
situations. They are an essential part of the
silent weapon that kills people stealthily and
invisibly. The subject of the current research is
forensic chemistry and toxicology, which is
fully concerned with the introduction, classifi-
cation, effects, and influencing factors of
poisons, as well as their detection and testing.
The purpose of this article is to investigate how
they act and function after they enter the
human body.

5. References

1. Ibrahim, M. S., & Abdullah, M. (2010).
Forensic Accounting in Malaysia: Some
Insights from Practitioners. Asian
Journal of Accounting Perspectives,
3(1), 14-21.

2. Kloosterman, A., Mapes, A., Geradts,
Z., van Eijk, E., Koper, C., van den Berg,
J., ... & van Asten, A. (2015). The
interface between forensic science and
technology: how technology could cause
a paradigm shift in the role of forensic
institutes in the criminal justice system.
Philosophical Transactions of the Royal
Society B: Biological Sciences,
370(1674), 20140264.

3. Yaman, F. (2021). Examining students’
quality and perceptions of argumenta-
tive and summary writing within a
knowledge generation approach to
learning in an analytical chemistry
course. Chemistry Education Research
and Practice, 22(4), 985-1002.

4. Hibbert, D. B. (2007). Quality assurance
in the analytical chemistry laboratory.
Oxford University Press.

may be divided into three groups: homicidal,
suicidal, and accidental [16].

Homicidal Poisoning
The victim is frequently subjected to attempts
to "nurse" them back to health by poisoners
[17]. Serial poisoners typically enjoy the rush
of having control over the victim's life and
suffering, and poisoners frequently take
delight in seeing their victims suffer. Homicide
by poisoning perpetrators frequently work in
the healthcare or medical industries. The
substances that are most appealing to offenders
are those that are deadly in little doses. The
ideal poison for a homicide has no taste, is
undetectable, has no odour, and exhibits symp-
toms that are comparable to those of illnesses
that are found in nature [18]. Since current
scientific techniques and advancements have
made poison detection simpler, it has becom-
ing more and more challenging to find a poison
having all of these characteristics [19].

Sucidal Poisoning:
Self-poisoning, the non-violent way of suicide,
most frequently involves the use of medicine,
either over-the-counter (paracetamol) or
prescribed (such as antidepressants and
prescription analgesics), chemicals (pesti-
cides), or illegal narcotics [20].

Accidental poisoning
Accidental poisoning, which includes acciden-
tal drug overdose, occurs when a person
inadvertently poisons themself. Alcohol,
opioids (such as heroin or methadone),
sedatives, psychiatric pharmaceuticals (such as
antidepressants), antiepileptic, and anti-in-
flammatory medications are some of the
substances from which poisoning may result
[21].

Classification of poisons
Poisons are divided into two categories based
on how they affect the body and depending on
their chemical and physical characteristics.

Classification based upon the effect of
poison on the body:
A) Corrosive: When poisons come into
contact with tissues or organs, they become
corrosive, for example: a. Strong acids like
H2SO4,HCl, HNO3, etc. and strong alkalis
include NH4, Na/K hydroxides, etc [22].

B) Neurotoxins: Toxins known as neurotoxins
cause damage to nerve tissue. Exogenous
chemicals known as neurotoxins are a broad
category of neurological insults that can
negatively impact the function of both growing
and mature brain tissue.Lead, , glutamate,
ethanol (drinking alcohol), botulinum toxin
(e.g., Botox), tetanus toxin, nitric oxide and
tetrodotoxin are typical examples of neurotox-
ins [23].

C) Irritants poisons: They mostly cause
inflammation at the point of contact, particu-
larly in the skin, gastrointestinal system, and
respiratory tract [24]. A poison is categorized
as one that affects a system the most when it
causes death as a result of a systemic impact,
such as a heart poison, brain poison, or spinal
poison. The inorganic toxin arsenic is a hefty
metallic irritation. Due to its insoluble nature
in water and inability to be absorbed by the
digestive system, metallic arsenic is not harm-
ful. Arsenic trioxide, often known as sankhyal
or somalkar, is toxic. Arsenobetaine and arsen-
ocholine are two organic arsenic non-toxic
forms that are typically present in food that
humans frequently ingest [25]. Cod, haddock,
and shellfish contain them.

nervous system, particularly the brain, can be
proved by the use of proper and sensitive
procedures, even if many substances have
obvious effects elsewhere. The circulatory
system, the blood and hematopoietic system,
visceral organs such the liver, kidney, and lung,
and the skin follow in order of frequency of
involvement in systemic toxicity. The least
often targeted tissues for systemic effects
include muscle and bone. The frequency of
tissue reactions when drugs have a localized
effect primarily depends on the portal of
entrance (skin, gastrointestinal tract, respirato-
ry tract) [36].

Reversible versus Irreversible Toxic
Effects
Chemical toxicity can have both reversible and
irreversible consequences. The tissue's capaci-
ty to regenerate will play a significant role in
determining whether a chemical insult to a
tissue results in reversible or irreversible
damage. Therefore, whereas most injuries to
the central nervous system are mostly irrevers-
ible due to the differentiated cells of the central
nervous system being unable to divide and be
replaced, most injuries to a tissue like the liver,
which has a high capacity for regeneration, are
reversible. Chemicals can cause cancer and
permanent harmful consequences [37].

4. Conclusion

By analyzing the medical and legal elements of
a drug's harmful effects on organisms, forensic
toxicology uses chemical and analytical tools
to help establish the facts in forensic investiga-
tions. In situations of fatal poisoning and those
that may be related to criminal conduct, foren-
sic practise is essential. Poisons are typically
found in murder, suicide, or accident

5. Robertson, B., Vignaux, G. A., &
Berger, C. E. (2016). Interpreting
evidence: evaluating forensic science in
the courtroom. John Wiley & Sons.

6. Koehler, J. J. (2017). Forensics or
fauxrensics? Ascertaining accuracy in
the forensic sciences. Ariz. St. LJ, 49,
1369.

7. Klaassen, C. D., Hardman, J. G.,
Limbird, L. E., Molinoff, P. B., Ruddon,
R. W., & Gilman, A. G. (2006). Princi-
ples of toxicology and treatment of
poisoning. Goodman and GilmanÕs The
Pharmacological Basis of Therapeutics,
Eleventh Edition., McGraw Hill,
Columbus, OH, USA, 1739-1752.

8. Shorter, E. (2008). Before Prozac: The
troubled history of mood disorders in
psychiatry. Oxford University Press.

9. Yuan, H., Ma, Q., Ye, L., & Piao, G.
(2016). The traditional medicine and
modern medicine from natural products.
Molecules, 21(5), 559.

10. Li, L., Liu, T., Fu, C., Tan, L., Meng, X.,
& Liu, H. (2015). Biodistribution, excre-
tion, and toxicity of mesoporous silica
nanoparticles after oral administration
depend on their shape. Nanomedicine:
Nanotechnology, Biology and Medicine,
11(8), 1915-1924.

11. Newton, D. E. (2007). Forensic chemis-
try. Infobase Publishing.

12. Sharma, A. K., Tjell, J. C., Sloth, J. J., &
Holm, P. E. (2014). Review of arsenic
contamination, exposure through water

and food and low cost mitigation options
for rural areas. Applied Geochemistry,
41, 11-33.

13. Spitz, W. U., & Diaz, F. J. (2020). Spitz
and Fisher's medicolegal investigation
of death: guidelines for the application
of pathology to crime investigation.
Charles C Thomas Publisher.

14. Pétillon, J. M., & Ducasse, S. (2012).
From flakes to grooves: A technical shift
in antlerworking during the last glacial
maximum in southwest France. Journal
of Human Evolution, 62(4), 435-465.

15. Sharma, M., Jabin, S., & Sharma, M.
PHARMACEUTICAL POLLUTION: A
GRAVE CONCERN!!.

16. Sikary, A. K. (2019). Homicidal poison-
ing in India: A short review. Journal of
forensic and legal medicine, 61, 13-16.

17. Van Landeghem, A. A., De Letter, E. A.,
Lambert, W. E., Van Peteghem, C. H., &
Piette, M. H. (2007). Aconitine involve-
ment in an unusual homicide case.
International journal of legal medicine,
121(3), 214-219.

18. Gunn, A. (2019). Essential forensic
biology. John Wiley & Sons.

19. Trestrail, J. H. (2007). Types of Poisons.
Criminal Poisoning: Investigational
Guide for Law Enforcement, Toxicolo-
gists, Forensic Scientists, and Attorneys,
29-46.

20. Bonvoisin, T., Utyasheva, L., Knipe, D.,
Gunnell, D., & Eddleston, M. (2020).

Suicide by pesticide poisoning in India:
a review of pesticide regulations and
their impact on suicide trends. BMC
public health, 20(1), 1-16.

21. Manzar, N., Saad, S. M. A., Manzar, B.,
& Fatima, S. S. (2010). The study of
etiological and demographic character-
istics of acute household accidental
poisoning in children-a consecutive case
series study from Pakistan. BMC pediat-
rics, 10(1), 1-6.

22. Chibishev, A., Pereska, Z., Chibisheva,
V., & Simonovska, N. (2012). Corrosive
poisonings in adults. Materia
socio-medica.

23. Hu, Y., Chen, J., Fan, H., Xie, P., & He,
J. (2016). A review of neurotoxicity of
microcystins. Environmental science
and pollution research, 23(8),
7211-7219.

24. Waserman, S., & Watson, W. (2011).
Food allergy. Allergy, Asthma & Clini-
cal Immunology, 7(1), 1-7.

25. Borak, J., & Hosgood, H. D. (2007).
Seafood arsenic: implications for human
risk assessment. Regulatory Toxicology
and Pharmacology, 47(2), 204-212.

26. Pandey, G., & Madhuri, S. (2014).
Heavy metals causing toxicity in
animals and fishes. Research Journal of
Animal, Veterinary and Fishery Scienc-
es, 2(2), 17-23.

27. Stejskal, V., Vendl, T., Aulicky, R., &
Athanassiou, C. (2021). Synthetic and

natural insecticides: Gas, liquid, gel and
solid formulations for stored-product
and food-industry pest control. Insects,
12(7), 590.

28. Francois, M. R., & Stephen, F. (2015).
Phosphorus Compounds. In Hamilton &
Hardy's Industrial Toxicology (pp.
383-390). Hoboken, New Jersey: John
Wiley & Sons, Inc..

29. Kaushik, R. D. (2021). Methyl bromide:
Risk assessment, environmental, and
health hazard. In Hazardous Gases (pp.
239-250). Academic Press.

30. Thompson, J. P., & Marrs, T. C. (2012).
Hydroxocobalamin in cyanide poison-
ing. Clinical Toxicology, 50(10),
875-885.

31. Dash, R. R., Gaur, A., & Balomajumder,
C. (2009). Cyanide in industrial waste-
waters and its removal: a review on
biotreatment. Journal of hazardous
materials, 163(1), 1-11.

