Binish et al LGU (IJECI) 2020 LGU (IJECI)
ISSN: 2522-3429 (Print)

ISSN: 2616-6003 (Online)

LGU International Journal for
Electronic Crime Investigation

i

Research Article Vol. 4 issue 4 Year 2020

LALR Parser Implementation using Grammar Rules

Syeda Binish Zahra
binishzahra@gmail.com
National College of Business
Administration & Economics (NCBAE

Abstract:

Syntactic parsing deals with syntactic structure of a sentence. It refers to the grammatical arrange-
ment of words in a complete sentence. A syntactic analysis of English words will be presented using
bottom up parsing in which LALR parser defines the best syntax analysis. A compiler is constructed
that generates token of the identifiers that are characters, alphabets, etc. using symbol table, checks
for the syntax of sentence by dividing into phrases, generating errors, debugging them and giving us

the correct sentence.

Keyword:

1. Introduction

Compiler as we know is a program that
takes one language as an input and translates
into another equipment language which we
plea. Compilers are broadly applicable and are
used frequently in many unexpected areas. A
compiler is said to be good that contain
self-contained units that are ready to be
executed [1]. Analysis and synthesis are two
parts of compiler that further divides the
operation of compiler in six phases.

Grammar is a set of language rules to create
phases and sentences that convey meaning and
those rules which involve meaning of words
are called semantics and those that don’t
involve meaning are called syntactic. So both

the terminologies mean a lot. Context free
grammar (CFG) are the set of rules or
productions that shows which element occur in
a phase and in what order.

Many researches have been published on
parsing methods for natural language. Here we
want to parse the grammar of English language
[2. 3]. Simply, there is a need of compiler that
translates the syntax of English language.
Syntax analysis is a fundamental area of
research and is used in key areas of
computational etymology for example in
machine translation, information retrieval etc.
this determination of syntax analysis is done
by the help of parsing.

The main purpose of Syntax analyzer is to
identify the syntactic structure of a sentence

LGU Int.J. Elect.Crime Investigation 4(4):LGUIJECI MS.ID- 016 (2020) 37

LALR. Parser Implementation using Grammar Rules

and parsing them accordingly. A widely used
mathematical system for exhibiting essential
structure in natural language is context-free
grammar (CFG) also known as phrase
structure grammar. Parse trees are used to
show the structure of the sentence, but they
often contain dismissed information due to
understood definitions [1].
grammar (CFG) was first defined for natural

Context-free

language by Chomsky in 1957 that consist of
terminals, non-terminals and a production rule
from non-terminal to terminal or another
non-terminal.

Methodology:

Many online and offline service/software are
provided to frequently check the errors in our
grammar for both syntax and semantic error.
Researches are proposed and published on the
parsing of natural languages. In the previous
research, Parse trees are used to show the
structure of sentence [4]. Firstly it shows the
type of sentence, then the components of the
sentence are identified. Again the grammar
rules are checked, if the sentence parse through
the defined grammar then the sentence is
considered as syntactically correct. Otherwise
it is syntactically incorrect. The context free
grammar of the symbol will be defined along
with the symbol table. The parts of speech
tagger will also be the part of the compiler.

In many researches, the LL1 parser are used as
top down parsing that starts checking from the
start point mainly ROOT and comes
downward towards the LEAVES (Ending
point). Here the advantage of use of this is that
it never waste time on subtrees and can go
further deep to find the valid string. Rule based
approach algorithms and part of speech tagger
are used as the part of software. But the issue is

that it waste time on trees that don’t match the
input. It compares the first word of the input
with the leftmost branch of the tree. The need
of writing this paper is the use of bottom up
parsing such as LALR. As in some previous
research papers, top down parsing are used.

Here in this research we will use bottom up
parser that starts from the words in the input
sentence and attempts to construct a parse tree
in an upward direction towards the root. At
each step or level the parser with look for the
rules and the defined productions. The idea is
to use LALR parser because of its
effectiveness [5]. LALR stands for look ahead
left right is a technique for deciding when
reductions have to be made in shift/reduce
parsing. Often, it can make the decisions
without using a look ahead. Sometimes, a look
ahead of 1 is required [6, 7].

