are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We
will construct a model that can learn data and

are generating more and more attacks or are
automated. To date, attacks on commercial and
government organizations, such as
ransomware and malware, continue to pose a
significant threat and challenge. Such attacks
can come in various ways and sizes. An
enormous challenge is the ability of the global
security community to develop and provide
expertise in cybersecurity. There is widespread
awareness of the global scarcity of
cybersecurity and talent. Cybercrimes, such as
financial fraud, child exploitation online and
payment fraud, are so common that they
demand international 24-hour response and
collaboration between multi-national law
enforcement agencies [2]. For single users and
organizations, malware defense of computer
systems is therefore one of the most critical
cybersecurity activities, as even a single attack
may result in compromised data and sufficient
losses. This research explores how machine
learning can be used in the field of
cybersecurity, along with how it can be used to
detect malware. In order to detect malware, we
will examine the PE headers of malware and
non-malware samples or files by creating and
training a classifier that will determine whether
the file has been attacked by malware or not
after training.

2. Evolution of Malware

In order to protect networks and computer
systems from attacks, the diversity, sophistica-
tion and availability of malicious software
present enormous challenges. Malware is
continually changing and challenges security
researchers and scientists to strengthen their
cyber defenses to keep pace. Owing to the use
of polymorphic and metamorphic methods

used to avoid detection and conceal its true
intent, the prevalence of malware has increased.
To mutate the code while keeping the original
functionality intact, polymorphic malware uses
a polymorphic engine. The two most common
ways to conceal code are packaging and
encryption [3]. Through one or more layers of
compression, packers cover a program's real
code. Then the unpacking routines restore the
original code and execute it in memory at
runtime. To make it harder for researchers to
analyze the software, crypters encrypt and
manipulate malware or part of its code. A
crypter includes a stub that is used for
malicious code encryption and decryption.
Whenever it's propagated, metamorphic
malware rewrites the code to an equivalent.
Multiple transformation techniques, including
but not limited to, register renaming, code
permutation, code expansion, code shrinking
and insertion of garbage code, can be used by
malware authors. The combination of the
above techniques resulted in increasingly
increasing quantities of malware, making
time-consuming, expensive and more compli-
cated forensic investigations of malware cases.
There are some issues with conventional
antivirus solutions that rely on signature-based
and heuristic/behavioral methods. A signature
is a unique feature or collection of features that
like a fingerprint, uniquely differentiates an
executable. Signature-based approaches are
unable to identify unknown types of malware,
however. Security researchers suggested
behavior-based detection to overcome these
problems, which analyses the features and
behavior of the file to decide whether it is
indeed malware, although it may take some
time to search and evaluate. Researchers have

begun implementing machine learning to
supplement their solutions in order to solve
the previous drawbacks of conventional
antivirus engines and keep pace with new
attacks and variants, as machine learning is
well suited for processing large quantities of
data. [4]

3. Malware Detection

In such a way, hackers present malware aimed
at persuading people to install it. As it seems
legal, users also do not know what the program
is. Usually, we install it thinking that it is
secure, but on the contrary, it's a major threat.
That's how the malware gets into your system.
When on the screen, it disperses and hides in
numerous files, making it very difficult to
identify. In order to access and record personal
or useful information, it may connect directly
to the operating system and start encrypting it
[5]. Detection of malware is defined as the
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient
and reliable. Some of the general strategies for
malware detection are:

 i. Signature-based

 ii. Heuristic Analysis

 iii. Anti-malware Software

 iv. Sandbox

Several classifiers have been implemented,
such as linear classifiers (logistic regression,
naive Bayes classifier), support for vector
machinery, neural networks, random forests,
etc.

Through both static and dynamic analysis,
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4. Need for Machine Learning in
Malware Detection

Machine learning has created a drastic change
in many industries, including cybersecurity,
over the last decade. Among cybersecurity
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect
modern malware attacks and boost scanning
engines. Proof of this belief is the number of
studies on malware detection strategies that
exploit machine learning reported in the last
few years. The number of research papers
released in 2018 is 7720, a 95 percent rise over
2015 and a 476 percent increase over 2010,
according to Google Scholar,1. This rise in the
number of studies is the product of several
factors, including but not limited to the
increase in publicly labelled malware feeds, the
increase in computing capacity at the same
time as its price decrease, and the evolution of

Machine Learning in Malware Detection

31LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 05 (2021)

the field of machine learning, which has
achieved ground-breaking success in a wide
range of tasks such as computer vision and
speech recognition [6]. Depending on the type
of analysis, conventional machine learning
methods can be categorized into two main
categories, static and dynamic approaches. The
primary difference between them is that static
methods extract features from the static
malware analysis, while dynamic methods
extract features from the dynamic analysis. A
third category may be considered, known as
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw
inputs in diverse fields have outshone neural
networks. The performance of neural networks
in the malware domain is mirrored by recent
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is
imported and the different columns are
discussed in the dataset.

• Data cleaning: The required steps are
taken after examining the dataset so that
the dataset can be cleaned and all the null
values and columns of not much signifi-
cance are removed so that they will not be
of any concern in the training part.

• Data Training and Testing: When the
information is transparent and ready for
training, we spilled the information as a
training dataset and testing dataset in an
80:20 ratios so that the data was spilled in

an 80:20 ratios.

In this paper, as we try to achieve the highest
accuracy, we use two algorithms to see which
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique
of machine learning which uses regression and
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker
prediction models, usually decision trees. As other
boosting techniques do it constructs the model in a
phase-wise fashion and generalizes them by allowing
an arbitrary differentiable loss function to be
optimized. [7] For predictive model growth, gradient
boosting is one of the most effective techniques.
Gradient Boosting is teaching several models steadily,
additively and sequentially. With gradients of loss
function, gradient boosting takes place. What we
strive to develop and maximize depends on a simple
understanding of the loss function.

• In Gradient Boosting, three elements area
feature for loss to be optimized or
enhanced.

• A poor man who has learned to make
predictions

• A supplementary model for
incorporating disadvantaged students to
minimize losses. [8][9]

It's important that we understand how the
algorithm of Gradient Boost is implemented
under the hood.

1. Calculate average of target label- We
begin with a leaf that is the average value
of the variable we want to forecast when
solving regression problems. This leaf will
be used in the procedural steps as a
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the
intention of predicting the residuals, we
build a tree. In other words, a prediction of
the residual value (not the desired label)
will be found in every leaf. Any residuals
will end up within the same leaf in the
event that there are more residuals than
leaves. We compute their average and
position that inside the leaf when this
happens.

4. Using the trees within the ensemble
predict the target label. - Each sample
passes through the newly developed tree's
decision nodes before it reaches a given
lead.

5. Compute the new residuals- The residuals
will then be used as explained in step 3 for
the leaves of the coming next decision
tree.

6. Repeat steps 3 to 5 until the number of
iterations matches the number (i.e. the
number of estimators) defined by the
hyper parameter.

7. To make a final prediction as to the value
of the target variable, use all the trees in
the ensemble once eligible. [10]

In the first step, the final forecast will be equal
to the mean we determined, plus all the residu-
als predicted by the trees that make up the
forest multiplied by the learning rate.

Random forests - Random forests or random
decision forests are an ensemble learning
method for classification, regression and other
tasks that function by constructing a multitude
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average
prediction (regression) of the individual trees.
Random forests are often used as "Blackbox"
models in companies, as they produce rational
predictions over a large range of data while
requiring little configuration in packages such
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps
and diagrams below the working procedure
can be explained:

1. From the training set select random K data
points.

2. Use the selected data points to build
decision trees associated with it (Subsets).

3. Choose a number N which represents the
decision trees that you want to build.

4. Repeat Step 1 & 2.

5. Find the predictions for new data points
for each decision tree and assign the new
data points to the group that receives the
majority votes. [12]

7. Mplementation

We used a dataset that was made available
from the Chiheb Chebbi - Mastering Machine
Learning for Penetration Testing book for this
work. There are approximately 138000 entries
of legit and malware PE headers and 56
columns as features in the dataset. In an 80
percent preparation and 20 percent evaluation,
the knowledge was divided.

We initially import and read the dataset, once
that is done, we clean the dataset by dropping
unnecessary features and null values. After that
we split the dataset for training and testing. We
import the necessary packages for making a
decision tree, gradient boosted classifier and
random forest classifier. Once done we fit that
data respectively and predict the results.

Using a combination of these algorithms, after
training and testing the algorithms, we were
able to get a highly accurate outcome.

8. Results

After training and testing both the algorithms,
we can see that both of them give us a high
accuracy output.

9. Conclusion

The algorithm used for training the data was
Gradient Boosted classifier and random forest
classifier which gives us an accuracy of
98.764% and 99.311% respectively. After
viewing the confusion matrix of the random
forest classifier, we could conclude that the
number of false positives were at 0.5505 and
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of
false positives were at 0.768 and false
negatives were at 2.3099.

Our main objective was to come up with a
system for machine learning that typically
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero
false positive rate. We have been really close to
our target, but we still have a false positive rate
that is non-zero. A variety of deterministic
exemption mechanisms must be added in order
for this system to become part of a highly
competitive commercial product. In our view,
machine learning detection of malware will not
replace the existing methods of detection used
by anti-virus vendors, but will come as an
extension to them. Certain speed and memory
limitations are placed on any commercial
anti-virus product, so the most accurate
algorithms should be used.

10. References

[1] Ahmadi etal., 2016. M. Ahmadi, D.
Ulyanov, S. Semenov, M. Trofimov, G.
Giacinto - Novel feature extraction,
selection and fusion for effective
malware family classification

[2] AL-Hawawreh etal., 2018 M. AL-Ha-
wawreh, N. Moustafa, E. Sitnikova -
Identification of malicious activities in
industrial internet of things based on
deep learning models

[3] Athiwaratkun etal., 2017 B. Athiwarat-
kun, J.W. Stokes - Malware classifica-
tion with lstm and gru language models
and a character- level cnn

[4] D. Bekerman, B. Shapira, L. Rokach, A.
Bar - Unknown malware detection using
network traffic classification 09 2015

[5] B. Biggio, F. Roli - Wild patterns: ten
years after the rise of adversarial
machine learning

[6] I. Santos, Y. K. Penya, J. Devesa, and P.
G. Garcia, “N-grams- based file signa-
tures for malware detection,” 2009.

[7] K. Rieck, T. Holz, C. Willems, P. D¨us-
sel, and P. Laskov, “Learning and
classification of malware behavior,” in
DIMVA ’08: Proceedings of the 5th
international conference on Detection of
Intrusions and Malware, and Vulnerabil-
ity Assessment. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 108–125.

[8] E. Konstantinou, “Metamorphic virus:
Analysis and detection,” 2008, Techni-
cal Report RHUL-MA-2008-2, Search
Security Award M.Sc. thesis, 93 pages.

[9] Gibert etal., 2019 D. Gibert, C. Mateu, J.
Planes - A hierarchical convolutional
neural network for malware classifica-
tion. The International Joint Conference
on Neural Networks 2019, IEEE (2019),
pp. 1-8

[10] X. Guo, Y. Yin, C. Dong, G. Yang, G.
Zhou - On the class imbalance problem
2008 Fourth International Conference
on Natural Computation, vol. 4 (Oct
2008), pp. 192-201

[11] Hall, 1999 M.A. Hall - Correla-
tion-based Feature Selection for
Machine Learning Ph.D. thesis The
University of Waikato (1999)

[12] W. Han, J. Xue, Y. Wang, L. Huang, Z.
Kong, L. MaoMaldae: - Detecting and
explaining malware based on correlation
and fusion of static and dynamic charac-
teristics Comput. Secur., 83 (2019), pp.
208-233

[13] W. Han, J. Xue, Y. Wang, Z. Liu, Z.
KongMalinsight: a systematic profil-
ing-based malware detection framework
J. Netw. Comput. Appl., 125 (2019), pp.
236-250

[14] X. Hu, K.G. Shin, S. Bhatkar, K. Griffin
Mutantx-s: scalable malware clustering
based on static features Presented as Part
of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13),
USENIX, San Jose, CA (2013), pp.
187-198

[15] Huang and Stokes, 2016 W. Huang, J.W.
StokesMtnet: a multi- task neural
network for dynamic malware classifi-
cation Caballero J., Zurutuza U., Rodr-
guez R.J. (Eds.), Detection of Intrusions
and Malware, and Vulnerability Assess-
ment, Springer International Publishing,
Cham (2016), pp. 399-418

[16] X. Zhang, J. Zhao, Y. LeCun Charac-
ter-level convolutional networks for text
classification Proceedings of the 28th

International Conference on Neural
Information Processing Systems, ume 1,
MIT Press, Cambridge, MA, USA
(2015), pp.