32. Mishra, A. (2020). Forensic Chemistry
and Toxicology. In Medical Toxicology.
IntechOpen.

33. Donovan, M. D. (2009). Effect of route
of administration and distribution on
drug action. In Modern Pharmaceutics
Volume 1 (pp. 173-198). CRC Press.

34. Boey, A., & Ho, H. K. (2020). All roads
lead to the liver: metal nanoparticles and
their implications for liver health. Small,
16(21), 2000153.

35. Jett, D. A., Sibrizzi, C. A., Blain, R. B.,

C) Cyanides
The majority of cases of severe or deadly
cyanide poisoning involve the suicide intake of
cyanide salts. A very poisonous volatile liquid,
hydrogen cyanide. When cyanide salts react
with acids or are formed in the stomach after
oral consumption, hydrogen cyanide fumes are
released [30]. Although HCN has a distinctive
almond-like odour, up to 50% of people cannot
detect it. Even while this might have been
connected to air flow ventilation systems in
post-mortem rooms, it was surprising that it
was not a distinguishing feature during autopsy
of a significant number of cyanide suicide
fatalities. The industrial applications of potas-
sium and sodium cyanide as soluble salts of
cyanide include electroplating, metal process-
ing, and laboratory reagents [31].

B. Organic poisons

a)Ethanol: A much of ethanol is toxic, so
avoid using it.

b. Other alcohols: Poisonous alcohols include
methyl and isopropyl.

Methanol, a substance used in the chemical
and polish industries as well as clandestine
alcoholic beverages, may be fatal when
consumed.

c. Phenol: Carboxylic acid or phenol may be
toxic. The main purpose of it is as a disinfect-
ant .

d. Other substances: Poisonous industrial
chemicals include benzene, chloral hydrate,
chlorinated hydrocarbons, and others. Chloral
hydrate might be present in illegal alcoholic

beverages in a number of poisoning instances
[32].

Route & Site of Exposure
When administered intravenously, toxic
substances often have the most impact and the
fastest reaction. For alternative routes, inhala-
tion, intraperitoneal, sucutaneous, intramuscu-
lar, intradermal, oral, and topical would rough-
ly be listed in decreasing order of efficacy [33].
Additionally, the method of delivery might
affect an agent's toxicity. For instance, it would
be reasonable to anticipate that a substance that
is detoxified in the liver would be less hazard-
ous when administered orally through the
portal circulation than systemically (inhala-
tion) [34].

Duration & Frequency of Exposure
The toxic effects brought on by a single expo-
sure to multiple substances differ significantly
from those brought on by repeated exposure.
For instance, benzene's major acute toxic
symptom is central nervous system depression,
but prolonged exposure can cause leukaemia.
Acute exposure to quickly absorbed substances
is likely to result in immediate toxicity, but it is
also possible for acute exposure to result in
delayed toxicity that may or may not be
comparable to the toxic consequences of
chronic exposure. In contrast, repeated admin-
istration of a hazardous agent may result in
certain short-term (acute) side effects in
addition to the agent's long-term, low-level, or
chronic effects [35].

Local versus Systemic Toxicity
The central nervous system is the target organ
of toxicity that is most commonly engaged in
systemic toxicity. Damage to the central

Hartman, P. A., Lein, P. J., Taylor, K. W.,
& Rooney, A. A. (2020). A national
toxicology program systematic review
of the evidence for long-term effects
after acute exposure to sarin nerve agent.
Critical reviews in toxicology, 50(6),
474-490.

36. El-Boghdadly, K., Pawa, A., & Chin, K.
J. (2018). Local anesthetic systemic
toxicity: current perspectives. Local and
regional anesthesia, 11, 35.

37. Grandin, E. W., Ky, B., Cornell, R. F.,
Carver, J., & Lenihan, D. J. (2015).
Patterns of cardiac toxicity associated
with irreversible proteasome inhibition
in the treatment of multiple myeloma.
Journal of cardiac failure, 21(2),
138-144.

Poisons are also Categorized According
to their Characteristics:

A) Inorganic Poisons
i) Metallic Poisoning
After exposure, microscopic metal molecules
build up in your body and cause heavy metal

poisoning. Without treatment, heavy metals
can produce symptoms that are potentially
fatal because they adhere to your cells and stop
them from functioning.Your body can become
poisonous to a variety of metals [26]. The most
prevalent poisonous metals are:

Ii) Non Metallic Poisons

A) Phosphine and phosphides
A variety of industrial operations employ
phosphonate, a highly poisonous colourless
gas with a pungent garlic or fishy odour. It is
also produced when phosphides are exposed to
moisture.[27] In underdeveloped nations,
aluminium phosphide is widely utilized as a
cheap and efficient grain fumigant and rodenti-
cide [28].

B) Bromide
The colourless gas methyl bromide has histori-
cally been employed as a refrigerant and in fire
extinguishers, but it is most frequently utilized
as an insecticidal fumigant for grain storage

and soil. Methyl bromide is a metabolite that
produces the bromide ion and is linked to
unintentional poisoning, especially in work
environments [29]. By passive diffusion, the
bromide ion is quickly absorbed from the
stomach and proximal small intestines.
Bromide ions are mostly found in extracellular
fluid, where they have similar properties to
chloride ions. The kidney is the most signifi-
cant organ for elimination. Their half-life of
elimination is relatively lengthy, lasting around
10 days after an acute dose or many weeks
after stopping a long-term consumption,
especially in situations of bromide intoxica-
tion.

Forensic Analysis
The use of scientific knowledge that is based
on legal issues is known as forensic science
[5]. In order to determine what happened,
when it happened, and who was responsible,
forensic science primarily examines biological
and physical evidence. To attain accuracy and
precision, forensic scientific proficiency is
crucial [6].

2. Forensic Toxicology

The study of poisons' and drugs' detrimental
effects on living things is known as toxicology
[7]. It include the investigation of the signs,
causes, effects, and methods of handling
certain toxins and medications. If the use of
medications and poisons results in death in
dubious circumstances, it becomes rhetorical
pharmacological medicine [8].

The field of medicine may include pharmaco-
logical medicine as a sub-field. The study of
medicine includes all interactions between
drugs and other chemicals on living things [9].
Drug administration, body absorption, activi-
ties and interactions, metabolism, and excre-
tion are all aspects of medicine [10].

Fig: Stages of forensic toxicology

3. History of Forensic Chemistry

Rhetorical chemistry advancements started to
become apparent by the middle of the 19th
century. Blood tests were developed at this

time, the Marsh test for arsenic was created in
1832, and experiments on bullet "fingerprint-
ing" were conducted in the 1980s. Christian
Friedrich Schönbein (1799–1868), a
German–Swiss scientist, developed the first
accurate method for differentiating human
blood in 1863 [11]. For more than a century
and a half, arsenic has been widely used as a
toxin. Its excellence goes back to the seventh
century. During the 16th century, the Arab
philosopher Abu Musa Jabir Ibn Hayyan
(about 721-ca. 815), also known as Geber,
found the process for transforming the grey,
metallic-looking elemental arsenic ,an elemen-
tal chemical compound (As2O3; a material)
into (White, flavourless, and odourless
powder). Arsenic may just be an extra chemi-
cal in person's food or beverage without raising
suspicion [12]. Over the following sixty years,
attempts to employ bullet "fingerprinting" in
criminal investigations were few [13]. But by
the 1890s, a number of events spurred renewed
interest in the method as a means of identifying
possible offenders. Of those aspects, the devel-
opment of the replacement method known as
"grooving" for making gun barrels was
perhaps the most crucial. The process of
grooving involves carving spiral grooves into
the inner surface of tubing. When a bullet
travels through the barrel, the grooves allow it
to spin; this motion prevents the bullet from
tipping over after it exits the tube. Different
grooving techniques have been employed by
numerous gun makers [14].

Poisoning
It is referred to as the harmful consequence of
a poison or harmful chemical agent. It causes
the emergence of negative reactions to danger-
ous substances or chemicals [15]. Basically, it

1. Introduction

 The word "forensic" comes from the
Latin word "forensis," which means "public,"
"to the prospect and discussion"[1]. Legal
concerns can be resolved in a variety of ways
thanks to rhetorical science. Rhetorical
science, which includes a variety of disciplines
such as rhetorical chemistry, rhetorical social
science, rhetorical biology, rhetorical medi-
cine, rhetorical engineering, rhetorical material
sciences, machine rhetorical, and others, is
generally used to settle legal disputes, fairly
enforce criminal and civil laws, and protect the

public. A broad phrase that covers most of the
duties performed by the law laboratory is
forensic chemistry[2]. Trace analysis and
medicine are techniques employed in the field
of rhetorical chemistry. Analytical chemistry
that is applied is forensic chemistry. Rhetorical
chemistry adds comparison study to the assign-
ment whereas analytical chemistry covers both
quantitative and qualitative chemical analysis
[3]. Similarly, spectrometry can quickly deter-
mine whether a sample is made of nylon or
polythene. Therefore, analytical chemistry
offers the quantitative and qualitative data
needed to respond to rhetorical questions [4].

LGU International Journal for
Electronic Crime Investigation

LGU (IJECI)
ISSN: 2522-3429 (Print)
ISSN: 2616-6003 (Online)

Research Article

Saad et al.LGU (IJECI) 2022

Vol. 6 issue 3 Year 2022

Study of the Anti-Debugging Techniques and their
Mitigations

Muhammad Saad and Muhammad Taseer
School of Electrical Engineering and Computer Sciences, NUST, Islamabad, Pakistan

Corresponding author: 12msccsmsuleman@seecs.edu.pk

Abstract:
The major goal of this study is to provide anti-debugging and anti-reversing strategies/techniques
employed by executables, DLLs, and packers/protectors, as well as to examine strategies that can be
utilized to bypass or disable these protections. Anti-debugging techniques are designed to make sure
that a program is not being executed inside a debugger. In most cases, the anti-debugging process
slows down the reverse engineering [1] process but doesn't stop it. This information will allow
malware analysts and researchers to identify the techniques used by the malware. This information
may also be used by security researchers, reverse engineers those want to slow down the process of
reverse engineering in order to add security [2] to their software. It causes some difficulties for a
reverse engineer, but, of course, nothing stops a skilled, knowledgeable, and committed reverse
engineer.