Most parser generators construct LALR
parsers. In LALR parsing, a deterministic
finite automaton is used for determining when
reductions have to be made. The deterministic
finite automaton is usually called prefix
automaton [8]. This look ahead parser uses
look ahead sets. If a state has more than one
reduction, or a reduction and a shift, the parser
looks at the look ahead symbol, in order to
decide what to do next. With LALR (look
ahead LR) parsing, we attempt to reduce the
number of states in an LR (1) by merging
similar states. This reduce the number of states
to the same as SLR (1) but still holds some
powers of the LR (1) look ahead.

LALR parser starts with the idea of building an
LR parsing table. These generated tables are
less powerful than LR but more than SLR
Techniques.

38 LGU Int.J. Elect.Crime Investigation 4(4).LGUIJECI MS.ID- 016 (2020)

LALR Parser Implementation using Grammar Rules

Evaluation:

Bottom up parsing mainly focuses on shift
reduce parser in which the stack hold grammar
symbol and an input buffer holds the best of
string to be parsed. But there are some
limitation in shift reduce parser. Sometimes in
this parser we need to look ahead. So, knowing
the benefit of LALR parser we can easily
check the grammar of our language. The
context free grammar defines the production
rules. Setting the production rules according to
the program. The symbol table that adds new
identifiers in memory, generate tokens
according to their values. Here we are using
English language so alphabets, special
characters will be added as identifiers. Special
and most frequently used words might also be
stored for the semantic meaning of the
sentence.

Using the LALR parser, the sentence can
effortlessly be parsed with look ahead. Here
the grammar in the CFG is Verb, pronoun,
nouns, articles, adjectives, and other
grammatical verses. The CFG just defines
syntax but the structures are not specified.
Firstly turning a string/file into a series of
tokens during a phase referred to as "Lexical
Analysis" [3]. Once we have a collection of
tokens, we match them against a "grammar."
Grammars are simple languages that are used
to bootstrap more complex languages [2]. They
consist of simple mapping rules that indicate
what rule to evaluate next. Then the production
rules are checked and proceeds accordingly.

The LALR parser has more language
recognition power than the LR (0) parser,
while requiring the same number of states as
the LR (0) parser for a language that can be
recognized by both parsers. This makes the
LALR parser a memory-efficient alternative to

the LR (1) parser for languages that are not LR
(0).

Conclusion and Future Work:

This paper focuses on the syntax analysis for
natural language using LALR parser. This is an
approach to check the correctness of the
sentence. This approach cannot achieve the
accuracy and checking up to 100 % but still
works accurately. Here in future ifs
performance can also be enhanced and this can
further be enhanced by constructing a compiler
that translates URDU words using this
technique.

References:

[2] Haider, H.; Rosengren, I. Scrambling;
Sprache und Pragmatik: Lund, Sweden,
1998.

[3] Kiibler, S.; McDonald, R.; Nivre, J.
Dependency parsing. Synth. Lect.
Hum.Lang. Technol. 2009, 1, 1-127.

[4] Kuhlmann, M. Mildly non-projective
dependency grammar. Comput.
Linguist. 2013, 39, 355-387.

[5] Skut, W.; Krenn, B.; Brants, T.; Uszko-
reit, H. An annotation scheme for free
word order languages. In Proceedings
of the 5th Applied Natural Language
Processing Conference, 31 March-3
April 1997; pp. 88-95.

[6] Ranta, A. Grammatical Framework:
Programming with Multilingual Gram-
mars; CSLI Publications: Stanford, CA,
USA, 2011.

LGU Int.J. Elect.Crime Investigation 4(4).LGUIJECI MS.ID- 016 (2020) 39

LALR. Parser Implementation using Grammar Rules

[71 Ljungléf, P. Expressivity and Complex-
ity of the Grammatical Framework.
Ph.D. Thesis, Goteborg University,
Gothenburg, Sweden, 2004.

[8] Kallmeyer, L.; Maier, W.; Parmentier,
Y.; Dellert, J. TuLiPA-Parsing exten-
sions of TAG with range concatenation
grammars. Bull. Pol. Acad. Sci. 2010,
58, 377-391.

[9] Kallmeyer, L.; Parmentier, Y. On the
relation between multicomponent tree
adjoining grammars with tree tuples
(TT-MCTAG) and range concatenation
grammars (RCG). In Proceedings of the
Second International Conference on
Language and Automata Theory and
Applications (LATA 2008), Tarragona,
Spain, 13-19 March 2008; pp.
263-274.

40 LGU Int.J. Elect.Crime Investigation 4(4).LGUIJECI MS.ID- 016 (2020)