[17] D. Uppal, R. Sinha, V. Mehra, V. Jain -
Malware detection and classification
based on extraction of api sequences
2014 International Conference on
Advances in Computing, Communica-
tions and Informatics (ICACCI) (Sep.
2014)

[18] A. Souri, R. Hosseini - A state-of-the-art
survey of malware detection approaches
using data mining techniques
Human-centric Computing and Informa-
tion Sciences, 8 (1) (Jan 2018),

[19] I E. Raff, J. Barker, J. Sylvester, R. Bran-
don, B. Catanzaro, C.K. Nicholas -
Malware detection by eating a whole
EXE - The Workshops of the the
Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans,
Louisiana, USA, February 2- 7, 2018
(2018)

[20] A. Moser, C. Kruegel, E. Kirda - Limits
of static analysis for malware detection
Twenty-Third Annual Computer Securi-
ty Applications Conference (ACSAC
2007) (Dec 2007), pp. 421-43

1. Introduction

 Idealistic hackers attacked computers
in the early days because they were eager to
prove themselves. Cracking machines,
however is an industry in today's world.
Despite recent improvements in software and
computer hardware security, both in frequency
and sophistication, attacks on computer
systems have increased. Regrettably, there are
major drawbacks to current methods for
detecting and analyzing unknown code
samples. The Internet is a critical part of our

everyday lives today. On the internet, there are
many services and they are rising daily as well.
Numerous reports indicate that malware's
effect is worsening at an alarming pace.
Although malware diversity is growing, anti-
virus scanners are unable to fulfil security
needs, resulting in attacks on millions of hosts.
Around 65,63,145 different hosts were
targeted, according to Kaspersky Labs, and in
2015, 40,00,000 unique malware artefacts
were found. Juniper Research (2016), in
particular, projected that by 2019 the cost of
data breaches will rise to $2.1 trillion globally
[1]. Current studies show that script-kiddies

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-
tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement
learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of
output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector ht.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NNST: (ht, at) →
ht+1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
plan. If we can learn a function, NNobserved, that
maps this state to projected cardinalities at
stage t, we should be able to learn a function,
NNobserved, that maps this state to predicted
cardinalities at stage t. In the figure below, we
display both NNST and NNobserved.

Figure 2: Representation of NNST and

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in
an optimal query execution plan.

2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the
proper output. Because the layers have no

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NNST model, we have to understand
an additional function, NNinit. NNinit will take
(x0, a0) as input, where x0 represents a vector
that holds the properties of the database D
whereas a0 shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a0 on D. By
this we can achieve the optimal time on the
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x0: the
min value, the max value and the number of
distinct values.

4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement
learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum
plans.

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,
2008.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wang†, Meihui Zhang et al.
Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3]. Learning through
Reinforcement learning models can map states
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
tion of the environment, S T, and choose an
action, at. The policy determines the action to
be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The
model will arrive at a new state, S T + 1, based on
the action chosen. The environment then
provides the agent a reward, r T + 1, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model
records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors
required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (ht, at) as input, where ht

is a vector representation of a subquery and at
is a single relational action on ht. Importantly,
because ht is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NNST function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NNObserved
function. This NNObserved function learns to
predict observed variables by mapping a

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martín Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

1. Introduction

 Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least expensive alternative from
semantically equivalent arrangement options.

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic
programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence
are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We
will construct a model that can learn data and

are generating more and more attacks or are
automated. To date, attacks on commercial and
government organizations, such as
ransomware and malware, continue to pose a
significant threat and challenge. Such attacks
can come in various ways and sizes. An
enormous challenge is the ability of the global
security community to develop and provide
expertise in cybersecurity. There is widespread
awareness of the global scarcity of
cybersecurity and talent. Cybercrimes, such as
financial fraud, child exploitation online and
payment fraud, are so common that they
demand international 24-hour response and
collaboration between multi-national law
enforcement agencies [2]. For single users and
organizations, malware defense of computer
systems is therefore one of the most critical
cybersecurity activities, as even a single attack
may result in compromised data and sufficient
losses. This research explores how machine
learning can be used in the field of
cybersecurity, along with how it can be used to
detect malware. In order to detect malware, we
will examine the PE headers of malware and
non-malware samples or files by creating and
training a classifier that will determine whether
the file has been attacked by malware or not
after training.

2. Evolution of Malware

In order to protect networks and computer
systems from attacks, the diversity, sophistica-
tion and availability of malicious software
present enormous challenges. Malware is
continually changing and challenges security
researchers and scientists to strengthen their
cyber defenses to keep pace. Owing to the use
of polymorphic and metamorphic methods

used to avoid detection and conceal its true
intent, the prevalence of malware has increased.
To mutate the code while keeping the original
functionality intact, polymorphic malware uses
a polymorphic engine. The two most common
ways to conceal code are packaging and
encryption [3]. Through one or more layers of
compression, packers cover a program's real
code. Then the unpacking routines restore the
original code and execute it in memory at
runtime. To make it harder for researchers to
analyze the software, crypters encrypt and
manipulate malware or part of its code. A
crypter includes a stub that is used for
malicious code encryption and decryption.
Whenever it's propagated, metamorphic
malware rewrites the code to an equivalent.
Multiple transformation techniques, including
but not limited to, register renaming, code
permutation, code expansion, code shrinking
and insertion of garbage code, can be used by
malware authors. The combination of the
above techniques resulted in increasingly
increasing quantities of malware, making
time-consuming, expensive and more compli-
cated forensic investigations of malware cases.
There are some issues with conventional
antivirus solutions that rely on signature-based
and heuristic/behavioral methods. A signature
is a unique feature or collection of features that
like a fingerprint, uniquely differentiates an
executable. Signature-based approaches are
unable to identify unknown types of malware,
however. Security researchers suggested
behavior-based detection to overcome these
problems, which analyses the features and
behavior of the file to decide whether it is
indeed malware, although it may take some
time to search and evaluate. Researchers have

begun implementing machine learning to
supplement their solutions in order to solve
the previous drawbacks of conventional
antivirus engines and keep pace with new
attacks and variants, as machine learning is
well suited for processing large quantities of
data. [4]

3. Malware Detection

In such a way, hackers present malware aimed
at persuading people to install it. As it seems
legal, users also do not know what the program
is. Usually, we install it thinking that it is
secure, but on the contrary, it's a major threat.
That's how the malware gets into your system.
When on the screen, it disperses and hides in
numerous files, making it very difficult to
identify. In order to access and record personal
or useful information, it may connect directly
to the operating system and start encrypting it
[5]. Detection of malware is defined as the
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient
and reliable. Some of the general strategies for
malware detection are:

 i. Signature-based

 ii. Heuristic Analysis

 iii. Anti-malware Software

 iv. Sandbox

Several classifiers have been implemented,
such as linear classifiers (logistic regression,
naive Bayes classifier), support for vector
machinery, neural networks, random forests,
etc.

Through both static and dynamic analysis,
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4. Need for Machine Learning in
Malware Detection

Machine learning has created a drastic change
in many industries, including cybersecurity,
over the last decade. Among cybersecurity
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect
modern malware attacks and boost scanning
engines. Proof of this belief is the number of
studies on malware detection strategies that
exploit machine learning reported in the last
few years. The number of research papers
released in 2018 is 7720, a 95 percent rise over
2015 and a 476 percent increase over 2010,
according to Google Scholar,1. This rise in the
number of studies is the product of several
factors, including but not limited to the
increase in publicly labelled malware feeds, the
increase in computing capacity at the same
time as its price decrease, and the evolution of

the field of machine learning, which has
achieved ground-breaking success in a wide
range of tasks such as computer vision and
speech recognition [6]. Depending on the type
of analysis, conventional machine learning
methods can be categorized into two main
categories, static and dynamic approaches. The
primary difference between them is that static
methods extract features from the static
malware analysis, while dynamic methods
extract features from the dynamic analysis. A
third category may be considered, known as
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw
inputs in diverse fields have outshone neural
networks. The performance of neural networks
in the malware domain is mirrored by recent
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is
imported and the different columns are
discussed in the dataset.

• Data cleaning: The required steps are
taken after examining the dataset so that
the dataset can be cleaned and all the null
values and columns of not much signifi-
cance are removed so that they will not be
of any concern in the training part.

• Data Training and Testing: When the
information is transparent and ready for
training, we spilled the information as a
training dataset and testing dataset in an
80:20 ratios so that the data was spilled in

an 80:20 ratios.

In this paper, as we try to achieve the highest
accuracy, we use two algorithms to see which
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique
of machine learning which uses regression and
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker
prediction models, usually decision trees. As other
boosting techniques do it constructs the model in a
phase-wise fashion and generalizes them by allowing
an arbitrary differentiable loss function to be
optimized. [7] For predictive model growth, gradient
boosting is one of the most effective techniques.
Gradient Boosting is teaching several models steadily,
additively and sequentially. With gradients of loss
function, gradient boosting takes place. What we
strive to develop and maximize depends on a simple
understanding of the loss function.

• In Gradient Boosting, three elements area
feature for loss to be optimized or
enhanced.

• A poor man who has learned to make
predictions

• A supplementary model for
incorporating disadvantaged students to
minimize losses. [8][9]

It's important that we understand how the
algorithm of Gradient Boost is implemented
under the hood.

Machine Learning in Malware Detection

32 LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 05 (2021)

1. Calculate average of target label- We
begin with a leaf that is the average value
of the variable we want to forecast when
solving regression problems. This leaf will
be used in the procedural steps as a
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the
intention of predicting the residuals, we
build a tree. In other words, a prediction of
the residual value (not the desired label)
will be found in every leaf. Any residuals
will end up within the same leaf in the
event that there are more residuals than
leaves. We compute their average and
position that inside the leaf when this
happens.

4. Using the trees within the ensemble
predict the target label. - Each sample
passes through the newly developed tree's
decision nodes before it reaches a given
lead.

5. Compute the new residuals- The residuals
will then be used as explained in step 3 for
the leaves of the coming next decision
tree.

6. Repeat steps 3 to 5 until the number of
iterations matches the number (i.e. the
number of estimators) defined by the
hyper parameter.

7. To make a final prediction as to the value
of the target variable, use all the trees in
the ensemble once eligible. [10]

In the first step, the final forecast will be equal
to the mean we determined, plus all the residu-
als predicted by the trees that make up the
forest multiplied by the learning rate.

Random forests - Random forests or random
decision forests are an ensemble learning
method for classification, regression and other
tasks that function by constructing a multitude
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average
prediction (regression) of the individual trees.
Random forests are often used as "Blackbox"
models in companies, as they produce rational
predictions over a large range of data while
requiring little configuration in packages such
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps
and diagrams below the working procedure
can be explained:

1. From the training set select random K data
points.

2. Use the selected data points to build
decision trees associated with it (Subsets).

3. Choose a number N which represents the
decision trees that you want to build.

4. Repeat Step 1 & 2.

5. Find the predictions for new data points
for each decision tree and assign the new
data points to the group that receives the
majority votes. [12]

7. Mplementation

We used a dataset that was made available
from the Chiheb Chebbi - Mastering Machine
Learning for Penetration Testing book for this
work. There are approximately 138000 entries
of legit and malware PE headers and 56
columns as features in the dataset. In an 80
percent preparation and 20 percent evaluation,
the knowledge was divided.

We initially import and read the dataset, once
that is done, we clean the dataset by dropping
unnecessary features and null values. After that
we split the dataset for training and testing. We
import the necessary packages for making a
decision tree, gradient boosted classifier and
random forest classifier. Once done we fit that
data respectively and predict the results.

Using a combination of these algorithms, after
training and testing the algorithms, we were
able to get a highly accurate outcome.

8. Results

After training and testing both the algorithms,
we can see that both of them give us a high
accuracy output.

9. Conclusion

The algorithm used for training the data was
Gradient Boosted classifier and random forest
classifier which gives us an accuracy of
98.764% and 99.311% respectively. After
viewing the confusion matrix of the random
forest classifier, we could conclude that the
number of false positives were at 0.5505 and
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of
false positives were at 0.768 and false
negatives were at 2.3099.

Our main objective was to come up with a
system for machine learning that typically
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero
false positive rate. We have been really close to
our target, but we still have a false positive rate
that is non-zero. A variety of deterministic
exemption mechanisms must be added in order
for this system to become part of a highly
competitive commercial product. In our view,
machine learning detection of malware will not
replace the existing methods of detection used
by anti-virus vendors, but will come as an
extension to them. Certain speed and memory
limitations are placed on any commercial
anti-virus product, so the most accurate
algorithms should be used.

10. References

[1] Ahmadi etal., 2016. M. Ahmadi, D.
Ulyanov, S. Semenov, M. Trofimov, G.
Giacinto - Novel feature extraction,
selection and fusion for effective
malware family classification

[2] AL-Hawawreh etal., 2018 M. AL-Ha-
wawreh, N. Moustafa, E. Sitnikova -
Identification of malicious activities in
industrial internet of things based on
deep learning models

[3] Athiwaratkun etal., 2017 B. Athiwarat-
kun, J.W. Stokes - Malware classifica-
tion with lstm and gru language models
and a character- level cnn

[4] D. Bekerman, B. Shapira, L. Rokach, A.
Bar - Unknown malware detection using
network traffic classification 09 2015

[5] B. Biggio, F. Roli - Wild patterns: ten
years after the rise of adversarial
machine learning

[6] I. Santos, Y. K. Penya, J. Devesa, and P.
G. Garcia, “N-grams- based file signa-
tures for malware detection,” 2009.