Keywords: malware analysis, anti-debugging, anti-reversing, protectors, packers

29LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

1. Introduction

 Prior to then, malware Development
served as a showcase for malware coders.
Malware analysts have used debuggers to run a
malware program's instructions one by one,
introducing modifications to memory spaces,
settings as well as variable values. Debuggers
are the most commonly used reverse engineer-
ing tools, such as Interactive Disassembler
(IDA), x64dbg, and OllyDBG. If debugging is
successful, it helps to understand malware
behavior and its capabilities. This is something

malware developers would like to avoid. That
is why they must implement anti-debugging
techniques. Anti-debugging techniques[3] can
be used to merely detect the presence of a
debugger, deactivate it, lose control of it, or
even take advantage of a flaw in the debugger.
Disabling or avoiding debugger checks can be
done generally and specifically. However, you
can exploit this vulnerability against specific
debuggers. Furthermore, The Supervisory
Control and Data Acquisition (SCADA)[4]
system has a vulnerability, according to the
Trend Micro report "Unseen Threats, Immi-
nent losses,” which is the part of industrial

manually. The fs segment register can access
the Process Environment Block (PEB) at fs:
[30]. On an x86 [8] computer, this register
corresponds to a Thread Information Block
(TIB).There is also a flag below the Process
Environment Block (PEB) that indicates
whether the first memory space of the process
was created in debug mode. Provide an offset
of 0x18 in the Process Environment Bloc
(PEB). So, here I break down the anti-debug-
ging techniques into two categories: static
anti-debugging and dynamic anti-debugging
[9], as seen in the Table 1 below.

Table 1. Static Vs Dynamic Techniques
Difference

In our research we will discuss we will discuss
some of the main anti-debugging techniques
and how a reverse engineer can be able to
identify them easily for example in this paper
we will discuss about the IsDebuggerPresent,
TimeChecks, NtQueryInformationProcess,
NtSetInformationThread, SwitchDesktops,
SeDebugPrivilege, ParentProcess, Debugger-
Window, DeviceDrivers etc.

Anti-Debugging Techniques Mechanism:
Anti-debugging[10] is the implementation of

control systems (ICS)[5]. In addition, In many
situations, knowing how to apply anti-debug-
ging techniques to malicious code to prevent it
from being tracked down and evaluated is also
helpful. One of the main tools used by malware
analysts and reverse engineers is the debugger.
What is a debugger? A debugger is software
that is used to evaluate and control the flow of
execution of other executables or software. By
using a debugger, we can execute each instruc-
tion step by step and can note down the chang-
es that can be displayed on the stack, memory
dumps, registers, etc. Most packers use these
techniques to determine whether the system is
running a debugger or if a process is being
debugged. These debugger detection meth-
ods[6] include checks that are relatively basic
all the way up to ones that are applicable to
native Application Programming Interfaces
(APIs) and kernel objects[7].This section
discusses how anti-debugging techniques
work. Each process's user space contains a data
structure called a Process Environment Block
(PEB), which holds information about the
related process. Each process's user space
contains a data structure called a Process
Environment Block (PEB), which holds infor-
mation about the related process. It is intended
to access Windows API (WinAPI)It is intended
to access Windows API (WinAPI) but access is
not restricted by this. Process Environment
Block (PEB) can be accessed directly from
memory. Checking the value of the Process
Environment Block (PEB) structure that has
been debugged is a relatively straightforward
implementation and technique. As we know
that there are so many Applications Program-
mable Interfaces (APIs) which are documented
and undocumented. For example, IsDebugger-
Present, which we will discuss later in this
paper. To enhance, we can also check the APIs

If the process can open the CSRSS.EXE
process, then SeDebugPrivilege is active when
the process is accessed.

Token pointing to the process being debugged.
The test is valid for the following reasons: The
Process Security Descriptor CSRSS.EXE
allows the system access to the process.

However, if the process has SeDebugPrivilege
privilege, other processes have independent
access to the Security Descriptor. This permis-
sion is only granted to administrative groups
by default, as we can see in Figure 12.

Figure 12 Assembly Code of SeDebugPrivi-
lege()

This control uses ntdll! The CSRSS.exe
GetProcessId() API gets the Process ID (PID)
 from CSRSS.EXE. You can get it manually by
looking at the Process ID CSRSS.EXE
processes. If OpenProcess() succeeds, SeDe-
bugPrivilege is activated, indicating that the
process is currently running and debugging,
too.

Solution:
The ntdll breakpoint can be hit by setting a
breakpoint as a solution. Returns from
NtOpenProcess(). If PID passed by
CSRSS.exe is CSRSS.exe, set the EX-value to
0xC0000022 (STATUS_ACCESS_DENIED).

Solution:
One of the solutions is to identify where the
time checks are and try to avoid stepping into
them. and the code between these time checks.
Reverse Engineers can place a breakpoint
before that delta and execute instead of steps
until a breakpoint is reached or a breakpoint is
reached. We can also set a breakpoint in
GetTickCount() to specify where to call it or to
change its return value. Mitigations During
Debugging: just fill time checks with NOPs
and set the result of these checks to the appro-
priate value. For anti-debugging solution
development: there is no great need to do
anything with it, as time checks are not very
reliable, but you can still hook timing functions
and accelerate the time between calls.

Mitigations:
• During Debugging, just fill time checks

with NOPs and set the result of these
checks to the appropriate value.

• For anti-debugging solution develop-
ment: there is no great need to do
anything with it, as time checks are not
very reliable, but you can still hook
timing functions and accelerate the time
between calls.

7. SeDebugPrivilege:

By default, the SeDebugPrivilege permission
is disabled for the process access token. When
a debugger like x32dbg, OllyDBG, etc. loads a
process, SeDebugPrivilege permission is
enabled. This is because these debuggers keep
trying . SeDebugPrivilege permissions are
inherited.

Parent Process:
Users launch apps by clicking on the executa-
ble's icon that the shell process displays
(Explorer.exe).By clicking on the executable's
icon that the shell process displays, users can
launch apps (Explorer.exe).Due to this,Explor-
er.exe becomes the parent process of the active
process. This will show that the program was
created by someone else and suggest that you
can debug it.

1. Using Process32First/Next(), it will list
every process and note explorer.exe.
PROCESS32.szExeFile and the PRO-
CESSENTRY32.th32parentProcessID
are the two files that provide the process
ID and the parent process ID of the
current process, respectively.

2. The target is being debugged if the
Process ID (PID) of the parent process
differs from the Process ID (PID) of the
explorer.exe.

Solution:
We need to patch the element of
Kernel32!Process32NextW() that contains the
code that performs a return after setting the
value of EAX to 0.

8. Debugger Window:

The presence of the debug window is a flag
that the debugger is running system[13].
Because the debugger creates windows with
special class names (OllyDBG for OLLYDBG
and WinDbgFrameClass for WinDbg), user32
can easily identify these debug windows!
FindWindow`() or User32! findWindowEx().

Solution:
One solution is to set breakpoints in FindWin-
dow() and FindWindowEx() When the break-
point is hit, modify the value of the
lpClassName string parameter to prevent the
API from functioning. Setting the return value
to NULL is another option.

9. Debugger Process:

List all the processes on the system and see
whether the process name matches the name of
the debugger to find out if it is currently
running (for example, OLLYDBG.EXE, wind-
bg.exe, etc.).Simple to implement; just use
Process32First / Next() after confirming that
the image name corresponds to the name of the
debugger.

Sometimes these methods also use Kernel32
ReadProcessMemory() to read process
memory and then look for debugger-related
strings such as "x64dbg", "IDA", "OllyDBG",
etc. to reverse engineer the debugger. to imple-
ment. After getting the debugger. The malware
will stop his execution and silently exit or
terminates the process.

Solution:
Another solution is to check the main process,
including patching the kernel 32 patch!
Process32NextW() always fails and prevents
the developer from enumerating the process.

10. Device Drivers

An old technique is to verify that the debugger
is running in a Kernel Mode in the system and
try to, access device drivers. This technique is
very simple and consists of simply making a
call to the against well-known device names

byte value 0xCC (INT3 / Breakpoint
Interrupt)[17]. Finding the byte 0xCC in the
API code and protector code will help you
locate software breakpoints as seen by the
example of assembly code in Figure 13.

Figure 13 Assembly Code of Software
Breakpoint Detection

C/C++ Code:
As we can C/C++ code in the Figure 14.

Figure 14. C/C++ code of Software Break-
point Detection

Solution:
Hardware breakpoints can be reverse
engineered if software breakpoints are identi-
fied. If you need to set a breakpoint in the API
code, and when the packer tries to find a break-
point in the API code, reverse engineering the
UNICODE API version allows for the setting
of breakpoints. That eventually calls the ANSI
version, such as LoadLibraryExW LoadLibrar-

used by kernel-mode debuggers, such as
SoftICE, using Kernel32!CreateFile().Some
versions of Soft-ICE also add numbers to the
device name, making it to check. The reversing
forum's suggested technique is to brute force
the corresponding digits until the right device
name is discovered[14].The new packer also
uses device driver detection techniques to
detect system monitors such as “Process Moni-
tor” etc.

Solution:
Establishing a breakpoint in kernel32 is the
simple fix. When the breakpoint is reached,
CreateFileFileW() should either handle the
FileName parameter or alter its return value to
INVALID HANDLE VALUE (0xFFFFFFFF).

Process Memory:
A process can check or interact with its own
memory for the presence of a debugger. This
section includes anti-hitch methods[15] such
as process memory and thread context check-
ing, breakpoint DETECTION, PATCHING function
and debugging functions.

11. Breakpoint and Patching
Detection:

To verify if our code has any software break-
points, we may still inspect the process
memory, and we can also check the CPU
debug registers to see if any hardware break-
points have been set.

12. Software Breakpoints
Detection:

Software breakpoints are defined as break-
points that are created by altering the code at
the target location and replacing it with the

Of course, as with all malware analysis, the
best way to learn how to stop it by using
debugging techniques by continuously testing
malware. Malware developers are constantly
coming up with new techniques to evade
debuggers and keep security researchers like
you on their toes.

17. References:

[1] V. Bhardwaj, V. Kukreja, C. Sharma, I.
Kansal, and R. Popali, “Reverse
Engineering-A Method for Analyzing
Malicious Code Behavior,” in 2021
International Conference on Advances
in Computing, Communication, and
Control (ICAC3), Dec. 2021, pp. 1–5.
doi: 10.1109/ICAC353642.2021.
9697150.

[2] M. N. Gagnon, S. Taylor, and A. K.
Ghosh, “Software Protection through
Anti-Debugging,” IEEE Security &
Privacy Magazine, vol. 5, no. 3, pp.
82–84, May 2007, doi: 10.1109/M-
SP.2007.71.

[3] J.-W. Kim, J. Bang, Y.-S. Moon, and
M.-J. Choi, “Disabling Anti-Debugging
Techniques for Unpacking System in
User-level Debugger,” in 2019 Interna-
tional Conference on Information and
Communication Technology Conver-
gence (ICTC), Oct. 2019, pp. 954–959.
doi: 10.1109/ICTC46691.2019.
8939719.

[4] T. Akhtar, B. B. Gupta, and S. Yamagu-
chi, “Malware propagation effects on
SCADA system and smart power grid,”
in 2018 IEEE International Conference
on Consumer Electronics (ICCE), Jan.

looking for breakpoints in the process memory,
we can check to see if kernel32IsDebuggerPre-
sent() has been altered[20].The first few bytes
of this function can be read and compared to
the same function's bytes from other processes.
Windows libraries are loaded at the same base
address throughout the process, even if the
Address Space Layout Randomization (ASLR)
feature is enabled. The base address only
changes across reboots but remains the same
for the duration of the session.

Mitigations:
• During Debugging: Enter the function

that conducts the Step-Over check and
run it till the end(Ctrl + F9).

• Finding the specific check and either
path it with NOPs or setting the return to
a value that permits the application to
keep running are the best ways to
mitigate all "memory" techniques,
including anti-step over.

Conclusion:
To defend itself against reverse engineering
analysis, the malware employs anti-debugging
techniques. Debug analysis can be avoided by
anti-debugging techniques. Reverse engineers
need advanced debuggers and knowledge to
analyze malware using anti-debugging
techniques. By applying common sense and
slowly debugging the process, it is possible to
identify the majority of anti-debugging
techniques. For example, if you see that the
code is terminating too rapidly in a conditional
jump, which could mean preventing debugging
technical. The most widely used anti-debug-
ging methods involve fs access: [30h] by using
a Windows API or performing a time check.

ison of Machine Learning Models in Malware
Packing Detection,” in 2020 21st
Asia-Pacific Network Operations and
Management Symposium (APNOMS),
Sep. 2020, pp. 377–380. doi:
10 .23919 /APNOMS50412 .2020 .
9237007.

[16] R. R. Branco and G. N. Barbosa,
“Distributed malware analysis schedul-
ing,” in 2011 6th International Confer-
ence on Malicious and Unwanted
Software, Oct. 2011, pp. 34–41. doi:
10.1109/MALWARE.2011.6112324.

[17] K. Coogan, S. Debray, T. Kaochar, and
G. Townsend, “Automatic Static
Unpacking of Malware Binaries,” in
2009 16th Working Conference on
Reverse Engineering, 2009, pp.
167–176. doi: 10.1109/WCRE.2009.24.

[18] G. Jeong, E. Choo, J. Lee, M.
Bat-Erdene, and H. Lee, “Generic
unpacking using entropy analysis,” in
2010 5th International Conference on
Malicious and Unwanted Software, Oct.
2010, pp. 98–105. doi: 10.1109/MAL-
WARE.2010.5665789.

[19] C. R. Hill, “A real-time microprocessor
debugging technique,” ACM SIGPLAN
Notices, vol. 18, no. 8, pp. 145–148,
Aug. 1983, doi: 10.1145/1006142.
1006179.

[20] R. Sihwail, K. Omar, K. Zainol Ariffin,
and S. al Afghani, “Malware Detection
Approach Based on Artifacts in Memory
Image and Dynamic Analysis,” Applied
Sciences, vol. 9, no. 18, p. 3680, Sep.
2019, doi: 10.3390/app9183680.

yA or the native API corresponding to Load-
DLL to replace.

13. Hardware Breakpoints:

DR0, DR1, DR2, and DR3 are debug registers
that can be obtained from the thread context.
Debug registers 0-3 are used to store virtual
address of the so-called hardware breakpoints.
C/C++ Code:

As we can see C/C++ code in the figure 15.

Figure 15 C/C++ code of Hardware
Breakpoints

14. Memory Checks:

This section includes methods for directly
inspecting or modifying a process's virtual
memory in order to spot and stop debug-
ging[18].

15. Nt Query Virtual Memory ():

The memory page of the process in which the
code is located is shared by all processes prior
to the page being written. Then the OS creates
a replica of this page and allocates it to the
process's virtual memory[19], so the page is no
longer "shared". Now we can see how to
declare NTDLL, as we can see in figure 16.

NTDLL declarations:

Figure 16 NTDLL Deceleration of
NtQueryVirtualMemory()

C/C++ Code:
As we can see the C/C++ code in the Figure
17.

Figure 17 C/C++ Code for Hardware
Breakpoints

16. Detecting A function Patch:

Calling kernel32 is a common approach to find
a debugger. IsDebuggerPresent(). By altering
the outcome in the EAX register or hacking the
kernel32, you may easily get around this
check! IsDebuggerPresent(). Instead of

2018, pp. 1–6. doi: 10.1109/ICCE.2018.
8326281.

[5] G. Wang, L. Zhuang, T. Liu, S. Li, S.
Yang, and J. Lan, “Formal analysis and
verification of industrial control system
security via timed automata,” in 2020
International Conference on Internet of
Things and Intelligent Applications
(ITIA), Nov. 2020, pp. 1–5. doi:
10.1109/ITIA50152.2020.9312289.

[6] A. J. Smith, R. F. Mills, A. R. Bryant, G.
L. Peterson, and M. R. Grimaila,
“REDIR: Automated static detection of
obfuscated anti-debugging techniques,”
in 2014 International Conference on
Collaboration Technologies and
Systems (CTS), May 2014, pp. 173–180.
doi: 10.1109/CTS.2014.6867561.

[7] J. Raber, “Stealthy Profiling and Debug-
ging of Malware Trampolining from
User to Kernel Space,” in 2011 18th
Working Conference on Reverse
Engineering, Oct. 2011, pp. 431–432.
doi: 10.1109/WCRE.2011.62.

[8] J. G. Alcalde, G. Chua, I. M. Demabildo,
M. A. Ong, and R. L. Uy, “CALVIS32:
Customizable assembly language
visualizer and simulator for intel x86-32
architecture,” in 2016 IEEE Region 10
Conference (TENCON), Nov. 2016, pp.
214–217. doi: 10.1109/TEN-
CON.2016.7847992.

[9] Chan Lee Yee, Lee Ling Chuan, M.
Ismail, and N. Zainal, “A static and
dynamic visual debugger for malware
analysis,” in 2012 18th Asia-Pacific
Conference on Communications

(APCC), Oct. 2012, pp. 765–769. doi:
10.1109/APCC.2012.6388211.

[10] Xu Chen, J. Andersen, Z. M. Mao, M.
Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and
anti-debugging behavior in modern
malware,” in 2008 IEEE International
Conference on Dependable Systems and
Networks With FTCS and DCC (DSN),
2008, pp. 177–186. doi: 10.1109/
DSN.2008.4630086.

[11] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[12] P. Xie, X. Lu, Y. Wang, J. Su, and M. Li,
“An Automatic Approach to Detect
Anti-debugging in Malware Analysis,”
2013, pp. 436–442. doi: 10.1007/
978-3-642-35795-4_55.

[13] A. Mylonas and D. Gritzalis, “Practical
Malware Analysis: The Hands-On
Guide to Dissecting Malicious
Software,” Comput Secur, vol. 31, no. 6,
pp. 802–803, Sep. 2012, doi: 10.1016/j.-
cose.2012.05.004.

[14] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[15] J.-W. Kim, J. Namgung, Y.-S. Moon,
and M.-J. Choi, “Experimental Compar-

one or more techniques in computer code that
make it difficult to reverse engineer or debug
the target process. These techniques are ways
for a program to detect whether it is running
under the control of a debugger[11]. If a
debugger is detected, the malware will execute
arbitrary code, usually code to terminate. The
anti-debugging process slows down the
reverse engineering process but doesn't stop it.

2. Is Debugger Present:

The easiest debugger detection technique is to
check the BeingDebugged flag in the Process
Environment Block (PEB). The kernel32IsDe-
buggerPresent() function was introduced in
Windows 95, and the Application Programma-
ble Interface (API) checks the value of this flag
to identify the process whether it is in the
user-mode debugger. This code (same 32-bit or
64-bit Windows environment) can be used for
verification to check the 32-bit or 64-bit
Windows environment. As we can see the
assembly code of the IsDebuggerPresent() in
Figure 1.

Figure 1. Assembly code of IsDebuggerPre-
sent()

C/C++ Code:
As we can see in the example if IsDebugger-
Present() in Figure 2.

Figure 2. C/C++ code of IsDebuggerPre-
sent()

Solution:
This technique can be easily bypassed by
manually patching the Process Environment
Block (PEB). BeingDebugged flag with the
value 0x00 in the bytes.

3. Nt Query Information Process
() / Check Remote Debugger
Present ()

CheckRemoteDebuggerPresent() is another a
debugger should be attached to a process? Use
this Check Remote DebuggerPresent() to
decide. The API calls ntdll!ProcessDebugPort
inside the kernel A value that is not zero in the
DebugPort field tells that the process is being
debugged in user mode by the debugger. If so,
ProcessInformation will be set to
0xFFFFFFFF, otherwise the value of
ProcessInformation will be 0x0.The Check-
RemoteDebuggerPresent()[12] function in
Kernel32 is functional.On either the 32-bit or
64-bit version of Windows, the check can be
made by using this 32-bit code to look at the
32-bit window environment. The Function The
function CheckRemoteDebuggerPresent()
takes 2 parameters; the first parameter is the
(PID), and the A pointer to a Boolean variable
serves as the second parameter. That will hold
TRUE if the process is being debugged. As we
can see from the C/C++ code in Figure 3.

Figure 3 C/C++ Code for CheckRemoteDe-
bugger

Ntdll! NtQueryInformationProcess() has 5
parameters. To detect the debugger, the

to hide threads from the debugger. It can also be
done with the help of a non-documented value,
which is not documented but can be used.
THREAD_INFORMATION_CLASS::Threa-
dHideFromDebugger (0x11). When a thread is
hidden in the debugger, it will not be informed
of anything pertaining to that thread not be
informed of anything pertaining to that thread.
The thread is also capable of anti-debugging
methods, such as examining debug flags, code
checksums, etc. If there are hidden breakpoints
in the thread, If we try to keep the main thread
hidden from the debugger, either the process
will crash or the debugger will gets stuck. An
example of calling the NtSetInformation-
Thread would be like this, as we can see in
Figure 7.

Figure 7. Assembly code of NtSetInforma-
tionThread()

C/C++ Code:
As we can see, C/C++ code in Figure 8.

Figure 8. C/C++ code of NtSetInformation-
Thread()

Solution:
The breakpoint is set to ntdll!NtSetInforma-
tionThread(), and when the breakpoint is hit,
reverse engineers can modify the EIP, to
prevent the API calls from reaching the kernel
and being called from other functions.

ProcessInformation class is set to as
ProcessDebugPort as we can see C/C++ code
in the Figure 4.

Figure 4. C/C++ Code for NtQueryInfor-
mationProcess()

This example shows how the call to the Check-
RemoteDebuggerPresent() and To see whether
the current process is being debugged, utilize
the NtQueryInformationProcess function. as
we can see in Figure 5 and Figure 6.

Figure 5 Assembly code of CheckRemot-
eDebuggerPresent()

Figure 6. Assembly code of NtQueryInfor-
mationProcess()

Solution:
One solution is to set NtQueryInformationPro-
cess(return)'s value is a breakpoint. ProcessIn-
formation is patched to a DWORD value of 0
when the breakpoint is reached of 0.