[7] K. Rieck, T. Holz, C. Willems, P. D¨us-
sel, and P. Laskov, “Learning and
classification of malware behavior,” in
DIMVA ’08: Proceedings of the 5th
international conference on Detection of
Intrusions and Malware, and Vulnerabil-
ity Assessment. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 108–125.

[8] E. Konstantinou, “Metamorphic virus:
Analysis and detection,” 2008, Techni-
cal Report RHUL-MA-2008-2, Search
Security Award M.Sc. thesis, 93 pages.

[9] Gibert etal., 2019 D. Gibert, C. Mateu, J.
Planes - A hierarchical convolutional
neural network for malware classifica-
tion. The International Joint Conference
on Neural Networks 2019, IEEE (2019),
pp. 1-8

[10] X. Guo, Y. Yin, C. Dong, G. Yang, G.
Zhou - On the class imbalance problem
2008 Fourth International Conference
on Natural Computation, vol. 4 (Oct
2008), pp. 192-201

[11] Hall, 1999 M.A. Hall - Correla-
tion-based Feature Selection for
Machine Learning Ph.D. thesis The
University of Waikato (1999)

[12] W. Han, J. Xue, Y. Wang, L. Huang, Z.
Kong, L. MaoMaldae: - Detecting and
explaining malware based on correlation
and fusion of static and dynamic charac-
teristics Comput. Secur., 83 (2019), pp.
208-233

[13] W. Han, J. Xue, Y. Wang, Z. Liu, Z.
KongMalinsight: a systematic profil-
ing-based malware detection framework
J. Netw. Comput. Appl., 125 (2019), pp.
236-250

[14] X. Hu, K.G. Shin, S. Bhatkar, K. Griffin
Mutantx-s: scalable malware clustering
based on static features Presented as Part
of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13),
USENIX, San Jose, CA (2013), pp.
187-198

[15] Huang and Stokes, 2016 W. Huang, J.W.
StokesMtnet: a multi- task neural
network for dynamic malware classifi-
cation Caballero J., Zurutuza U., Rodr-
guez R.J. (Eds.), Detection of Intrusions
and Malware, and Vulnerability Assess-
ment, Springer International Publishing,
Cham (2016), pp. 399-418

[16] X. Zhang, J. Zhao, Y. LeCun Charac-
ter-level convolutional networks for text
classification Proceedings of the 28th

International Conference on Neural
Information Processing Systems, ume 1,
MIT Press, Cambridge, MA, USA
(2015), pp.

[17] D. Uppal, R. Sinha, V. Mehra, V. Jain -
Malware detection and classification
based on extraction of api sequences
2014 International Conference on
Advances in Computing, Communica-
tions and Informatics (ICACCI) (Sep.
2014)

[18] A. Souri, R. Hosseini - A state-of-the-art
survey of malware detection approaches
using data mining techniques
Human-centric Computing and Informa-
tion Sciences, 8 (1) (Jan 2018),

[19] I E. Raff, J. Barker, J. Sylvester, R. Bran-
don, B. Catanzaro, C.K. Nicholas -
Malware detection by eating a whole
EXE - The Workshops of the the
Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans,
Louisiana, USA, February 2- 7, 2018
(2018)

[20] A. Moser, C. Kruegel, E. Kirda - Limits
of static analysis for malware detection
Twenty-Third Annual Computer Securi-
ty Applications Conference (ACSAC
2007) (Dec 2007), pp. 421-43

1. Introduction

 Idealistic hackers attacked computers
in the early days because they were eager to
prove themselves. Cracking machines,
however is an industry in today's world.
Despite recent improvements in software and
computer hardware security, both in frequency
and sophistication, attacks on computer
systems have increased. Regrettably, there are
major drawbacks to current methods for
detecting and analyzing unknown code
samples. The Internet is a critical part of our

everyday lives today. On the internet, there are
many services and they are rising daily as well.
Numerous reports indicate that malware's
effect is worsening at an alarming pace.
Although malware diversity is growing, anti-
virus scanners are unable to fulfil security
needs, resulting in attacks on millions of hosts.
Around 65,63,145 different hosts were
targeted, according to Kaspersky Labs, and in
2015, 40,00,000 unique malware artefacts
were found. Juniper Research (2016), in
particular, projected that by 2019 the cost of
data breaches will rise to $2.1 trillion globally
[1]. Current studies show that script-kiddies

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-
tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement
learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of
output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector ht.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NNST: (ht, at) →
ht+1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
plan. If we can learn a function, NNobserved, that
maps this state to projected cardinalities at
stage t, we should be able to learn a function,
NNobserved, that maps this state to predicted
cardinalities at stage t. In the figure below, we
display both NNST and NNobserved.

Figure 2: Representation of NNST and

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in
an optimal query execution plan.

2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the
proper output. Because the layers have no

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NNST model, we have to understand
an additional function, NNinit. NNinit will take
(x0, a0) as input, where x0 represents a vector
that holds the properties of the database D
whereas a0 shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a0 on D. By
this we can achieve the optimal time on the
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x0: the
min value, the max value and the number of
distinct values.

4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement
learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum
plans.

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,
2008.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wang†, Meihui Zhang et al.
Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3]. Learning through
Reinforcement learning models can map states
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
tion of the environment, S T, and choose an
action, at. The policy determines the action to
be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The
model will arrive at a new state, S T + 1, based on
the action chosen. The environment then
provides the agent a reward, r T + 1, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model
records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors
required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (ht, at) as input, where ht

is a vector representation of a subquery and at
is a single relational action on ht. Importantly,
because ht is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NNST function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NNObserved
function. This NNObserved function learns to
predict observed variables by mapping a

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martín Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

1. Introduction

 Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least expensive alternative from
semantically equivalent arrangement options.

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic
programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence
are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We
will construct a model that can learn data and

are generating more and more attacks or are
automated. To date, attacks on commercial and
government organizations, such as
ransomware and malware, continue to pose a
significant threat and challenge. Such attacks
can come in various ways and sizes. An
enormous challenge is the ability of the global
security community to develop and provide
expertise in cybersecurity. There is widespread
awareness of the global scarcity of
cybersecurity and talent. Cybercrimes, such as
financial fraud, child exploitation online and
payment fraud, are so common that they
demand international 24-hour response and
collaboration between multi-national law
enforcement agencies [2]. For single users and
organizations, malware defense of computer
systems is therefore one of the most critical
cybersecurity activities, as even a single attack
may result in compromised data and sufficient
losses. This research explores how machine
learning can be used in the field of
cybersecurity, along with how it can be used to
detect malware. In order to detect malware, we
will examine the PE headers of malware and
non-malware samples or files by creating and
training a classifier that will determine whether
the file has been attacked by malware or not
after training.

2. Evolution of Malware

In order to protect networks and computer
systems from attacks, the diversity, sophistica-
tion and availability of malicious software
present enormous challenges. Malware is
continually changing and challenges security
researchers and scientists to strengthen their
cyber defenses to keep pace. Owing to the use
of polymorphic and metamorphic methods

used to avoid detection and conceal its true
intent, the prevalence of malware has increased.
To mutate the code while keeping the original
functionality intact, polymorphic malware uses
a polymorphic engine. The two most common
ways to conceal code are packaging and
encryption [3]. Through one or more layers of
compression, packers cover a program's real
code. Then the unpacking routines restore the
original code and execute it in memory at
runtime. To make it harder for researchers to
analyze the software, crypters encrypt and
manipulate malware or part of its code. A
crypter includes a stub that is used for
malicious code encryption and decryption.
Whenever it's propagated, metamorphic
malware rewrites the code to an equivalent.
Multiple transformation techniques, including
but not limited to, register renaming, code
permutation, code expansion, code shrinking
and insertion of garbage code, can be used by
malware authors. The combination of the
above techniques resulted in increasingly
increasing quantities of malware, making
time-consuming, expensive and more compli-
cated forensic investigations of malware cases.
There are some issues with conventional
antivirus solutions that rely on signature-based
and heuristic/behavioral methods. A signature
is a unique feature or collection of features that
like a fingerprint, uniquely differentiates an
executable. Signature-based approaches are
unable to identify unknown types of malware,
however. Security researchers suggested
behavior-based detection to overcome these
problems, which analyses the features and
behavior of the file to decide whether it is
indeed malware, although it may take some
time to search and evaluate. Researchers have

begun implementing machine learning to
supplement their solutions in order to solve
the previous drawbacks of conventional
antivirus engines and keep pace with new
attacks and variants, as machine learning is
well suited for processing large quantities of
data. [4]

3. Malware Detection

In such a way, hackers present malware aimed
at persuading people to install it. As it seems
legal, users also do not know what the program
is. Usually, we install it thinking that it is
secure, but on the contrary, it's a major threat.
That's how the malware gets into your system.
When on the screen, it disperses and hides in
numerous files, making it very difficult to
identify. In order to access and record personal
or useful information, it may connect directly
to the operating system and start encrypting it
[5]. Detection of malware is defined as the
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient
and reliable. Some of the general strategies for
malware detection are:

 i. Signature-based

 ii. Heuristic Analysis

 iii. Anti-malware Software

 iv. Sandbox

Several classifiers have been implemented,
such as linear classifiers (logistic regression,
naive Bayes classifier), support for vector
machinery, neural networks, random forests,
etc.

Through both static and dynamic analysis,
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4. Need for Machine Learning in
Malware Detection

Machine learning has created a drastic change
in many industries, including cybersecurity,
over the last decade. Among cybersecurity
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect
modern malware attacks and boost scanning
engines. Proof of this belief is the number of
studies on malware detection strategies that
exploit machine learning reported in the last
few years. The number of research papers
released in 2018 is 7720, a 95 percent rise over
2015 and a 476 percent increase over 2010,
according to Google Scholar,1. This rise in the
number of studies is the product of several
factors, including but not limited to the
increase in publicly labelled malware feeds, the
increase in computing capacity at the same
time as its price decrease, and the evolution of

the field of machine learning, which has
achieved ground-breaking success in a wide
range of tasks such as computer vision and
speech recognition [6]. Depending on the type
of analysis, conventional machine learning
methods can be categorized into two main
categories, static and dynamic approaches. The
primary difference between them is that static
methods extract features from the static
malware analysis, while dynamic methods
extract features from the dynamic analysis. A
third category may be considered, known as
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw
inputs in diverse fields have outshone neural
networks. The performance of neural networks
in the malware domain is mirrored by recent
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is
imported and the different columns are
discussed in the dataset.

• Data cleaning: The required steps are
taken after examining the dataset so that
the dataset can be cleaned and all the null
values and columns of not much signifi-
cance are removed so that they will not be
of any concern in the training part.

• Data Training and Testing: When the
information is transparent and ready for
training, we spilled the information as a
training dataset and testing dataset in an
80:20 ratios so that the data was spilled in

an 80:20 ratios.

In this paper, as we try to achieve the highest
accuracy, we use two algorithms to see which
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique
of machine learning which uses regression and
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker
prediction models, usually decision trees. As other
boosting techniques do it constructs the model in a
phase-wise fashion and generalizes them by allowing
an arbitrary differentiable loss function to be
optimized. [7] For predictive model growth, gradient
boosting is one of the most effective techniques.
Gradient Boosting is teaching several models steadily,
additively and sequentially. With gradients of loss
function, gradient boosting takes place. What we
strive to develop and maximize depends on a simple
understanding of the loss function.

• In Gradient Boosting, three elements area
feature for loss to be optimized or
enhanced.

• A poor man who has learned to make
predictions

• A supplementary model for
incorporating disadvantaged students to
minimize losses. [8][9]

It's important that we understand how the
algorithm of Gradient Boost is implemented
under the hood.

1. Calculate average of target label- We
begin with a leaf that is the average value
of the variable we want to forecast when
solving regression problems. This leaf will
be used in the procedural steps as a
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the
intention of predicting the residuals, we
build a tree. In other words, a prediction of
the residual value (not the desired label)
will be found in every leaf. Any residuals
will end up within the same leaf in the
event that there are more residuals than
leaves. We compute their average and
position that inside the leaf when this
happens.

4. Using the trees within the ensemble
predict the target label. - Each sample
passes through the newly developed tree's
decision nodes before it reaches a given
lead.

5. Compute the new residuals- The residuals
will then be used as explained in step 3 for
the leaves of the coming next decision
tree.

6. Repeat steps 3 to 5 until the number of
iterations matches the number (i.e. the
number of estimators) defined by the
hyper parameter.

7. To make a final prediction as to the value
of the target variable, use all the trees in
the ensemble once eligible. [10]

In the first step, the final forecast will be equal
to the mean we determined, plus all the residu-
als predicted by the trees that make up the
forest multiplied by the learning rate.

Random forests - Random forests or random
decision forests are an ensemble learning
method for classification, regression and other
tasks that function by constructing a multitude
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average
prediction (regression) of the individual trees.
Random forests are often used as "Blackbox"
models in companies, as they produce rational
predictions over a large range of data while
requiring little configuration in packages such
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps
and diagrams below the working procedure
can be explained:

1. From the training set select random K data
points.

2. Use the selected data points to build
decision trees associated with it (Subsets).

3. Choose a number N which represents the
decision trees that you want to build.

Machine Learning in Malware Detection

33LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 05 (2021)

4. Repeat Step 1 & 2.

5. Find the predictions for new data points
for each decision tree and assign the new
data points to the group that receives the
majority votes. [12]

7. Mplementation

We used a dataset that was made available
from the Chiheb Chebbi - Mastering Machine
Learning for Penetration Testing book for this
work. There are approximately 138000 entries
of legit and malware PE headers and 56
columns as features in the dataset. In an 80
percent preparation and 20 percent evaluation,
the knowledge was divided.