4. Nt SetInformation Thread:

NtSetInformationThread()[13] is usually used
to set the priority of a thread. It can also be used

5. SwitchDesktop()

Platforms based on Windows NT allow for
multiple desktop sessions. The windows of the
previous active desktop can be hidden by
choosing a different active desktop, but there is
no visible way to return to the previous
desktop. the mouse and keyboard events won't
be sent to the debugger from the debugger's
desktop.[13] , they no longer divulge their
source, either. Debugging could become
impossible as a result. Both the 32-bit and
64-bit versions of Windows can be used to
make this call. Here is an example of a 32-bit
version of Windows as we can see in Figure 9.

Figure 9. Assembly code of SwitchDesk-
top()

C/C++ Code:
As we can see the C/C++ code in the Figure 10.

Figure 10 C/C++ code of SwitchDesktop()

6. Execution Time / Timing
Checks

When a reverse engineer tries to debug a

process and uses a single step in code, there is
a significant delay between the execution of
the individual’s instructions[13]. The process
is running under a debugger if the amount of
time required is excessive compared to a
typical execution. Here is a list of some
instructions that can be used to increase the
execution time of the instruction.

a. RDTSC (Read Time-Stamp Counter)

b. RDPMC (Read Performance-Monitor-
ing Counters)

c. GetLocalTime

d. GetSystemTime

e. GetTickCount

Now we will take an example of a timing
check.

As we can see in Figure 11.

Figure 11 Assembly Code of GetTick-
Count()

We check the synchronization using the
kernel32 GetTickCount() API or manually
verify that the SharedUserData structure's
TickCountLow and TickCountMultiplier
entries are always set to 0xc.Identifying these
timing techniques can be challenging,
especially when RDTSC is used as spam, when
other obscure techniques are used to mask
them.

situations. They are an essential part of the
silent weapon that kills people stealthily and
invisibly. The subject of the current research is
forensic chemistry and toxicology, which is
fully concerned with the introduction, classifi-
cation, effects, and influencing factors of
poisons, as well as their detection and testing.
The purpose of this article is to investigate how
they act and function after they enter the
human body.

5. References

1. Ibrahim, M. S., & Abdullah, M. (2010).
Forensic Accounting in Malaysia: Some
Insights from Practitioners. Asian
Journal of Accounting Perspectives,
3(1), 14-21.

2. Kloosterman, A., Mapes, A., Geradts,
Z., van Eijk, E., Koper, C., van den Berg,
J., ... & van Asten, A. (2015). The
interface between forensic science and
technology: how technology could cause
a paradigm shift in the role of forensic
institutes in the criminal justice system.
Philosophical Transactions of the Royal
Society B: Biological Sciences,
370(1674), 20140264.

3. Yaman, F. (2021). Examining students’
quality and perceptions of argumenta-
tive and summary writing within a
knowledge generation approach to
learning in an analytical chemistry
course. Chemistry Education Research
and Practice, 22(4), 985-1002.

4. Hibbert, D. B. (2007). Quality assurance
in the analytical chemistry laboratory.
Oxford University Press.

may be divided into three groups: homicidal,
suicidal, and accidental [16].

Homicidal Poisoning
The victim is frequently subjected to attempts
to "nurse" them back to health by poisoners
[17]. Serial poisoners typically enjoy the rush
of having control over the victim's life and
suffering, and poisoners frequently take
delight in seeing their victims suffer. Homicide
by poisoning perpetrators frequently work in
the healthcare or medical industries. The
substances that are most appealing to offenders
are those that are deadly in little doses. The
ideal poison for a homicide has no taste, is
undetectable, has no odour, and exhibits symp-
toms that are comparable to those of illnesses
that are found in nature [18]. Since current
scientific techniques and advancements have
made poison detection simpler, it has becom-
ing more and more challenging to find a poison
having all of these characteristics [19].

Sucidal Poisoning:
Self-poisoning, the non-violent way of suicide,
most frequently involves the use of medicine,
either over-the-counter (paracetamol) or
prescribed (such as antidepressants and
prescription analgesics), chemicals (pesti-
cides), or illegal narcotics [20].

Accidental poisoning
Accidental poisoning, which includes acciden-
tal drug overdose, occurs when a person
inadvertently poisons themself. Alcohol,
opioids (such as heroin or methadone),
sedatives, psychiatric pharmaceuticals (such as
antidepressants), antiepileptic, and anti-in-
flammatory medications are some of the
substances from which poisoning may result
[21].

Classification of poisons
Poisons are divided into two categories based
on how they affect the body and depending on
their chemical and physical characteristics.

Classification based upon the effect of
poison on the body:
A) Corrosive: When poisons come into
contact with tissues or organs, they become
corrosive, for example: a. Strong acids like
H2SO4,HCl, HNO3, etc. and strong alkalis
include NH4, Na/K hydroxides, etc [22].

B) Neurotoxins: Toxins known as neurotoxins
cause damage to nerve tissue. Exogenous
chemicals known as neurotoxins are a broad
category of neurological insults that can
negatively impact the function of both growing
and mature brain tissue.Lead, , glutamate,
ethanol (drinking alcohol), botulinum toxin
(e.g., Botox), tetanus toxin, nitric oxide and
tetrodotoxin are typical examples of neurotox-
ins [23].

C) Irritants poisons: They mostly cause
inflammation at the point of contact, particu-
larly in the skin, gastrointestinal system, and
respiratory tract [24]. A poison is categorized
as one that affects a system the most when it
causes death as a result of a systemic impact,
such as a heart poison, brain poison, or spinal
poison. The inorganic toxin arsenic is a hefty
metallic irritation. Due to its insoluble nature
in water and inability to be absorbed by the
digestive system, metallic arsenic is not harm-
ful. Arsenic trioxide, often known as sankhyal
or somalkar, is toxic. Arsenobetaine and arsen-
ocholine are two organic arsenic non-toxic
forms that are typically present in food that
humans frequently ingest [25]. Cod, haddock,
and shellfish contain them.

nervous system, particularly the brain, can be
proved by the use of proper and sensitive
procedures, even if many substances have
obvious effects elsewhere. The circulatory
system, the blood and hematopoietic system,
visceral organs such the liver, kidney, and lung,
and the skin follow in order of frequency of
involvement in systemic toxicity. The least
often targeted tissues for systemic effects
include muscle and bone. The frequency of
tissue reactions when drugs have a localized
effect primarily depends on the portal of
entrance (skin, gastrointestinal tract, respirato-
ry tract) [36].

Reversible versus Irreversible Toxic
Effects
Chemical toxicity can have both reversible and
irreversible consequences. The tissue's capaci-
ty to regenerate will play a significant role in
determining whether a chemical insult to a
tissue results in reversible or irreversible
damage. Therefore, whereas most injuries to
the central nervous system are mostly irrevers-
ible due to the differentiated cells of the central
nervous system being unable to divide and be
replaced, most injuries to a tissue like the liver,
which has a high capacity for regeneration, are
reversible. Chemicals can cause cancer and
permanent harmful consequences [37].

4. Conclusion

By analyzing the medical and legal elements of
a drug's harmful effects on organisms, forensic
toxicology uses chemical and analytical tools
to help establish the facts in forensic investiga-
tions. In situations of fatal poisoning and those
that may be related to criminal conduct, foren-
sic practise is essential. Poisons are typically
found in murder, suicide, or accident

5. Robertson, B., Vignaux, G. A., &
Berger, C. E. (2016). Interpreting
evidence: evaluating forensic science in
the courtroom. John Wiley & Sons.

6. Koehler, J. J. (2017). Forensics or
fauxrensics? Ascertaining accuracy in
the forensic sciences. Ariz. St. LJ, 49,
1369.

7. Klaassen, C. D., Hardman, J. G.,
Limbird, L. E., Molinoff, P. B., Ruddon,
R. W., & Gilman, A. G. (2006). Princi-
ples of toxicology and treatment of
poisoning. Goodman and GilmanÕs The
Pharmacological Basis of Therapeutics,
Eleventh Edition., McGraw Hill,
Columbus, OH, USA, 1739-1752.

8. Shorter, E. (2008). Before Prozac: The
troubled history of mood disorders in
psychiatry. Oxford University Press.

9. Yuan, H., Ma, Q., Ye, L., & Piao, G.
(2016). The traditional medicine and
modern medicine from natural products.
Molecules, 21(5), 559.

10. Li, L., Liu, T., Fu, C., Tan, L., Meng, X.,
& Liu, H. (2015). Biodistribution, excre-
tion, and toxicity of mesoporous silica
nanoparticles after oral administration
depend on their shape. Nanomedicine:
Nanotechnology, Biology and Medicine,
11(8), 1915-1924.

11. Newton, D. E. (2007). Forensic chemis-
try. Infobase Publishing.

12. Sharma, A. K., Tjell, J. C., Sloth, J. J., &
Holm, P. E. (2014). Review of arsenic
contamination, exposure through water

and food and low cost mitigation options
for rural areas. Applied Geochemistry,
41, 11-33.

13. Spitz, W. U., & Diaz, F. J. (2020). Spitz
and Fisher's medicolegal investigation
of death: guidelines for the application
of pathology to crime investigation.
Charles C Thomas Publisher.

14. Pétillon, J. M., & Ducasse, S. (2012).
From flakes to grooves: A technical shift
in antlerworking during the last glacial
maximum in southwest France. Journal
of Human Evolution, 62(4), 435-465.

15. Sharma, M., Jabin, S., & Sharma, M.
PHARMACEUTICAL POLLUTION: A
GRAVE CONCERN!!.

16. Sikary, A. K. (2019). Homicidal poison-
ing in India: A short review. Journal of
forensic and legal medicine, 61, 13-16.

17. Van Landeghem, A. A., De Letter, E. A.,
Lambert, W. E., Van Peteghem, C. H., &
Piette, M. H. (2007). Aconitine involve-
ment in an unusual homicide case.
International journal of legal medicine,
121(3), 214-219.

18. Gunn, A. (2019). Essential forensic
biology. John Wiley & Sons.

19. Trestrail, J. H. (2007). Types of Poisons.
Criminal Poisoning: Investigational
Guide for Law Enforcement, Toxicolo-
gists, Forensic Scientists, and Attorneys,
29-46.

20. Bonvoisin, T., Utyasheva, L., Knipe, D.,
Gunnell, D., & Eddleston, M. (2020).

Suicide by pesticide poisoning in India:
a review of pesticide regulations and
their impact on suicide trends. BMC
public health, 20(1), 1-16.

21. Manzar, N., Saad, S. M. A., Manzar, B.,
& Fatima, S. S. (2010). The study of
etiological and demographic character-
istics of acute household accidental
poisoning in children-a consecutive case
series study from Pakistan. BMC pediat-
rics, 10(1), 1-6.

22. Chibishev, A., Pereska, Z., Chibisheva,
V., & Simonovska, N. (2012). Corrosive
poisonings in adults. Materia
socio-medica.

23. Hu, Y., Chen, J., Fan, H., Xie, P., & He,
J. (2016). A review of neurotoxicity of
microcystins. Environmental science
and pollution research, 23(8),
7211-7219.

24. Waserman, S., & Watson, W. (2011).
Food allergy. Allergy, Asthma & Clini-
cal Immunology, 7(1), 1-7.

25. Borak, J., & Hosgood, H. D. (2007).
Seafood arsenic: implications for human
risk assessment. Regulatory Toxicology
and Pharmacology, 47(2), 204-212.

26. Pandey, G., & Madhuri, S. (2014).
Heavy metals causing toxicity in
animals and fishes. Research Journal of
Animal, Veterinary and Fishery Scienc-
es, 2(2), 17-23.

27. Stejskal, V., Vendl, T., Aulicky, R., &
Athanassiou, C. (2021). Synthetic and

natural insecticides: Gas, liquid, gel and
solid formulations for stored-product
and food-industry pest control. Insects,
12(7), 590.

28. Francois, M. R., & Stephen, F. (2015).
Phosphorus Compounds. In Hamilton &
Hardy's Industrial Toxicology (pp.
383-390). Hoboken, New Jersey: John
Wiley & Sons, Inc..

29. Kaushik, R. D. (2021). Methyl bromide:
Risk assessment, environmental, and
health hazard. In Hazardous Gases (pp.
239-250). Academic Press.

30. Thompson, J. P., & Marrs, T. C. (2012).
Hydroxocobalamin in cyanide poison-
ing. Clinical Toxicology, 50(10),
875-885.

31. Dash, R. R., Gaur, A., & Balomajumder,
C. (2009). Cyanide in industrial waste-
waters and its removal: a review on
biotreatment. Journal of hazardous
materials, 163(1), 1-11.

32. Mishra, A. (2020). Forensic Chemistry
and Toxicology. In Medical Toxicology.
IntechOpen.

33. Donovan, M. D. (2009). Effect of route
of administration and distribution on
drug action. In Modern Pharmaceutics
Volume 1 (pp. 173-198). CRC Press.

34. Boey, A., & Ho, H. K. (2020). All roads
lead to the liver: metal nanoparticles and
their implications for liver health. Small,
16(21), 2000153.

35. Jett, D. A., Sibrizzi, C. A., Blain, R. B.,

C) Cyanides
The majority of cases of severe or deadly
cyanide poisoning involve the suicide intake of
cyanide salts. A very poisonous volatile liquid,
hydrogen cyanide. When cyanide salts react
with acids or are formed in the stomach after
oral consumption, hydrogen cyanide fumes are
released [30]. Although HCN has a distinctive
almond-like odour, up to 50% of people cannot
detect it. Even while this might have been
connected to air flow ventilation systems in
post-mortem rooms, it was surprising that it
was not a distinguishing feature during autopsy
of a significant number of cyanide suicide
fatalities. The industrial applications of potas-
sium and sodium cyanide as soluble salts of
cyanide include electroplating, metal process-
ing, and laboratory reagents [31].

B. Organic poisons

a)Ethanol: A much of ethanol is toxic, so
avoid using it.

b. Other alcohols: Poisonous alcohols include
methyl and isopropyl.

Methanol, a substance used in the chemical
and polish industries as well as clandestine
alcoholic beverages, may be fatal when
consumed.

c. Phenol: Carboxylic acid or phenol may be
toxic. The main purpose of it is as a disinfect-
ant .

d. Other substances: Poisonous industrial
chemicals include benzene, chloral hydrate,
chlorinated hydrocarbons, and others. Chloral
hydrate might be present in illegal alcoholic

beverages in a number of poisoning instances
[32].

Route & Site of Exposure
When administered intravenously, toxic
substances often have the most impact and the
fastest reaction. For alternative routes, inhala-
tion, intraperitoneal, sucutaneous, intramuscu-
lar, intradermal, oral, and topical would rough-
ly be listed in decreasing order of efficacy [33].
Additionally, the method of delivery might
affect an agent's toxicity. For instance, it would
be reasonable to anticipate that a substance that
is detoxified in the liver would be less hazard-
ous when administered orally through the
portal circulation than systemically (inhala-
tion) [34].

Duration & Frequency of Exposure
The toxic effects brought on by a single expo-
sure to multiple substances differ significantly
from those brought on by repeated exposure.
For instance, benzene's major acute toxic
symptom is central nervous system depression,
but prolonged exposure can cause leukaemia.
Acute exposure to quickly absorbed substances
is likely to result in immediate toxicity, but it is
also possible for acute exposure to result in
delayed toxicity that may or may not be
comparable to the toxic consequences of
chronic exposure. In contrast, repeated admin-
istration of a hazardous agent may result in
certain short-term (acute) side effects in
addition to the agent's long-term, low-level, or
chronic effects [35].

Local versus Systemic Toxicity
The central nervous system is the target organ
of toxicity that is most commonly engaged in
systemic toxicity. Damage to the central

Hartman, P. A., Lein, P. J., Taylor, K. W.,
& Rooney, A. A. (2020). A national
toxicology program systematic review
of the evidence for long-term effects
after acute exposure to sarin nerve agent.
Critical reviews in toxicology, 50(6),
474-490.

36. El-Boghdadly, K., Pawa, A., & Chin, K.
J. (2018). Local anesthetic systemic
toxicity: current perspectives. Local and
regional anesthesia, 11, 35.

37. Grandin, E. W., Ky, B., Cornell, R. F.,
Carver, J., & Lenihan, D. J. (2015).
Patterns of cardiac toxicity associated
with irreversible proteasome inhibition
in the treatment of multiple myeloma.
Journal of cardiac failure, 21(2),
138-144.

Poisons are also Categorized According
to their Characteristics:

A) Inorganic Poisons
i) Metallic Poisoning
After exposure, microscopic metal molecules
build up in your body and cause heavy metal

poisoning. Without treatment, heavy metals
can produce symptoms that are potentially
fatal because they adhere to your cells and stop
them from functioning.Your body can become
poisonous to a variety of metals [26]. The most
prevalent poisonous metals are:

Ii) Non Metallic Poisons

A) Phosphine and phosphides
A variety of industrial operations employ
phosphonate, a highly poisonous colourless
gas with a pungent garlic or fishy odour. It is
also produced when phosphides are exposed to
moisture.[27] In underdeveloped nations,
aluminium phosphide is widely utilized as a
cheap and efficient grain fumigant and rodenti-
cide [28].

B) Bromide
The colourless gas methyl bromide has histori-
cally been employed as a refrigerant and in fire
extinguishers, but it is most frequently utilized
as an insecticidal fumigant for grain storage

and soil. Methyl bromide is a metabolite that
produces the bromide ion and is linked to
unintentional poisoning, especially in work
environments [29]. By passive diffusion, the
bromide ion is quickly absorbed from the
stomach and proximal small intestines.
Bromide ions are mostly found in extracellular
fluid, where they have similar properties to
chloride ions. The kidney is the most signifi-
cant organ for elimination. Their half-life of
elimination is relatively lengthy, lasting around
10 days after an acute dose or many weeks
after stopping a long-term consumption,
especially in situations of bromide intoxica-
tion.

Forensic Analysis
The use of scientific knowledge that is based
on legal issues is known as forensic science
[5]. In order to determine what happened,
when it happened, and who was responsible,
forensic science primarily examines biological
and physical evidence. To attain accuracy and
precision, forensic scientific proficiency is
crucial [6].

2. Forensic Toxicology

The study of poisons' and drugs' detrimental
effects on living things is known as toxicology
[7]. It include the investigation of the signs,
causes, effects, and methods of handling
certain toxins and medications. If the use of
medications and poisons results in death in
dubious circumstances, it becomes rhetorical
pharmacological medicine [8].

The field of medicine may include pharmaco-
logical medicine as a sub-field. The study of
medicine includes all interactions between
drugs and other chemicals on living things [9].
Drug administration, body absorption, activi-
ties and interactions, metabolism, and excre-
tion are all aspects of medicine [10].

Fig: Stages of forensic toxicology

3. History of Forensic Chemistry

Rhetorical chemistry advancements started to
become apparent by the middle of the 19th
century. Blood tests were developed at this

time, the Marsh test for arsenic was created in
1832, and experiments on bullet "fingerprint-
ing" were conducted in the 1980s. Christian
Friedrich Schönbein (1799–1868), a
German–Swiss scientist, developed the first
accurate method for differentiating human
blood in 1863 [11]. For more than a century
and a half, arsenic has been widely used as a
toxin. Its excellence goes back to the seventh
century. During the 16th century, the Arab
philosopher Abu Musa Jabir Ibn Hayyan
(about 721-ca. 815), also known as Geber,
found the process for transforming the grey,
metallic-looking elemental arsenic ,an elemen-
tal chemical compound (As2O3; a material)
into (White, flavourless, and odourless
powder). Arsenic may just be an extra chemi-
cal in person's food or beverage without raising
suspicion [12]. Over the following sixty years,
attempts to employ bullet "fingerprinting" in
criminal investigations were few [13]. But by
the 1890s, a number of events spurred renewed
interest in the method as a means of identifying
possible offenders. Of those aspects, the devel-
opment of the replacement method known as
"grooving" for making gun barrels was
perhaps the most crucial. The process of
grooving involves carving spiral grooves into
the inner surface of tubing. When a bullet
travels through the barrel, the grooves allow it
to spin; this motion prevents the bullet from
tipping over after it exits the tube. Different
grooving techniques have been employed by
numerous gun makers [14].

Poisoning
It is referred to as the harmful consequence of
a poison or harmful chemical agent. It causes
the emergence of negative reactions to danger-
ous substances or chemicals [15]. Basically, it

1. Introduction

 The word "forensic" comes from the
Latin word "forensis," which means "public,"
"to the prospect and discussion"[1]. Legal
concerns can be resolved in a variety of ways
thanks to rhetorical science. Rhetorical
science, which includes a variety of disciplines
such as rhetorical chemistry, rhetorical social
science, rhetorical biology, rhetorical medi-
cine, rhetorical engineering, rhetorical material
sciences, machine rhetorical, and others, is
generally used to settle legal disputes, fairly
enforce criminal and civil laws, and protect the

public. A broad phrase that covers most of the
duties performed by the law laboratory is
forensic chemistry[2]. Trace analysis and
medicine are techniques employed in the field
of rhetorical chemistry. Analytical chemistry
that is applied is forensic chemistry. Rhetorical
chemistry adds comparison study to the assign-
ment whereas analytical chemistry covers both
quantitative and qualitative chemical analysis
[3]. Similarly, spectrometry can quickly deter-
mine whether a sample is made of nylon or
polythene. Therefore, analytical chemistry
offers the quantitative and qualitative data
needed to respond to rhetorical questions [4].