We initially import and read the dataset, once
that is done, we clean the dataset by dropping
unnecessary features and null values. After that
we split the dataset for training and testing. We
import the necessary packages for making a
decision tree, gradient boosted classifier and
random forest classifier. Once done we fit that
data respectively and predict the results.

Using a combination of these algorithms, after
training and testing the algorithms, we were
able to get a highly accurate outcome.

8. Results

After training and testing both the algorithms,
we can see that both of them give us a high
accuracy output.

9. Conclusion

The algorithm used for training the data was
Gradient Boosted classifier and random forest
classifier which gives us an accuracy of
98.764% and 99.311% respectively. After
viewing the confusion matrix of the random
forest classifier, we could conclude that the
number of false positives were at 0.5505 and
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of
false positives were at 0.768 and false
negatives were at 2.3099.

Our main objective was to come up with a
system for machine learning that typically
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero
false positive rate. We have been really close to
our target, but we still have a false positive rate
that is non-zero. A variety of deterministic
exemption mechanisms must be added in order
for this system to become part of a highly
competitive commercial product. In our view,
machine learning detection of malware will not
replace the existing methods of detection used
by anti-virus vendors, but will come as an
extension to them. Certain speed and memory
limitations are placed on any commercial
anti-virus product, so the most accurate
algorithms should be used.

10. References

[1] Ahmadi etal., 2016. M. Ahmadi, D.
Ulyanov, S. Semenov, M. Trofimov, G.
Giacinto - Novel feature extraction,
selection and fusion for effective
malware family classification

[2] AL-Hawawreh etal., 2018 M. AL-Ha-
wawreh, N. Moustafa, E. Sitnikova -
Identification of malicious activities in
industrial internet of things based on
deep learning models

[3] Athiwaratkun etal., 2017 B. Athiwarat-
kun, J.W. Stokes - Malware classifica-
tion with lstm and gru language models
and a character- level cnn

[4] D. Bekerman, B. Shapira, L. Rokach, A.
Bar - Unknown malware detection using
network traffic classification 09 2015

[5] B. Biggio, F. Roli - Wild patterns: ten
years after the rise of adversarial
machine learning

[6] I. Santos, Y. K. Penya, J. Devesa, and P.
G. Garcia, “N-grams- based file signa-
tures for malware detection,” 2009.

[7] K. Rieck, T. Holz, C. Willems, P. D¨us-
sel, and P. Laskov, “Learning and
classification of malware behavior,” in
DIMVA ’08: Proceedings of the 5th
international conference on Detection of
Intrusions and Malware, and Vulnerabil-
ity Assessment. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 108–125.

[8] E. Konstantinou, “Metamorphic virus:
Analysis and detection,” 2008, Techni-
cal Report RHUL-MA-2008-2, Search
Security Award M.Sc. thesis, 93 pages.

[9] Gibert etal., 2019 D. Gibert, C. Mateu, J.
Planes - A hierarchical convolutional
neural network for malware classifica-
tion. The International Joint Conference
on Neural Networks 2019, IEEE (2019),
pp. 1-8

[10] X. Guo, Y. Yin, C. Dong, G. Yang, G.
Zhou - On the class imbalance problem
2008 Fourth International Conference
on Natural Computation, vol. 4 (Oct
2008), pp. 192-201

[11] Hall, 1999 M.A. Hall - Correla-
tion-based Feature Selection for
Machine Learning Ph.D. thesis The
University of Waikato (1999)

[12] W. Han, J. Xue, Y. Wang, L. Huang, Z.
Kong, L. MaoMaldae: - Detecting and
explaining malware based on correlation
and fusion of static and dynamic charac-
teristics Comput. Secur., 83 (2019), pp.
208-233

[13] W. Han, J. Xue, Y. Wang, Z. Liu, Z.
KongMalinsight: a systematic profil-
ing-based malware detection framework
J. Netw. Comput. Appl., 125 (2019), pp.
236-250

[14] X. Hu, K.G. Shin, S. Bhatkar, K. Griffin
Mutantx-s: scalable malware clustering
based on static features Presented as Part
of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13),
USENIX, San Jose, CA (2013), pp.
187-198

[15] Huang and Stokes, 2016 W. Huang, J.W.
StokesMtnet: a multi- task neural
network for dynamic malware classifi-
cation Caballero J., Zurutuza U., Rodr-
guez R.J. (Eds.), Detection of Intrusions
and Malware, and Vulnerability Assess-
ment, Springer International Publishing,
Cham (2016), pp. 399-418

[16] X. Zhang, J. Zhao, Y. LeCun Charac-
ter-level convolutional networks for text
classification Proceedings of the 28th

International Conference on Neural
Information Processing Systems, ume 1,
MIT Press, Cambridge, MA, USA
(2015), pp.

[17] D. Uppal, R. Sinha, V. Mehra, V. Jain -
Malware detection and classification
based on extraction of api sequences
2014 International Conference on
Advances in Computing, Communica-
tions and Informatics (ICACCI) (Sep.
2014)

[18] A. Souri, R. Hosseini - A state-of-the-art
survey of malware detection approaches
using data mining techniques
Human-centric Computing and Informa-
tion Sciences, 8 (1) (Jan 2018),

[19] I E. Raff, J. Barker, J. Sylvester, R. Bran-
don, B. Catanzaro, C.K. Nicholas -
Malware detection by eating a whole
EXE - The Workshops of the the
Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans,
Louisiana, USA, February 2- 7, 2018
(2018)

[20] A. Moser, C. Kruegel, E. Kirda - Limits
of static analysis for malware detection
Twenty-Third Annual Computer Securi-
ty Applications Conference (ACSAC
2007) (Dec 2007), pp. 421-43

1. Introduction

 Idealistic hackers attacked computers
in the early days because they were eager to
prove themselves. Cracking machines,
however is an industry in today's world.
Despite recent improvements in software and
computer hardware security, both in frequency
and sophistication, attacks on computer
systems have increased. Regrettably, there are
major drawbacks to current methods for
detecting and analyzing unknown code
samples. The Internet is a critical part of our

everyday lives today. On the internet, there are
many services and they are rising daily as well.
Numerous reports indicate that malware's
effect is worsening at an alarming pace.
Although malware diversity is growing, anti-
virus scanners are unable to fulfil security
needs, resulting in attacks on millions of hosts.
Around 65,63,145 different hosts were
targeted, according to Kaspersky Labs, and in
2015, 40,00,000 unique malware artefacts
were found. Juniper Research (2016), in
particular, projected that by 2019 the cost of
data breaches will rise to $2.1 trillion globally
[1]. Current studies show that script-kiddies

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-
tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement
learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of
output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector ht.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NNST: (ht, at) →
ht+1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
plan. If we can learn a function, NNobserved, that
maps this state to projected cardinalities at
stage t, we should be able to learn a function,
NNobserved, that maps this state to predicted
cardinalities at stage t. In the figure below, we
display both NNST and NNobserved.

Figure 2: Representation of NNST and

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in
an optimal query execution plan.

2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the
proper output. Because the layers have no

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NNST model, we have to understand
an additional function, NNinit. NNinit will take
(x0, a0) as input, where x0 represents a vector
that holds the properties of the database D
whereas a0 shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a0 on D. By
this we can achieve the optimal time on the
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x0: the
min value, the max value and the number of
distinct values.

4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement
learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum
plans.

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,
2008.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wang†, Meihui Zhang et al.
Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3]. Learning through
Reinforcement learning models can map states
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
tion of the environment, S T, and choose an
action, at. The policy determines the action to
be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The
model will arrive at a new state, S T + 1, based on
the action chosen. The environment then
provides the agent a reward, r T + 1, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model
records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors
required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (ht, at) as input, where ht

is a vector representation of a subquery and at
is a single relational action on ht. Importantly,
because ht is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NNST function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NNObserved
function. This NNObserved function learns to
predict observed variables by mapping a

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martín Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

1. Introduction

 Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least expensive alternative from
semantically equivalent arrangement options.

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic
programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence
are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We
will construct a model that can learn data and

are generating more and more attacks or are
automated. To date, attacks on commercial and
government organizations, such as
ransomware and malware, continue to pose a
significant threat and challenge. Such attacks
can come in various ways and sizes. An
enormous challenge is the ability of the global
security community to develop and provide
expertise in cybersecurity. There is widespread
awareness of the global scarcity of
cybersecurity and talent. Cybercrimes, such as
financial fraud, child exploitation online and
payment fraud, are so common that they
demand international 24-hour response and
collaboration between multi-national law
enforcement agencies [2]. For single users and
organizations, malware defense of computer
systems is therefore one of the most critical
cybersecurity activities, as even a single attack
may result in compromised data and sufficient
losses. This research explores how machine
learning can be used in the field of
cybersecurity, along with how it can be used to
detect malware. In order to detect malware, we
will examine the PE headers of malware and
non-malware samples or files by creating and
training a classifier that will determine whether
the file has been attacked by malware or not
after training.

2. Evolution of Malware

In order to protect networks and computer
systems from attacks, the diversity, sophistica-
tion and availability of malicious software
present enormous challenges. Malware is
continually changing and challenges security
researchers and scientists to strengthen their
cyber defenses to keep pace. Owing to the use
of polymorphic and metamorphic methods

used to avoid detection and conceal its true
intent, the prevalence of malware has increased.
To mutate the code while keeping the original
functionality intact, polymorphic malware uses
a polymorphic engine. The two most common
ways to conceal code are packaging and
encryption [3]. Through one or more layers of
compression, packers cover a program's real
code. Then the unpacking routines restore the
original code and execute it in memory at
runtime. To make it harder for researchers to
analyze the software, crypters encrypt and
manipulate malware or part of its code. A
crypter includes a stub that is used for
malicious code encryption and decryption.
Whenever it's propagated, metamorphic
malware rewrites the code to an equivalent.
Multiple transformation techniques, including
but not limited to, register renaming, code
permutation, code expansion, code shrinking
and insertion of garbage code, can be used by
malware authors. The combination of the
above techniques resulted in increasingly
increasing quantities of malware, making
time-consuming, expensive and more compli-
cated forensic investigations of malware cases.
There are some issues with conventional
antivirus solutions that rely on signature-based
and heuristic/behavioral methods. A signature
is a unique feature or collection of features that
like a fingerprint, uniquely differentiates an
executable. Signature-based approaches are
unable to identify unknown types of malware,
however. Security researchers suggested
behavior-based detection to overcome these
problems, which analyses the features and
behavior of the file to decide whether it is
indeed malware, although it may take some
time to search and evaluate. Researchers have

begun implementing machine learning to
supplement their solutions in order to solve
the previous drawbacks of conventional
antivirus engines and keep pace with new
attacks and variants, as machine learning is
well suited for processing large quantities of
data. [4]

3. Malware Detection

In such a way, hackers present malware aimed
at persuading people to install it. As it seems
legal, users also do not know what the program
is. Usually, we install it thinking that it is
secure, but on the contrary, it's a major threat.
That's how the malware gets into your system.
When on the screen, it disperses and hides in
numerous files, making it very difficult to
identify. In order to access and record personal
or useful information, it may connect directly
to the operating system and start encrypting it
[5]. Detection of malware is defined as the
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient
and reliable. Some of the general strategies for
malware detection are:

 i. Signature-based

 ii. Heuristic Analysis

 iii. Anti-malware Software

 iv. Sandbox

Several classifiers have been implemented,
such as linear classifiers (logistic regression,
naive Bayes classifier), support for vector
machinery, neural networks, random forests,
etc.

Through both static and dynamic analysis,
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4. Need for Machine Learning in
Malware Detection

Machine learning has created a drastic change
in many industries, including cybersecurity,
over the last decade. Among cybersecurity
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect
modern malware attacks and boost scanning
engines. Proof of this belief is the number of
studies on malware detection strategies that
exploit machine learning reported in the last
few years. The number of research papers
released in 2018 is 7720, a 95 percent rise over
2015 and a 476 percent increase over 2010,
according to Google Scholar,1. This rise in the
number of studies is the product of several
factors, including but not limited to the
increase in publicly labelled malware feeds, the
increase in computing capacity at the same
time as its price decrease, and the evolution of

the field of machine learning, which has
achieved ground-breaking success in a wide
range of tasks such as computer vision and
speech recognition [6]. Depending on the type
of analysis, conventional machine learning
methods can be categorized into two main
categories, static and dynamic approaches. The
primary difference between them is that static
methods extract features from the static
malware analysis, while dynamic methods
extract features from the dynamic analysis. A
third category may be considered, known as
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw
inputs in diverse fields have outshone neural
networks. The performance of neural networks
in the malware domain is mirrored by recent
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is
imported and the different columns are
discussed in the dataset.

• Data cleaning: The required steps are
taken after examining the dataset so that
the dataset can be cleaned and all the null
values and columns of not much signifi-
cance are removed so that they will not be
of any concern in the training part.

• Data Training and Testing: When the
information is transparent and ready for
training, we spilled the information as a
training dataset and testing dataset in an
80:20 ratios so that the data was spilled in

an 80:20 ratios.

In this paper, as we try to achieve the highest
accuracy, we use two algorithms to see which
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique
of machine learning which uses regression and
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker
prediction models, usually decision trees. As other
boosting techniques do it constructs the model in a
phase-wise fashion and generalizes them by allowing
an arbitrary differentiable loss function to be
optimized. [7] For predictive model growth, gradient
boosting is one of the most effective techniques.
Gradient Boosting is teaching several models steadily,
additively and sequentially. With gradients of loss
function, gradient boosting takes place. What we
strive to develop and maximize depends on a simple
understanding of the loss function.

• In Gradient Boosting, three elements area
feature for loss to be optimized or
enhanced.

• A poor man who has learned to make
predictions

• A supplementary model for
incorporating disadvantaged students to
minimize losses. [8][9]

It's important that we understand how the
algorithm of Gradient Boost is implemented
under the hood.

1. Calculate average of target label- We
begin with a leaf that is the average value
of the variable we want to forecast when
solving regression problems. This leaf will
be used in the procedural steps as a
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the
intention of predicting the residuals, we
build a tree. In other words, a prediction of
the residual value (not the desired label)
will be found in every leaf. Any residuals
will end up within the same leaf in the
event that there are more residuals than
leaves. We compute their average and
position that inside the leaf when this
happens.

4. Using the trees within the ensemble
predict the target label. - Each sample
passes through the newly developed tree's
decision nodes before it reaches a given
lead.

5. Compute the new residuals- The residuals
will then be used as explained in step 3 for
the leaves of the coming next decision
tree.

6. Repeat steps 3 to 5 until the number of
iterations matches the number (i.e. the
number of estimators) defined by the
hyper parameter.

7. To make a final prediction as to the value
of the target variable, use all the trees in
the ensemble once eligible. [10]

In the first step, the final forecast will be equal
to the mean we determined, plus all the residu-
als predicted by the trees that make up the
forest multiplied by the learning rate.

Random forests - Random forests or random
decision forests are an ensemble learning
method for classification, regression and other
tasks that function by constructing a multitude
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average
prediction (regression) of the individual trees.
Random forests are often used as "Blackbox"
models in companies, as they produce rational
predictions over a large range of data while
requiring little configuration in packages such
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps
and diagrams below the working procedure
can be explained:

1. From the training set select random K data
points.

2. Use the selected data points to build
decision trees associated with it (Subsets).

3. Choose a number N which represents the
decision trees that you want to build.

4. Repeat Step 1 & 2.

5. Find the predictions for new data points
for each decision tree and assign the new
data points to the group that receives the
majority votes. [12]

7. Mplementation

We used a dataset that was made available
from the Chiheb Chebbi - Mastering Machine
Learning for Penetration Testing book for this
work. There are approximately 138000 entries
of legit and malware PE headers and 56
columns as features in the dataset. In an 80
percent preparation and 20 percent evaluation,
the knowledge was divided.

We initially import and read the dataset, once
that is done, we clean the dataset by dropping
unnecessary features and null values. After that
we split the dataset for training and testing. We
import the necessary packages for making a
decision tree, gradient boosted classifier and
random forest classifier. Once done we fit that
data respectively and predict the results.

Using a combination of these algorithms, after
training and testing the algorithms, we were
able to get a highly accurate outcome.

8. Results

After training and testing both the algorithms,
we can see that both of them give us a high
accuracy output.

Machine Learning in Malware Detection

34 LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 05 (2021)

9. Conclusion

The algorithm used for training the data was
Gradient Boosted classifier and random forest
classifier which gives us an accuracy of
98.764% and 99.311% respectively. After
viewing the confusion matrix of the random
forest classifier, we could conclude that the
number of false positives were at 0.5505 and
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of
false positives were at 0.768 and false
negatives were at 2.3099.

Our main objective was to come up with a
system for machine learning that typically
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero
false positive rate. We have been really close to
our target, but we still have a false positive rate
that is non-zero. A variety of deterministic
exemption mechanisms must be added in order
for this system to become part of a highly
competitive commercial product. In our view,
machine learning detection of malware will not
replace the existing methods of detection used
by anti-virus vendors, but will come as an
extension to them. Certain speed and memory
limitations are placed on any commercial
anti-virus product, so the most accurate
algorithms should be used.

10. References

[1] Ahmadi etal., 2016. M. Ahmadi, D.
Ulyanov, S. Semenov, M. Trofimov, G.
Giacinto - Novel feature extraction,
selection and fusion for effective
malware family classification

[2] AL-Hawawreh etal., 2018 M. AL-Ha-
wawreh, N. Moustafa, E. Sitnikova -
Identification of malicious activities in
industrial internet of things based on
deep learning models

[3] Athiwaratkun etal., 2017 B. Athiwarat-
kun, J.W. Stokes - Malware classifica-
tion with lstm and gru language models
and a character- level cnn

[4] D. Bekerman, B. Shapira, L. Rokach, A.
Bar - Unknown malware detection using
network traffic classification 09 2015

[5] B. Biggio, F. Roli - Wild patterns: ten
years after the rise of adversarial
machine learning

[6] I. Santos, Y. K. Penya, J. Devesa, and P.
G. Garcia, “N-grams- based file signa-
tures for malware detection,” 2009.

[7] K. Rieck, T. Holz, C. Willems, P. D¨us-
sel, and P. Laskov, “Learning and
classification of malware behavior,” in
DIMVA ’08: Proceedings of the 5th
international conference on Detection of
Intrusions and Malware, and Vulnerabil-
ity Assessment. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 108–125.

[8] E. Konstantinou, “Metamorphic virus:
Analysis and detection,” 2008, Techni-
cal Report RHUL-MA-2008-2, Search
Security Award M.Sc. thesis, 93 pages.

[9] Gibert etal., 2019 D. Gibert, C. Mateu, J.
Planes - A hierarchical convolutional
neural network for malware classifica-
tion. The International Joint Conference
on Neural Networks 2019, IEEE (2019),
pp. 1-8

[10] X. Guo, Y. Yin, C. Dong, G. Yang, G.
Zhou - On the class imbalance problem
2008 Fourth International Conference
on Natural Computation, vol. 4 (Oct
2008), pp. 192-201

[11] Hall, 1999 M.A. Hall - Correla-
tion-based Feature Selection for
Machine Learning Ph.D. thesis The
University of Waikato (1999)

[12] W. Han, J. Xue, Y. Wang, L. Huang, Z.
Kong, L. MaoMaldae: - Detecting and
explaining malware based on correlation
and fusion of static and dynamic charac-
teristics Comput. Secur., 83 (2019), pp.
208-233

[13] W. Han, J. Xue, Y. Wang, Z. Liu, Z.
KongMalinsight: a systematic profil-
ing-based malware detection framework
J. Netw. Comput. Appl., 125 (2019), pp.
236-250

[14] X. Hu, K.G. Shin, S. Bhatkar, K. Griffin
Mutantx-s: scalable malware clustering
based on static features Presented as Part
of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13),
USENIX, San Jose, CA (2013), pp.
187-198

[15] Huang and Stokes, 2016 W. Huang, J.W.
StokesMtnet: a multi- task neural
network for dynamic malware classifi-
cation Caballero J., Zurutuza U., Rodr-
guez R.J. (Eds.), Detection of Intrusions
and Malware, and Vulnerability Assess-
ment, Springer International Publishing,
Cham (2016), pp. 399-418

[16] X. Zhang, J. Zhao, Y. LeCun Charac-
ter-level convolutional networks for text
classification Proceedings of the 28th

International Conference on Neural
Information Processing Systems, ume 1,
MIT Press, Cambridge, MA, USA
(2015), pp.

[17] D. Uppal, R. Sinha, V. Mehra, V. Jain -
Malware detection and classification
based on extraction of api sequences
2014 International Conference on
Advances in Computing, Communica-
tions and Informatics (ICACCI) (Sep.
2014)

[18] A. Souri, R. Hosseini - A state-of-the-art
survey of malware detection approaches
using data mining techniques
Human-centric Computing and Informa-
tion Sciences, 8 (1) (Jan 2018),

[19] I E. Raff, J. Barker, J. Sylvester, R. Bran-
don, B. Catanzaro, C.K. Nicholas -
Malware detection by eating a whole
EXE - The Workshops of the the
Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans,
Louisiana, USA, February 2- 7, 2018
(2018)

[20] A. Moser, C. Kruegel, E. Kirda - Limits
of static analysis for malware detection
Twenty-Third Annual Computer Securi-
ty Applications Conference (ACSAC
2007) (Dec 2007), pp. 421-43

1. Introduction

 Idealistic hackers attacked computers
in the early days because they were eager to
prove themselves. Cracking machines,
however is an industry in today's world.
Despite recent improvements in software and
computer hardware security, both in frequency
and sophistication, attacks on computer
systems have increased. Regrettably, there are
major drawbacks to current methods for
detecting and analyzing unknown code
samples. The Internet is a critical part of our

everyday lives today. On the internet, there are
many services and they are rising daily as well.
Numerous reports indicate that malware's
effect is worsening at an alarming pace.
Although malware diversity is growing, anti-
virus scanners are unable to fulfil security
needs, resulting in attacks on millions of hosts.
Around 65,63,145 different hosts were
targeted, according to Kaspersky Labs, and in
2015, 40,00,000 unique malware artefacts
were found. Juniper Research (2016), in
particular, projected that by 2019 the cost of
data breaches will rise to $2.1 trillion globally
[1]. Current studies show that script-kiddies

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-
tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement
learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of
output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector ht.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NNST: (ht, at) →
ht+1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
plan. If we can learn a function, NNobserved, that
maps this state to projected cardinalities at
stage t, we should be able to learn a function,
NNobserved, that maps this state to predicted
cardinalities at stage t. In the figure below, we
display both NNST and NNobserved.

Figure 2: Representation of NNST and

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in
an optimal query execution plan.

2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the
proper output. Because the layers have no

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NNST model, we have to understand
an additional function, NNinit. NNinit will take
(x0, a0) as input, where x0 represents a vector
that holds the properties of the database D
whereas a0 shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a0 on D. By
this we can achieve the optimal time on the
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x0: the
min value, the max value and the number of
distinct values.

4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement
learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum
plans.

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,
2008.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wang†, Meihui Zhang et al.
Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3]. Learning through
Reinforcement learning models can map states
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
tion of the environment, S T, and choose an
action, at. The policy determines the action to
be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The
model will arrive at a new state, S T + 1, based on
the action chosen. The environment then
provides the agent a reward, r T + 1, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model
records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors
required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (ht, at) as input, where ht

is a vector representation of a subquery and at
is a single relational action on ht. Importantly,
because ht is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NNST function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NNObserved
function. This NNObserved function learns to
predict observed variables by mapping a

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martín Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

1. Introduction

 Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least expensive alternative from
semantically equivalent arrangement options.

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic
programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence
are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We
will construct a model that can learn data and

are generating more and more attacks or are
automated. To date, attacks on commercial and
government organizations, such as
ransomware and malware, continue to pose a
significant threat and challenge. Such attacks
can come in various ways and sizes. An
enormous challenge is the ability of the global
security community to develop and provide
expertise in cybersecurity. There is widespread
awareness of the global scarcity of
cybersecurity and talent. Cybercrimes, such as
financial fraud, child exploitation online and
payment fraud, are so common that they
demand international 24-hour response and
collaboration between multi-national law
enforcement agencies [2]. For single users and
organizations, malware defense of computer
systems is therefore one of the most critical
cybersecurity activities, as even a single attack
may result in compromised data and sufficient
losses. This research explores how machine
learning can be used in the field of
cybersecurity, along with how it can be used to
detect malware. In order to detect malware, we
will examine the PE headers of malware and
non-malware samples or files by creating and
training a classifier that will determine whether
the file has been attacked by malware or not
after training.