1. Introduction

 Prior to then, malware Development
served as a showcase for malware coders.
Malware analysts have used debuggers to run a
malware program's instructions one by one,
introducing modifications to memory spaces,
settings as well as variable values. Debuggers
are the most commonly used reverse engineer-
ing tools, such as Interactive Disassembler
(IDA), x64dbg, and OllyDBG. If debugging is
successful, it helps to understand malware
behavior and its capabilities. This is something

malware developers would like to avoid. That
is why they must implement anti-debugging
techniques. Anti-debugging techniques[3] can
be used to merely detect the presence of a
debugger, deactivate it, lose control of it, or
even take advantage of a flaw in the debugger.
Disabling or avoiding debugger checks can be
done generally and specifically. However, you
can exploit this vulnerability against specific
debuggers. Furthermore, The Supervisory
Control and Data Acquisition (SCADA)[4]
system has a vulnerability, according to the
Trend Micro report "Unseen Threats, Immi-
nent losses,” which is the part of industrial

manually. The fs segment register can access
the Process Environment Block (PEB) at fs:
[30]. On an x86 [8] computer, this register
corresponds to a Thread Information Block
(TIB).There is also a flag below the Process
Environment Block (PEB) that indicates
whether the first memory space of the process
was created in debug mode. Provide an offset
of 0x18 in the Process Environment Bloc
(PEB). So, here I break down the anti-debug-
ging techniques into two categories: static
anti-debugging and dynamic anti-debugging
[9], as seen in the Table 1 below.

Table 1. Static Vs Dynamic Techniques
Difference

In our research we will discuss we will discuss
some of the main anti-debugging techniques
and how a reverse engineer can be able to
identify them easily for example in this paper
we will discuss about the IsDebuggerPresent,
TimeChecks, NtQueryInformationProcess,
NtSetInformationThread, SwitchDesktops,
SeDebugPrivilege, ParentProcess, Debugger-
Window, DeviceDrivers etc.

Anti-Debugging Techniques Mechanism:
Anti-debugging[10] is the implementation of

control systems (ICS)[5]. In addition, In many
situations, knowing how to apply anti-debug-
ging techniques to malicious code to prevent it
from being tracked down and evaluated is also
helpful. One of the main tools used by malware
analysts and reverse engineers is the debugger.
What is a debugger? A debugger is software
that is used to evaluate and control the flow of
execution of other executables or software. By
using a debugger, we can execute each instruc-
tion step by step and can note down the chang-
es that can be displayed on the stack, memory
dumps, registers, etc. Most packers use these
techniques to determine whether the system is
running a debugger or if a process is being
debugged. These debugger detection meth-
ods[6] include checks that are relatively basic
all the way up to ones that are applicable to
native Application Programming Interfaces
(APIs) and kernel objects[7].This section
discusses how anti-debugging techniques
work. Each process's user space contains a data
structure called a Process Environment Block
(PEB), which holds information about the
related process. Each process's user space
contains a data structure called a Process
Environment Block (PEB), which holds infor-
mation about the related process. It is intended
to access Windows API (WinAPI)It is intended
to access Windows API (WinAPI) but access is
not restricted by this. Process Environment
Block (PEB) can be accessed directly from
memory. Checking the value of the Process
Environment Block (PEB) structure that has
been debugged is a relatively straightforward
implementation and technique. As we know
that there are so many Applications Program-
mable Interfaces (APIs) which are documented
and undocumented. For example, IsDebugger-
Present, which we will discuss later in this
paper. To enhance, we can also check the APIs

Study of the Anti-Debugging Techniques and their Mitigations

30 LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

If the process can open the CSRSS.EXE
process, then SeDebugPrivilege is active when
the process is accessed.

Token pointing to the process being debugged.
The test is valid for the following reasons: The
Process Security Descriptor CSRSS.EXE
allows the system access to the process.

However, if the process has SeDebugPrivilege
privilege, other processes have independent
access to the Security Descriptor. This permis-
sion is only granted to administrative groups
by default, as we can see in Figure 12.

Figure 12 Assembly Code of SeDebugPrivi-
lege()

This control uses ntdll! The CSRSS.exe
GetProcessId() API gets the Process ID (PID)
 from CSRSS.EXE. You can get it manually by
looking at the Process ID CSRSS.EXE
processes. If OpenProcess() succeeds, SeDe-
bugPrivilege is activated, indicating that the
process is currently running and debugging,
too.

Solution:
The ntdll breakpoint can be hit by setting a
breakpoint as a solution. Returns from
NtOpenProcess(). If PID passed by
CSRSS.exe is CSRSS.exe, set the EX-value to
0xC0000022 (STATUS_ACCESS_DENIED).

Solution:
One of the solutions is to identify where the
time checks are and try to avoid stepping into
them. and the code between these time checks.
Reverse Engineers can place a breakpoint
before that delta and execute instead of steps
until a breakpoint is reached or a breakpoint is
reached. We can also set a breakpoint in
GetTickCount() to specify where to call it or to
change its return value. Mitigations During
Debugging: just fill time checks with NOPs
and set the result of these checks to the appro-
priate value. For anti-debugging solution
development: there is no great need to do
anything with it, as time checks are not very
reliable, but you can still hook timing functions
and accelerate the time between calls.

Mitigations:
• During Debugging, just fill time checks

with NOPs and set the result of these
checks to the appropriate value.

• For anti-debugging solution develop-
ment: there is no great need to do
anything with it, as time checks are not
very reliable, but you can still hook
timing functions and accelerate the time
between calls.

7. SeDebugPrivilege:

By default, the SeDebugPrivilege permission
is disabled for the process access token. When
a debugger like x32dbg, OllyDBG, etc. loads a
process, SeDebugPrivilege permission is
enabled. This is because these debuggers keep
trying . SeDebugPrivilege permissions are
inherited.

Parent Process:
Users launch apps by clicking on the executa-
ble's icon that the shell process displays
(Explorer.exe).By clicking on the executable's
icon that the shell process displays, users can
launch apps (Explorer.exe).Due to this,Explor-
er.exe becomes the parent process of the active
process. This will show that the program was
created by someone else and suggest that you
can debug it.

1. Using Process32First/Next(), it will list
every process and note explorer.exe.
PROCESS32.szExeFile and the PRO-
CESSENTRY32.th32parentProcessID
are the two files that provide the process
ID and the parent process ID of the
current process, respectively.

2. The target is being debugged if the
Process ID (PID) of the parent process
differs from the Process ID (PID) of the
explorer.exe.

Solution:
We need to patch the element of
Kernel32!Process32NextW() that contains the
code that performs a return after setting the
value of EAX to 0.

8. Debugger Window:

The presence of the debug window is a flag
that the debugger is running system[13].
Because the debugger creates windows with
special class names (OllyDBG for OLLYDBG
and WinDbgFrameClass for WinDbg), user32
can easily identify these debug windows!
FindWindow`() or User32! findWindowEx().

Solution:
One solution is to set breakpoints in FindWin-
dow() and FindWindowEx() When the break-
point is hit, modify the value of the
lpClassName string parameter to prevent the
API from functioning. Setting the return value
to NULL is another option.

9. Debugger Process:

List all the processes on the system and see
whether the process name matches the name of
the debugger to find out if it is currently
running (for example, OLLYDBG.EXE, wind-
bg.exe, etc.).Simple to implement; just use
Process32First / Next() after confirming that
the image name corresponds to the name of the
debugger.

Sometimes these methods also use Kernel32
ReadProcessMemory() to read process
memory and then look for debugger-related
strings such as "x64dbg", "IDA", "OllyDBG",
etc. to reverse engineer the debugger. to imple-
ment. After getting the debugger. The malware
will stop his execution and silently exit or
terminates the process.

Solution:
Another solution is to check the main process,
including patching the kernel 32 patch!
Process32NextW() always fails and prevents
the developer from enumerating the process.

10. Device Drivers

An old technique is to verify that the debugger
is running in a Kernel Mode in the system and
try to, access device drivers. This technique is
very simple and consists of simply making a
call to the against well-known device names

byte value 0xCC (INT3 / Breakpoint
Interrupt)[17]. Finding the byte 0xCC in the
API code and protector code will help you
locate software breakpoints as seen by the
example of assembly code in Figure 13.

Figure 13 Assembly Code of Software
Breakpoint Detection

C/C++ Code:
As we can C/C++ code in the Figure 14.

Figure 14. C/C++ code of Software Break-
point Detection

Solution:
Hardware breakpoints can be reverse
engineered if software breakpoints are identi-
fied. If you need to set a breakpoint in the API
code, and when the packer tries to find a break-
point in the API code, reverse engineering the
UNICODE API version allows for the setting
of breakpoints. That eventually calls the ANSI
version, such as LoadLibraryExW LoadLibrar-

used by kernel-mode debuggers, such as
SoftICE, using Kernel32!CreateFile().Some
versions of Soft-ICE also add numbers to the
device name, making it to check. The reversing
forum's suggested technique is to brute force
the corresponding digits until the right device
name is discovered[14].The new packer also
uses device driver detection techniques to
detect system monitors such as “Process Moni-
tor” etc.

Solution:
Establishing a breakpoint in kernel32 is the
simple fix. When the breakpoint is reached,
CreateFileFileW() should either handle the
FileName parameter or alter its return value to
INVALID HANDLE VALUE (0xFFFFFFFF).

Process Memory:
A process can check or interact with its own
memory for the presence of a debugger. This
section includes anti-hitch methods[15] such
as process memory and thread context check-
ing, breakpoint DETECTION, PATCHING function
and debugging functions.

11. Breakpoint and Patching
Detection:

To verify if our code has any software break-
points, we may still inspect the process
memory, and we can also check the CPU
debug registers to see if any hardware break-
points have been set.

12. Software Breakpoints
Detection:

Software breakpoints are defined as break-
points that are created by altering the code at
the target location and replacing it with the

Of course, as with all malware analysis, the
best way to learn how to stop it by using
debugging techniques by continuously testing
malware. Malware developers are constantly
coming up with new techniques to evade
debuggers and keep security researchers like
you on their toes.

17. References:

[1] V. Bhardwaj, V. Kukreja, C. Sharma, I.
Kansal, and R. Popali, “Reverse
Engineering-A Method for Analyzing
Malicious Code Behavior,” in 2021
International Conference on Advances
in Computing, Communication, and
Control (ICAC3), Dec. 2021, pp. 1–5.
doi: 10.1109/ICAC353642.2021.
9697150.

[2] M. N. Gagnon, S. Taylor, and A. K.
Ghosh, “Software Protection through
Anti-Debugging,” IEEE Security &
Privacy Magazine, vol. 5, no. 3, pp.
82–84, May 2007, doi: 10.1109/M-
SP.2007.71.

[3] J.-W. Kim, J. Bang, Y.-S. Moon, and
M.-J. Choi, “Disabling Anti-Debugging
Techniques for Unpacking System in
User-level Debugger,” in 2019 Interna-
tional Conference on Information and
Communication Technology Conver-
gence (ICTC), Oct. 2019, pp. 954–959.
doi: 10.1109/ICTC46691.2019.
8939719.

[4] T. Akhtar, B. B. Gupta, and S. Yamagu-
chi, “Malware propagation effects on
SCADA system and smart power grid,”
in 2018 IEEE International Conference
on Consumer Electronics (ICCE), Jan.

looking for breakpoints in the process memory,
we can check to see if kernel32IsDebuggerPre-
sent() has been altered[20].The first few bytes
of this function can be read and compared to
the same function's bytes from other processes.
Windows libraries are loaded at the same base
address throughout the process, even if the
Address Space Layout Randomization (ASLR)
feature is enabled. The base address only
changes across reboots but remains the same
for the duration of the session.