2. Evolution of Malware

In order to protect networks and computer
systems from attacks, the diversity, sophistica-
tion and availability of malicious software
present enormous challenges. Malware is
continually changing and challenges security
researchers and scientists to strengthen their
cyber defenses to keep pace. Owing to the use
of polymorphic and metamorphic methods

used to avoid detection and conceal its true
intent, the prevalence of malware has increased.
To mutate the code while keeping the original
functionality intact, polymorphic malware uses
a polymorphic engine. The two most common
ways to conceal code are packaging and
encryption [3]. Through one or more layers of
compression, packers cover a program's real
code. Then the unpacking routines restore the
original code and execute it in memory at
runtime. To make it harder for researchers to
analyze the software, crypters encrypt and
manipulate malware or part of its code. A
crypter includes a stub that is used for
malicious code encryption and decryption.
Whenever it's propagated, metamorphic
malware rewrites the code to an equivalent.
Multiple transformation techniques, including
but not limited to, register renaming, code
permutation, code expansion, code shrinking
and insertion of garbage code, can be used by
malware authors. The combination of the
above techniques resulted in increasingly
increasing quantities of malware, making
time-consuming, expensive and more compli-
cated forensic investigations of malware cases.
There are some issues with conventional
antivirus solutions that rely on signature-based
and heuristic/behavioral methods. A signature
is a unique feature or collection of features that
like a fingerprint, uniquely differentiates an
executable. Signature-based approaches are
unable to identify unknown types of malware,
however. Security researchers suggested
behavior-based detection to overcome these
problems, which analyses the features and
behavior of the file to decide whether it is
indeed malware, although it may take some
time to search and evaluate. Researchers have

begun implementing machine learning to
supplement their solutions in order to solve
the previous drawbacks of conventional
antivirus engines and keep pace with new
attacks and variants, as machine learning is
well suited for processing large quantities of
data. [4]

3. Malware Detection

In such a way, hackers present malware aimed
at persuading people to install it. As it seems
legal, users also do not know what the program
is. Usually, we install it thinking that it is
secure, but on the contrary, it's a major threat.
That's how the malware gets into your system.
When on the screen, it disperses and hides in
numerous files, making it very difficult to
identify. In order to access and record personal
or useful information, it may connect directly
to the operating system and start encrypting it
[5]. Detection of malware is defined as the
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient
and reliable. Some of the general strategies for
malware detection are:

 i. Signature-based

 ii. Heuristic Analysis

 iii. Anti-malware Software

 iv. Sandbox

Several classifiers have been implemented,
such as linear classifiers (logistic regression,
naive Bayes classifier), support for vector
machinery, neural networks, random forests,
etc.

Through both static and dynamic analysis,
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4. Need for Machine Learning in
Malware Detection

Machine learning has created a drastic change
in many industries, including cybersecurity,
over the last decade. Among cybersecurity
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect
modern malware attacks and boost scanning
engines. Proof of this belief is the number of
studies on malware detection strategies that
exploit machine learning reported in the last
few years. The number of research papers
released in 2018 is 7720, a 95 percent rise over
2015 and a 476 percent increase over 2010,
according to Google Scholar,1. This rise in the
number of studies is the product of several
factors, including but not limited to the
increase in publicly labelled malware feeds, the
increase in computing capacity at the same
time as its price decrease, and the evolution of

the field of machine learning, which has
achieved ground-breaking success in a wide
range of tasks such as computer vision and
speech recognition [6]. Depending on the type
of analysis, conventional machine learning
methods can be categorized into two main
categories, static and dynamic approaches. The
primary difference between them is that static
methods extract features from the static
malware analysis, while dynamic methods
extract features from the dynamic analysis. A
third category may be considered, known as
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw
inputs in diverse fields have outshone neural
networks. The performance of neural networks
in the malware domain is mirrored by recent
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is
imported and the different columns are
discussed in the dataset.

• Data cleaning: The required steps are
taken after examining the dataset so that
the dataset can be cleaned and all the null
values and columns of not much signifi-
cance are removed so that they will not be
of any concern in the training part.

• Data Training and Testing: When the
information is transparent and ready for
training, we spilled the information as a
training dataset and testing dataset in an
80:20 ratios so that the data was spilled in

an 80:20 ratios.

In this paper, as we try to achieve the highest
accuracy, we use two algorithms to see which
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique
of machine learning which uses regression and
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker
prediction models, usually decision trees. As other
boosting techniques do it constructs the model in a
phase-wise fashion and generalizes them by allowing
an arbitrary differentiable loss function to be
optimized. [7] For predictive model growth, gradient
boosting is one of the most effective techniques.
Gradient Boosting is teaching several models steadily,
additively and sequentially. With gradients of loss
function, gradient boosting takes place. What we
strive to develop and maximize depends on a simple
understanding of the loss function.

• In Gradient Boosting, three elements area
feature for loss to be optimized or
enhanced.

• A poor man who has learned to make
predictions

• A supplementary model for
incorporating disadvantaged students to
minimize losses. [8][9]

It's important that we understand how the
algorithm of Gradient Boost is implemented
under the hood.

1. Calculate average of target label- We
begin with a leaf that is the average value
of the variable we want to forecast when
solving regression problems. This leaf will
be used in the procedural steps as a
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the
intention of predicting the residuals, we
build a tree. In other words, a prediction of
the residual value (not the desired label)
will be found in every leaf. Any residuals
will end up within the same leaf in the
event that there are more residuals than
leaves. We compute their average and
position that inside the leaf when this
happens.

4. Using the trees within the ensemble
predict the target label. - Each sample
passes through the newly developed tree's
decision nodes before it reaches a given
lead.

5. Compute the new residuals- The residuals
will then be used as explained in step 3 for
the leaves of the coming next decision
tree.

6. Repeat steps 3 to 5 until the number of
iterations matches the number (i.e. the
number of estimators) defined by the
hyper parameter.

7. To make a final prediction as to the value
of the target variable, use all the trees in
the ensemble once eligible. [10]

In the first step, the final forecast will be equal
to the mean we determined, plus all the residu-
als predicted by the trees that make up the
forest multiplied by the learning rate.

Random forests - Random forests or random
decision forests are an ensemble learning
method for classification, regression and other
tasks that function by constructing a multitude
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average
prediction (regression) of the individual trees.
Random forests are often used as "Blackbox"
models in companies, as they produce rational
predictions over a large range of data while
requiring little configuration in packages such
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps
and diagrams below the working procedure
can be explained:

1. From the training set select random K data
points.

2. Use the selected data points to build
decision trees associated with it (Subsets).

3. Choose a number N which represents the
decision trees that you want to build.

4. Repeat Step 1 & 2.

5. Find the predictions for new data points
for each decision tree and assign the new
data points to the group that receives the
majority votes. [12]

7. Mplementation

We used a dataset that was made available
from the Chiheb Chebbi - Mastering Machine
Learning for Penetration Testing book for this
work. There are approximately 138000 entries
of legit and malware PE headers and 56
columns as features in the dataset. In an 80
percent preparation and 20 percent evaluation,
the knowledge was divided.

We initially import and read the dataset, once
that is done, we clean the dataset by dropping
unnecessary features and null values. After that
we split the dataset for training and testing. We
import the necessary packages for making a
decision tree, gradient boosted classifier and
random forest classifier. Once done we fit that
data respectively and predict the results.

Using a combination of these algorithms, after
training and testing the algorithms, we were
able to get a highly accurate outcome.

8. Results

After training and testing both the algorithms,
we can see that both of them give us a high
accuracy output.

9. Conclusion

The algorithm used for training the data was
Gradient Boosted classifier and random forest
classifier which gives us an accuracy of
98.764% and 99.311% respectively. After
viewing the confusion matrix of the random
forest classifier, we could conclude that the
number of false positives were at 0.5505 and
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of
false positives were at 0.768 and false
negatives were at 2.3099.

Our main objective was to come up with a
system for machine learning that typically
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero
false positive rate. We have been really close to
our target, but we still have a false positive rate
that is non-zero. A variety of deterministic
exemption mechanisms must be added in order
for this system to become part of a highly
competitive commercial product. In our view,
machine learning detection of malware will not
replace the existing methods of detection used
by anti-virus vendors, but will come as an
extension to them. Certain speed and memory
limitations are placed on any commercial
anti-virus product, so the most accurate
algorithms should be used.

10. References

[1] Ahmadi etal., 2016. M. Ahmadi, D.
Ulyanov, S. Semenov, M. Trofimov, G.
Giacinto - Novel feature extraction,
selection and fusion for effective
malware family classification

[2] AL-Hawawreh etal., 2018 M. AL-Ha-
wawreh, N. Moustafa, E. Sitnikova -
Identification of malicious activities in
industrial internet of things based on
deep learning models

[3] Athiwaratkun etal., 2017 B. Athiwarat-
kun, J.W. Stokes - Malware classifica-
tion with lstm and gru language models
and a character- level cnn

[4] D. Bekerman, B. Shapira, L. Rokach, A.
Bar - Unknown malware detection using
network traffic classification 09 2015

[5] B. Biggio, F. Roli - Wild patterns: ten
years after the rise of adversarial
machine learning

[6] I. Santos, Y. K. Penya, J. Devesa, and P.
G. Garcia, “N-grams- based file signa-
tures for malware detection,” 2009.

[7] K. Rieck, T. Holz, C. Willems, P. D¨us-
sel, and P. Laskov, “Learning and
classification of malware behavior,” in
DIMVA ’08: Proceedings of the 5th
international conference on Detection of
Intrusions and Malware, and Vulnerabil-
ity Assessment. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 108–125.

[8] E. Konstantinou, “Metamorphic virus:
Analysis and detection,” 2008, Techni-
cal Report RHUL-MA-2008-2, Search
Security Award M.Sc. thesis, 93 pages.

[9] Gibert etal., 2019 D. Gibert, C. Mateu, J.
Planes - A hierarchical convolutional
neural network for malware classifica-
tion. The International Joint Conference
on Neural Networks 2019, IEEE (2019),
pp. 1-8

Machine Learning in Malware Detection

35LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 05 (2021)

[10] X. Guo, Y. Yin, C. Dong, G. Yang, G.
Zhou - On the class imbalance problem
2008 Fourth International Conference
on Natural Computation, vol. 4 (Oct
2008), pp. 192-201

[11] Hall, 1999 M.A. Hall - Correla-
tion-based Feature Selection for
Machine Learning Ph.D. thesis The
University of Waikato (1999)

[12] W. Han, J. Xue, Y. Wang, L. Huang, Z.
Kong, L. MaoMaldae: - Detecting and
explaining malware based on correlation
and fusion of static and dynamic charac-
teristics Comput. Secur., 83 (2019), pp.
208-233

[13] W. Han, J. Xue, Y. Wang, Z. Liu, Z.
KongMalinsight: a systematic profil-
ing-based malware detection framework
J. Netw. Comput. Appl., 125 (2019), pp.
236-250

[14] X. Hu, K.G. Shin, S. Bhatkar, K. Griffin
Mutantx-s: scalable malware clustering
based on static features Presented as Part
of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13),
USENIX, San Jose, CA (2013), pp.
187-198

[15] Huang and Stokes, 2016 W. Huang, J.W.
StokesMtnet: a multi- task neural
network for dynamic malware classifi-
cation Caballero J., Zurutuza U., Rodr-
guez R.J. (Eds.), Detection of Intrusions
and Malware, and Vulnerability Assess-
ment, Springer International Publishing,
Cham (2016), pp. 399-418

[16] X. Zhang, J. Zhao, Y. LeCun Charac-
ter-level convolutional networks for text
classification Proceedings of the 28th

International Conference on Neural
Information Processing Systems, ume 1,
MIT Press, Cambridge, MA, USA
(2015), pp.

[17] D. Uppal, R. Sinha, V. Mehra, V. Jain -
Malware detection and classification
based on extraction of api sequences
2014 International Conference on
Advances in Computing, Communica-
tions and Informatics (ICACCI) (Sep.
2014)

[18] A. Souri, R. Hosseini - A state-of-the-art
survey of malware detection approaches
using data mining techniques
Human-centric Computing and Informa-
tion Sciences, 8 (1) (Jan 2018),

[19] I E. Raff, J. Barker, J. Sylvester, R. Bran-
don, B. Catanzaro, C.K. Nicholas -
Malware detection by eating a whole
EXE - The Workshops of the the
Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans,
Louisiana, USA, February 2- 7, 2018
(2018)

[20] A. Moser, C. Kruegel, E. Kirda - Limits
of static analysis for malware detection
Twenty-Third Annual Computer Securi-
ty Applications Conference (ACSAC
2007) (Dec 2007), pp. 421-43

1. Introduction

 Idealistic hackers attacked computers
in the early days because they were eager to
prove themselves. Cracking machines,
however is an industry in today's world.
Despite recent improvements in software and
computer hardware security, both in frequency
and sophistication, attacks on computer
systems have increased. Regrettably, there are
major drawbacks to current methods for
detecting and analyzing unknown code
samples. The Internet is a critical part of our

everyday lives today. On the internet, there are
many services and they are rising daily as well.
Numerous reports indicate that malware's
effect is worsening at an alarming pace.
Although malware diversity is growing, anti-
virus scanners are unable to fulfil security
needs, resulting in attacks on millions of hosts.
Around 65,63,145 different hosts were
targeted, according to Kaspersky Labs, and in
2015, 40,00,000 unique malware artefacts
were found. Juniper Research (2016), in
particular, projected that by 2019 the cost of
data breaches will rise to $2.1 trillion globally
[1]. Current studies show that script-kiddies

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-
tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement
learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of
output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector ht.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NNST: (ht, at) →
ht+1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
plan. If we can learn a function, NNobserved, that
maps this state to projected cardinalities at
stage t, we should be able to learn a function,
NNobserved, that maps this state to predicted
cardinalities at stage t. In the figure below, we
display both NNST and NNobserved.

Figure 2: Representation of NNST and

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in
an optimal query execution plan.

2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the
proper output. Because the layers have no

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NNST model, we have to understand
an additional function, NNinit. NNinit will take
(x0, a0) as input, where x0 represents a vector
that holds the properties of the database D
whereas a0 shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a0 on D. By
this we can achieve the optimal time on the
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x0: the
min value, the max value and the number of
distinct values.

4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement
learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum
plans.

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,
2008.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wang†, Meihui Zhang et al.
Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

direct interactions with the input training data,
they are referred to as hidden layers [3]. These
feedforward networks are crucial in represen-
tation learning. While training to perform a
goal function, the hidden layers of a neural
network might indirectly learn a representation
that can later be employed for other tasks [3].
There is a trade-off between retaining as much
information as possible and understanding
relevant data qualities. The context of these
representations might alter depending on the
network output [3]. Learning through
Reinforcement learning models can map states
to appropriate actions with the objective of
maximizing a larger reward. In contrast to
supervised learning, the learner is not clearly
informed which action is ideal; instead, the
agent must determine the best action through
hit-and-run by either exploiting current infor-
mation or finding novel states [11]. At each
time step, the learner will examine the condi-
tion of the environment, S T, and choose an
action, at. The policy determines the action to
be taken. This strategy has the potential to
reconstruct a variety of behaviors. As a result,
either behave greedily or strike a balance
between discovering and utilizing through a
greedy (or better) method. The policy is deter-
mined by the predicted rewards of each state,
which the model must learn on the fly. The
model will arrive at a new state, S T + 1, based on
the action chosen. The environment then
provides the agent a reward, r T + 1, signifying
the "worthiness" of the chosen action. The goal
of the agent is to maximize the overall reward
[11]. One method is to employ a value-based
iteration methodology in which the model
records state-action values, such as QL (s, a).

These values indicate the state's long-term
worth by weighting rewards for states that are
anticipated to follow.

3. Methodology:

They are two approaches that we proposed to
achieve the target solution for getting the
optimal query execution plan. We will be
supposed input database D and Query Q. we
will apply deep reinforcement learning to
derive compact but informative representation
of queries, then we will try to train these repre-
sentations to predict the next action. In first
approach we would suppose a feature vector
containing (Q, D) as input and apply deep
reinforcement learning to predict an output as
cardinality values. There is problem with this
approach that whenever the database and query
complexity increase the input vector grow
heavily. Thus, the long-extended vectors
required large training datasets.

Instead of wasting our resources and never
getting our required result, we will move
forward and apply our better different
approach, a recursive approach: We train a
model to anticipate a query's cardinality. This
model is fed a pair of (ht, at) as input, where ht

is a vector representation of a subquery and at
is a single relational action on ht. Importantly,
because ht is the representation that the model
will learn on its own, it should not be interpret-
ed as a manually supplied feature vector. The
NNST function, seen in the image above, builds
these representations by modifying the weights
in response to feedback from the NNObserved
function. This NNObserved function learns to
predict observed variables by mapping a

[7] Ryan Marcusetal. Deep reinforcement
learning for join order enumeration.
CoRR, 2018.

[8] Ian Goodfellow et al. Deep Learning.
MIT Press, 2016. http://www.
deeplearningbook.org.

[9] David Silver. UCL Course on Reinforce-
ment Learning, 2015.

[10] Michael Stillger et al. Leo - db2’s learn-
ing optimizer. In VLDB 2001.

[11] Viktor Leis et al. How good are query
optimizers, really? Proc. VLDB Endow.,
2015.

[12] Csaba Szepesvari. Algorithms for
reinforcement learning. Morgan and
Claypool Publishers, 2009.

[13] Martín Abadi et al. TensorFlow:
Large-scale machine learning on hetero-
geneous systems, 2015. Software avail-
able from tensorflow.org.

[14] Wei Wang et al. Database Meets Deep
Learning: Challenges and Opportunities.
SIGMOD Record, 2016

[15] Henry Liu et al. Cardinality estimation
using neural networks. In CASCON
2015

1. Introduction

 Inquiry advancement is still a big
concern in the field of data sets. Existing
DBMS select helpless execution strategies for
certain queries. To make inquiries more
competent, we wished to design them
optimally, utilizing fewer assets. Existing
DBMSs carry out a vital stage of cardinality
evaluation by working on assumptions about
the information (e.g., incorporation standard,
consistency or freedom suppositions). When
these concerns are not confirmed, cardinality
evaluation errors occur, resulting in poor
arrangement choices. [1]. By using cardinality
gauges as input, the expenditure model selects
the least expensive alternative from
semantically equivalent arrangement options.

To achieve an efficient inquiry strategy, a
subset of the valid join orders is counted by the
question enhancer, for example, using dynamic
programming.

Theoretically this architecture can obtain the
effective optimal plan if the cardinality estima-
tion and cost model is precise. In reality cardi-
nality estimates depends on computer-based
assumptions. But in real world databases the
assumptions like uniformity and independence
are wrong.

In this research work, rather than banking on
previously used formulas and data driven with
the help of statistics, to predict the queries
cardinalities we will train a deep reinforcement
learning model for better execution plan. We
will construct a model that can learn data and

are generating more and more attacks or are
automated. To date, attacks on commercial and
government organizations, such as
ransomware and malware, continue to pose a
significant threat and challenge. Such attacks
can come in various ways and sizes. An
enormous challenge is the ability of the global
security community to develop and provide
expertise in cybersecurity. There is widespread
awareness of the global scarcity of
cybersecurity and talent. Cybercrimes, such as
financial fraud, child exploitation online and
payment fraud, are so common that they
demand international 24-hour response and
collaboration between multi-national law
enforcement agencies [2]. For single users and
organizations, malware defense of computer
systems is therefore one of the most critical
cybersecurity activities, as even a single attack
may result in compromised data and sufficient
losses. This research explores how machine
learning can be used in the field of
cybersecurity, along with how it can be used to
detect malware. In order to detect malware, we
will examine the PE headers of malware and
non-malware samples or files by creating and
training a classifier that will determine whether
the file has been attacked by malware or not
after training.

2. Evolution of Malware

In order to protect networks and computer
systems from attacks, the diversity, sophistica-
tion and availability of malicious software
present enormous challenges. Malware is
continually changing and challenges security
researchers and scientists to strengthen their
cyber defenses to keep pace. Owing to the use
of polymorphic and metamorphic methods

used to avoid detection and conceal its true
intent, the prevalence of malware has increased.
To mutate the code while keeping the original
functionality intact, polymorphic malware uses
a polymorphic engine. The two most common
ways to conceal code are packaging and
encryption [3]. Through one or more layers of
compression, packers cover a program's real
code. Then the unpacking routines restore the
original code and execute it in memory at
runtime. To make it harder for researchers to
analyze the software, crypters encrypt and
manipulate malware or part of its code. A
crypter includes a stub that is used for
malicious code encryption and decryption.
Whenever it's propagated, metamorphic
malware rewrites the code to an equivalent.
Multiple transformation techniques, including
but not limited to, register renaming, code
permutation, code expansion, code shrinking
and insertion of garbage code, can be used by
malware authors. The combination of the
above techniques resulted in increasingly
increasing quantities of malware, making
time-consuming, expensive and more compli-
cated forensic investigations of malware cases.
There are some issues with conventional
antivirus solutions that rely on signature-based
and heuristic/behavioral methods. A signature
is a unique feature or collection of features that
like a fingerprint, uniquely differentiates an
executable. Signature-based approaches are
unable to identify unknown types of malware,
however. Security researchers suggested
behavior-based detection to overcome these
problems, which analyses the features and
behavior of the file to decide whether it is
indeed malware, although it may take some
time to search and evaluate. Researchers have

begun implementing machine learning to
supplement their solutions in order to solve
the previous drawbacks of conventional
antivirus engines and keep pace with new
attacks and variants, as machine learning is
well suited for processing large quantities of
data. [4]

3. Malware Detection

In such a way, hackers present malware aimed
at persuading people to install it. As it seems
legal, users also do not know what the program
is. Usually, we install it thinking that it is
secure, but on the contrary, it's a major threat.
That's how the malware gets into your system.
When on the screen, it disperses and hides in
numerous files, making it very difficult to
identify. In order to access and record personal
or useful information, it may connect directly
to the operating system and start encrypting it
[5]. Detection of malware is defined as the
search process for malware files and directo-
ries. There are several tools and methods avail-
able to detect malware that make it efficient
and reliable. Some of the general strategies for
malware detection are:

 i. Signature-based

 ii. Heuristic Analysis

 iii. Anti-malware Software

 iv. Sandbox

Several classifiers have been implemented,
such as linear classifiers (logistic regression,
naive Bayes classifier), support for vector
machinery, neural networks, random forests,
etc.

Through both static and dynamic analysis,
malware can be identified by:

 Without Executing the code

 Behavioral Analysis

4. Need for Machine Learning in
Malware Detection

Machine learning has created a drastic change
in many industries, including cybersecurity,
over the last decade. Among cybersecurity
experts, there is a general belief that AI-pow-
ered anti-malware tools can help detect
modern malware attacks and boost scanning
engines. Proof of this belief is the number of
studies on malware detection strategies that
exploit machine learning reported in the last
few years. The number of research papers
released in 2018 is 7720, a 95 percent rise over
2015 and a 476 percent increase over 2010,
according to Google Scholar,1. This rise in the
number of studies is the product of several
factors, including but not limited to the
increase in publicly labelled malware feeds, the
increase in computing capacity at the same
time as its price decrease, and the evolution of

the field of machine learning, which has
achieved ground-breaking success in a wide
range of tasks such as computer vision and
speech recognition [6]. Depending on the type
of analysis, conventional machine learning
methods can be categorized into two main
categories, static and dynamic approaches. The
primary difference between them is that static
methods extract features from the static
malware analysis, while dynamic methods
extract features from the dynamic analysis. A
third category may be considered, known as
hybrid approaches. Hybrid methods incorpo-
rate elements of both static and dynamic analy-
sis. In addition, learning features from raw
inputs in diverse fields have outshone neural
networks. The performance of neural networks
in the malware domain is mirrored by recent
developments in machine learning for cyberse-
curity. [6]

5. Detailed Design

Our paper workflow is divided into 3 sections.

• Describing the details: The dataset is
imported and the different columns are
discussed in the dataset.

• Data cleaning: The required steps are
taken after examining the dataset so that
the dataset can be cleaned and all the null
values and columns of not much signifi-
cance are removed so that they will not be
of any concern in the training part.

• Data Training and Testing: When the
information is transparent and ready for
training, we spilled the information as a
training dataset and testing dataset in an
80:20 ratios so that the data was spilled in

an 80:20 ratios.

In this paper, as we try to achieve the highest
accuracy, we use two algorithms to see which
will give us better precision.

• Gradient Boost Classifier

• Random Forest Classifier

6. Algorithms

Gradient Boosting- Gradient boosting is a technique
of machine learning which uses regression and
classification problems that helps us generate a predic-
tion model in the form of an ensemble of the weaker
prediction models, usually decision trees. As other
boosting techniques do it constructs the model in a
phase-wise fashion and generalizes them by allowing
an arbitrary differentiable loss function to be
optimized. [7] For predictive model growth, gradient
boosting is one of the most effective techniques.
Gradient Boosting is teaching several models steadily,
additively and sequentially. With gradients of loss
function, gradient boosting takes place. What we
strive to develop and maximize depends on a simple
understanding of the loss function.

• In Gradient Boosting, three elements area
feature for loss to be optimized or
enhanced.

• A poor man who has learned to make
predictions

• A supplementary model for
incorporating disadvantaged students to
minimize losses. [8][9]

It's important that we understand how the
algorithm of Gradient Boost is implemented
under the hood.

1. Calculate average of target label- We
begin with a leaf that is the average value
of the variable we want to forecast when
solving regression problems. This leaf will
be used in the procedural steps as a
baseline to reach the correct solution.

2. Calculate the residuals- Calculating the
residual with the proceeding formula.

 Residual = actual value – predicted value

3. Construct a decision tree- Next with the
intention of predicting the residuals, we
build a tree. In other words, a prediction of
the residual value (not the desired label)
will be found in every leaf. Any residuals
will end up within the same leaf in the
event that there are more residuals than
leaves. We compute their average and
position that inside the leaf when this
happens.

4. Using the trees within the ensemble
predict the target label. - Each sample
passes through the newly developed tree's
decision nodes before it reaches a given
lead.

5. Compute the new residuals- The residuals
will then be used as explained in step 3 for
the leaves of the coming next decision
tree.

6. Repeat steps 3 to 5 until the number of
iterations matches the number (i.e. the
number of estimators) defined by the
hyper parameter.

7. To make a final prediction as to the value
of the target variable, use all the trees in
the ensemble once eligible. [10]

In the first step, the final forecast will be equal
to the mean we determined, plus all the residu-
als predicted by the trees that make up the
forest multiplied by the learning rate.

Random forests - Random forests or random
decision forests are an ensemble learning
method for classification, regression and other
tasks that function by constructing a multitude
of decision trees at training time and generat-
ing the class that is the class mode (classifica-
tion) or the individual trees' mean/average
prediction (regression) of the individual trees.
Random forests are often used as "Blackbox"
models in companies, as they produce rational
predictions over a large range of data while
requiring little configuration in packages such
as sci-kit-learn [11]. However, data character-
istics can affect their performance. In the steps
and diagrams below the working procedure
can be explained:

1. From the training set select random K data
points.

2. Use the selected data points to build
decision trees associated with it (Subsets).

3. Choose a number N which represents the
decision trees that you want to build.

4. Repeat Step 1 & 2.

5. Find the predictions for new data points
for each decision tree and assign the new
data points to the group that receives the
majority votes. [12]

7. Mplementation

We used a dataset that was made available
from the Chiheb Chebbi - Mastering Machine
Learning for Penetration Testing book for this
work. There are approximately 138000 entries
of legit and malware PE headers and 56
columns as features in the dataset. In an 80
percent preparation and 20 percent evaluation,
the knowledge was divided.

We initially import and read the dataset, once
that is done, we clean the dataset by dropping
unnecessary features and null values. After that
we split the dataset for training and testing. We
import the necessary packages for making a
decision tree, gradient boosted classifier and
random forest classifier. Once done we fit that
data respectively and predict the results.

Using a combination of these algorithms, after
training and testing the algorithms, we were
able to get a highly accurate outcome.

8. Results

After training and testing both the algorithms,
we can see that both of them give us a high
accuracy output.

9. Conclusion

The algorithm used for training the data was
Gradient Boosted classifier and random forest
classifier which gives us an accuracy of
98.764% and 99.311% respectively. After
viewing the confusion matrix of the random
forest classifier, we could conclude that the
number of false positives were at 0.5505 and
false negatives were at 1.0053. And after view-
ing the confusion matrix of the Gradient boost-
ed algorithm we can say that the number of
false positives were at 0.768 and false
negatives were at 2.3099.

Our main objective was to come up with a
system for machine learning that typically
detects as many samples of malware as possi-
ble, with the tough restriction of having a zero
false positive rate. We have been really close to
our target, but we still have a false positive rate
that is non-zero. A variety of deterministic
exemption mechanisms must be added in order
for this system to become part of a highly
competitive commercial product. In our view,
machine learning detection of malware will not
replace the existing methods of detection used
by anti-virus vendors, but will come as an
extension to them. Certain speed and memory
limitations are placed on any commercial
anti-virus product, so the most accurate
algorithms should be used.

10. References

[1] Ahmadi etal., 2016. M. Ahmadi, D.
Ulyanov, S. Semenov, M. Trofimov, G.
Giacinto - Novel feature extraction,
selection and fusion for effective
malware family classification

[2] AL-Hawawreh etal., 2018 M. AL-Ha-
wawreh, N. Moustafa, E. Sitnikova -
Identification of malicious activities in
industrial internet of things based on
deep learning models

[3] Athiwaratkun etal., 2017 B. Athiwarat-
kun, J.W. Stokes - Malware classifica-
tion with lstm and gru language models
and a character- level cnn

[4] D. Bekerman, B. Shapira, L. Rokach, A.
Bar - Unknown malware detection using
network traffic classification 09 2015

[5] B. Biggio, F. Roli - Wild patterns: ten
years after the rise of adversarial
machine learning

[6] I. Santos, Y. K. Penya, J. Devesa, and P.
G. Garcia, “N-grams- based file signa-
tures for malware detection,” 2009.

[7] K. Rieck, T. Holz, C. Willems, P. D¨us-
sel, and P. Laskov, “Learning and
classification of malware behavior,” in
DIMVA ’08: Proceedings of the 5th
international conference on Detection of
Intrusions and Malware, and Vulnerabil-
ity Assessment. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 108–125.

[8] E. Konstantinou, “Metamorphic virus:
Analysis and detection,” 2008, Techni-
cal Report RHUL-MA-2008-2, Search
Security Award M.Sc. thesis, 93 pages.

[9] Gibert etal., 2019 D. Gibert, C. Mateu, J.
Planes - A hierarchical convolutional
neural network for malware classifica-
tion. The International Joint Conference
on Neural Networks 2019, IEEE (2019),
pp. 1-8

[10] X. Guo, Y. Yin, C. Dong, G. Yang, G.
Zhou - On the class imbalance problem
2008 Fourth International Conference
on Natural Computation, vol. 4 (Oct
2008), pp. 192-201

[11] Hall, 1999 M.A. Hall - Correla-
tion-based Feature Selection for
Machine Learning Ph.D. thesis The
University of Waikato (1999)

[12] W. Han, J. Xue, Y. Wang, L. Huang, Z.
Kong, L. MaoMaldae: - Detecting and
explaining malware based on correlation
and fusion of static and dynamic charac-
teristics Comput. Secur., 83 (2019), pp.
208-233

[13] W. Han, J. Xue, Y. Wang, Z. Liu, Z.
KongMalinsight: a systematic profil-
ing-based malware detection framework
J. Netw. Comput. Appl., 125 (2019), pp.
236-250

[14] X. Hu, K.G. Shin, S. Bhatkar, K. Griffin
Mutantx-s: scalable malware clustering
based on static features Presented as Part
of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13),
USENIX, San Jose, CA (2013), pp.
187-198

[15] Huang and Stokes, 2016 W. Huang, J.W.
StokesMtnet: a multi- task neural
network for dynamic malware classifi-
cation Caballero J., Zurutuza U., Rodr-
guez R.J. (Eds.), Detection of Intrusions
and Malware, and Vulnerability Assess-
ment, Springer International Publishing,
Cham (2016), pp. 399-418

[16] X. Zhang, J. Zhao, Y. LeCun Charac-
ter-level convolutional networks for text
classification Proceedings of the 28th

International Conference on Neural
Information Processing Systems, ume 1,
MIT Press, Cambridge, MA, USA
(2015), pp.

[17] D. Uppal, R. Sinha, V. Mehra, V. Jain -
Malware detection and classification
based on extraction of api sequences
2014 International Conference on
Advances in Computing, Communica-
tions and Informatics (ICACCI) (Sep.
2014)

[18] A. Souri, R. Hosseini - A state-of-the-art
survey of malware detection approaches
using data mining techniques
Human-centric Computing and Informa-
tion Sciences, 8 (1) (Jan 2018),

[19] I E. Raff, J. Barker, J. Sylvester, R. Bran-
don, B. Catanzaro, C.K. Nicholas -
Malware detection by eating a whole
EXE - The Workshops of the the
Thirty-Second AAAI Conference on
Artificial Intelligence, New Orleans,
Louisiana, USA, February 2- 7, 2018
(2018)

[20] A. Moser, C. Kruegel, E. Kirda - Limits
of static analysis for malware detection
Twenty-Third Annual Computer Securi-
ty Applications Conference (ACSAC
2007) (Dec 2007), pp. 421-43

Machine Learning in Malware Detection

36 LGU Int.J. Elect.Crime Investigation 5(3):LGUIJECI MS.ID- 05 (2021)

1. Introduction

 Idealistic hackers attacked computers
in the early days because they were eager to
prove themselves. Cracking machines,
however is an industry in today's world.
Despite recent improvements in software and
computer hardware security, both in frequency
and sophistication, attacks on computer
systems have increased. Regrettably, there are
major drawbacks to current methods for
detecting and analyzing unknown code
samples. The Internet is a critical part of our

everyday lives today. On the internet, there are
many services and they are rising daily as well.
Numerous reports indicate that malware's
effect is worsening at an alarming pace.
Although malware diversity is growing, anti-
virus scanners are unable to fulfil security
needs, resulting in attacks on millions of hosts.
Around 65,63,145 different hosts were
targeted, according to Kaspersky Labs, and in
2015, 40,00,000 unique malware artefacts
were found. Juniper Research (2016), in
particular, projected that by 2019 the cost of
data breaches will rise to $2.1 trillion globally
[1]. Current studies show that script-kiddies

properties of data to be exact about the
estimates. The major part of this model is that
it will learn the subquery representations of
complex queries which will be used to build
query execution plan using deep reinforcement
learning. Since the 1970s, information base
analysts have been dealing with framework
enhancement and large-scale information-driv-
en applications, which are strongly associated
with the first two components. Although deep
learning methodologies are not often used in
dealing with DBMS challenges, it is natural to
wonder about the linkages between informa-
tion bases and profound learning.

First, we have to examine that is the database
community ready to adapt deep learning for
DBMS. However, there are fewer examples of
using machine learning for traditional database
problems that are less uncertain, like indexing
etc. whereas deep learning is good at predict-
ing the events that are mostly contains uncer-
tainty. There are problems faced in databases
that are probabilistic like crowdsourcing etc. In
particular, we divide the method in two parts,
first representation of state of table using deep
learning and then we will present a way to
computes plan for the given query using the
above states together with deep reinforcement
learning.

Challenge of this approach, to represent data
and query. First, we develop an approach that
will incrementally generate result of subque-
ries. Subqueries and a new operation will be
provided as input that will further predict the
representation of output. This representation of
output subquery will be used to derive the

subquery’s cardinality.

The major part is that we will present a method
that will use this representation to enumerates
the query execution plan through deep
reinforcement learning. Support learning is a
generally beneficial structure used for dynamic
in circumstances where a framework is
absorbed by experimentation from remunera-
tions and discipline. [2]. We propose to use this
deep learning approach to build an optimal
query execution plan by modelling it as
Markov process; in which each decision has its
dependency on each stage. The figure below
will illustrate our method. The figure below
has DB and a query, the model will generate an
optimal query execution plan by determining
the series of state transitions

Figure 1: Database System

The system in the initial state t in the illustra-
tion represents a whole database. We will
select as action using deep reinforcement
learning, the model moves to a new state at t
+1, We've now built a bigger subquery. Each
action is a query operation, and each state
reflects the intermediate results of the subque-
ry. To build this representation, we used a
neural network, i.e. a state transition function,
NNST. NNST is a recursive function that
generates the subquery representation at time

t+1 by taking the previous subquery represen-
tation as input and an action at time t.

Let us now define the setup that is engineered
above. The query plan's dynamics are
bottom-up, with one operation at a time.
Assume a subquery has been constructed at
any step t of the query plan, and the state at t is
represented by an n-dimensional vector ht.
When the next action applied to the setup, at to
this current database state leads to the next
state, ht+1. The mapping, NNST: (ht, at) →
ht+1 is called the state transition function. This
state and state transition function are well
known in applications of deep reinforcement
learning. For Example, in the game of Chess,
each possible position is called state and the
transition of these states from one board
position to another is well-defined. However,
in the case of a database, if the query execution
plan is not sufficiently described, we cannot
forecast the status of the query. The core of our
proposed strategy is to identify each state using
a finite dimensional vector and then learn the
state transition function using a deep reinforce-
ment learning model. We employ input signals
and context from observed variables linked
with database status to drive the training proce-
dure for this network. Throughout this work,
we will utilise the cardinality of each subquery
as an observable variable at any point of the
plan. If we can learn a function, NNobserved, that
maps this state to projected cardinalities at
stage t, we should be able to learn a function,
NNobserved, that maps this state to predicted
cardinalities at stage t. In the figure below, we
display both NNST and NNobserved.

Figure 2: Representation of NNST and

NNObsereved

When the suggested model has been sufficient-
ly trained, we will update the network parame-
ters depending on query operation sequences.
Each state will learn to precisely depict a repre-
sentation using this approach. Once the
technique has been fully trained, we may
correct it and use deep reinforcement learning
to create a suitable action policy, resulting in
an optimal query execution plan.

2. Literature Review:

Extensive Learning Deep learning methods,
commonly known as feedforward neural
networks, may imprecisely approximate a
nonlinear function, f [3]. Through a collection
of learnt parameters spread across multiple
layers, these models establish a mapping from
an input x to an output y. The behavior of the
interior layers is not dictated by the input data
during training; instead, these models must
learn how to employ the layers to create the
proper output. Because the layers have no

subquery representation. Back propagation is
used to alter the weights for both functions
while we train this model.

Before moving forward and start using the
recursive NNST model, we have to understand
an additional function, NNinit. NNinit will take
(x0, a0) as input, where x0 represents a vector
that holds the properties of the database D
whereas a0 shows a relational operator. The
model outputs the cardinality of the query that
executes the operation encoded in a0 on D. By
this we can achieve the optimal time on the
execution of the query.

Figure 3: Input and Output Variables

x0 the vector represents simple properties of the
database, D. For each attribute in the dataset D,
we use the following features to define x0: the
min value, the max value and the number of
distinct values.

4. Conclusion

In this paper, we provide a model for query
optimization that uses deep reinforcement
learning. We employ deep neural networks to

gradually learn state representations of subque-
ries by storing fundamental information about
the input. In future work, we propose combin-
ing these state representations with a reinforce-
ment learning model to develop optimum
plans.

5. References:

[1] Kostas Tzoumas et al. A reinforcement
learning approach for adaptive query
processing. In A DB Technical Report,
2008.

[2] Ron Avnur et al. Eddies: Continuously
adaptive query processing. SIGMOD
Record, 2000.

[3] Volodymyr Mnih et al. Human-level
control through deep reinforcement
learning. Nature, 2015.

[4] Viktor Leis, Andrey Gubichev. How
Good Are Query Optimizers, Really?
CoRR, 2017.

[5] Richard S. Sutton et al. Reinforcement
learning I: Introduction, 2016.

[6] Wei Wang†, Meihui Zhang et al.
Database Meets Deep Learning:
Challenges and Opportunities. January
2020.