Mitigations:
• During Debugging: Enter the function

that conducts the Step-Over check and
run it till the end(Ctrl + F9).

• Finding the specific check and either
path it with NOPs or setting the return to
a value that permits the application to
keep running are the best ways to
mitigate all "memory" techniques,
including anti-step over.

Conclusion:
To defend itself against reverse engineering
analysis, the malware employs anti-debugging
techniques. Debug analysis can be avoided by
anti-debugging techniques. Reverse engineers
need advanced debuggers and knowledge to
analyze malware using anti-debugging
techniques. By applying common sense and
slowly debugging the process, it is possible to
identify the majority of anti-debugging
techniques. For example, if you see that the
code is terminating too rapidly in a conditional
jump, which could mean preventing debugging
technical. The most widely used anti-debug-
ging methods involve fs access: [30h] by using
a Windows API or performing a time check.

ison of Machine Learning Models in Malware
Packing Detection,” in 2020 21st
Asia-Pacific Network Operations and
Management Symposium (APNOMS),
Sep. 2020, pp. 377–380. doi:
10 .23919 /APNOMS50412 .2020 .
9237007.

[16] R. R. Branco and G. N. Barbosa,
“Distributed malware analysis schedul-
ing,” in 2011 6th International Confer-
ence on Malicious and Unwanted
Software, Oct. 2011, pp. 34–41. doi:
10.1109/MALWARE.2011.6112324.

[17] K. Coogan, S. Debray, T. Kaochar, and
G. Townsend, “Automatic Static
Unpacking of Malware Binaries,” in
2009 16th Working Conference on
Reverse Engineering, 2009, pp.
167–176. doi: 10.1109/WCRE.2009.24.

[18] G. Jeong, E. Choo, J. Lee, M.
Bat-Erdene, and H. Lee, “Generic
unpacking using entropy analysis,” in
2010 5th International Conference on
Malicious and Unwanted Software, Oct.
2010, pp. 98–105. doi: 10.1109/MAL-
WARE.2010.5665789.

[19] C. R. Hill, “A real-time microprocessor
debugging technique,” ACM SIGPLAN
Notices, vol. 18, no. 8, pp. 145–148,
Aug. 1983, doi: 10.1145/1006142.
1006179.

[20] R. Sihwail, K. Omar, K. Zainol Ariffin,
and S. al Afghani, “Malware Detection
Approach Based on Artifacts in Memory
Image and Dynamic Analysis,” Applied
Sciences, vol. 9, no. 18, p. 3680, Sep.
2019, doi: 10.3390/app9183680.

yA or the native API corresponding to Load-
DLL to replace.

13. Hardware Breakpoints:

DR0, DR1, DR2, and DR3 are debug registers
that can be obtained from the thread context.
Debug registers 0-3 are used to store virtual
address of the so-called hardware breakpoints.
C/C++ Code:

As we can see C/C++ code in the figure 15.

Figure 15 C/C++ code of Hardware
Breakpoints

14. Memory Checks:

This section includes methods for directly
inspecting or modifying a process's virtual
memory in order to spot and stop debug-
ging[18].

15. Nt Query Virtual Memory ():

The memory page of the process in which the
code is located is shared by all processes prior
to the page being written. Then the OS creates
a replica of this page and allocates it to the
process's virtual memory[19], so the page is no
longer "shared". Now we can see how to
declare NTDLL, as we can see in figure 16.

NTDLL declarations:

Figure 16 NTDLL Deceleration of
NtQueryVirtualMemory()

C/C++ Code:
As we can see the C/C++ code in the Figure
17.

Figure 17 C/C++ Code for Hardware
Breakpoints

16. Detecting A function Patch:

Calling kernel32 is a common approach to find
a debugger. IsDebuggerPresent(). By altering
the outcome in the EAX register or hacking the
kernel32, you may easily get around this
check! IsDebuggerPresent(). Instead of

2018, pp. 1–6. doi: 10.1109/ICCE.2018.
8326281.

[5] G. Wang, L. Zhuang, T. Liu, S. Li, S.
Yang, and J. Lan, “Formal analysis and
verification of industrial control system
security via timed automata,” in 2020
International Conference on Internet of
Things and Intelligent Applications
(ITIA), Nov. 2020, pp. 1–5. doi:
10.1109/ITIA50152.2020.9312289.

[6] A. J. Smith, R. F. Mills, A. R. Bryant, G.
L. Peterson, and M. R. Grimaila,
“REDIR: Automated static detection of
obfuscated anti-debugging techniques,”
in 2014 International Conference on
Collaboration Technologies and
Systems (CTS), May 2014, pp. 173–180.
doi: 10.1109/CTS.2014.6867561.

[7] J. Raber, “Stealthy Profiling and Debug-
ging of Malware Trampolining from
User to Kernel Space,” in 2011 18th
Working Conference on Reverse
Engineering, Oct. 2011, pp. 431–432.
doi: 10.1109/WCRE.2011.62.

[8] J. G. Alcalde, G. Chua, I. M. Demabildo,
M. A. Ong, and R. L. Uy, “CALVIS32:
Customizable assembly language
visualizer and simulator for intel x86-32
architecture,” in 2016 IEEE Region 10
Conference (TENCON), Nov. 2016, pp.
214–217. doi: 10.1109/TEN-
CON.2016.7847992.

[9] Chan Lee Yee, Lee Ling Chuan, M.
Ismail, and N. Zainal, “A static and
dynamic visual debugger for malware
analysis,” in 2012 18th Asia-Pacific
Conference on Communications

(APCC), Oct. 2012, pp. 765–769. doi:
10.1109/APCC.2012.6388211.

[10] Xu Chen, J. Andersen, Z. M. Mao, M.
Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and
anti-debugging behavior in modern
malware,” in 2008 IEEE International
Conference on Dependable Systems and
Networks With FTCS and DCC (DSN),
2008, pp. 177–186. doi: 10.1109/
DSN.2008.4630086.

[11] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[12] P. Xie, X. Lu, Y. Wang, J. Su, and M. Li,
“An Automatic Approach to Detect
Anti-debugging in Malware Analysis,”
2013, pp. 436–442. doi: 10.1007/
978-3-642-35795-4_55.

[13] A. Mylonas and D. Gritzalis, “Practical
Malware Analysis: The Hands-On
Guide to Dissecting Malicious
Software,” Comput Secur, vol. 31, no. 6,
pp. 802–803, Sep. 2012, doi: 10.1016/j.-
cose.2012.05.004.

[14] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[15] J.-W. Kim, J. Namgung, Y.-S. Moon,
and M.-J. Choi, “Experimental Compar-

one or more techniques in computer code that
make it difficult to reverse engineer or debug
the target process. These techniques are ways
for a program to detect whether it is running
under the control of a debugger[11]. If a
debugger is detected, the malware will execute
arbitrary code, usually code to terminate. The
anti-debugging process slows down the
reverse engineering process but doesn't stop it.

2. Is Debugger Present:

The easiest debugger detection technique is to
check the BeingDebugged flag in the Process
Environment Block (PEB). The kernel32IsDe-
buggerPresent() function was introduced in
Windows 95, and the Application Programma-
ble Interface (API) checks the value of this flag
to identify the process whether it is in the
user-mode debugger. This code (same 32-bit or
64-bit Windows environment) can be used for
verification to check the 32-bit or 64-bit
Windows environment. As we can see the
assembly code of the IsDebuggerPresent() in
Figure 1.

Figure 1. Assembly code of IsDebuggerPre-
sent()

C/C++ Code:
As we can see in the example if IsDebugger-
Present() in Figure 2.

Figure 2. C/C++ code of IsDebuggerPre-
sent()

Solution:
This technique can be easily bypassed by
manually patching the Process Environment
Block (PEB). BeingDebugged flag with the
value 0x00 in the bytes.

3. Nt Query Information Process
() / Check Remote Debugger
Present ()

CheckRemoteDebuggerPresent() is another a
debugger should be attached to a process? Use
this Check Remote DebuggerPresent() to
decide. The API calls ntdll!ProcessDebugPort
inside the kernel A value that is not zero in the
DebugPort field tells that the process is being
debugged in user mode by the debugger. If so,
ProcessInformation will be set to
0xFFFFFFFF, otherwise the value of
ProcessInformation will be 0x0.The Check-
RemoteDebuggerPresent()[12] function in
Kernel32 is functional.On either the 32-bit or
64-bit version of Windows, the check can be
made by using this 32-bit code to look at the
32-bit window environment. The Function The
function CheckRemoteDebuggerPresent()
takes 2 parameters; the first parameter is the
(PID), and the A pointer to a Boolean variable
serves as the second parameter. That will hold
TRUE if the process is being debugged. As we
can see from the C/C++ code in Figure 3.

Figure 3 C/C++ Code for CheckRemoteDe-
bugger

Ntdll! NtQueryInformationProcess() has 5
parameters. To detect the debugger, the

to hide threads from the debugger. It can also be
done with the help of a non-documented value,
which is not documented but can be used.
THREAD_INFORMATION_CLASS::Threa-
dHideFromDebugger (0x11). When a thread is
hidden in the debugger, it will not be informed
of anything pertaining to that thread not be
informed of anything pertaining to that thread.
The thread is also capable of anti-debugging
methods, such as examining debug flags, code
checksums, etc. If there are hidden breakpoints
in the thread, If we try to keep the main thread
hidden from the debugger, either the process
will crash or the debugger will gets stuck. An
example of calling the NtSetInformation-
Thread would be like this, as we can see in
Figure 7.

Figure 7. Assembly code of NtSetInforma-
tionThread()

C/C++ Code:
As we can see, C/C++ code in Figure 8.

Figure 8. C/C++ code of NtSetInformation-
Thread()

Solution:
The breakpoint is set to ntdll!NtSetInforma-
tionThread(), and when the breakpoint is hit,
reverse engineers can modify the EIP, to
prevent the API calls from reaching the kernel
and being called from other functions.

ProcessInformation class is set to as
ProcessDebugPort as we can see C/C++ code
in the Figure 4.

Figure 4. C/C++ Code for NtQueryInfor-
mationProcess()

This example shows how the call to the Check-
RemoteDebuggerPresent() and To see whether
the current process is being debugged, utilize
the NtQueryInformationProcess function. as
we can see in Figure 5 and Figure 6.

Figure 5 Assembly code of CheckRemot-
eDebuggerPresent()

Figure 6. Assembly code of NtQueryInfor-
mationProcess()

Solution:
One solution is to set NtQueryInformationPro-
cess(return)'s value is a breakpoint. ProcessIn-
formation is patched to a DWORD value of 0
when the breakpoint is reached of 0.

4. Nt SetInformation Thread:

NtSetInformationThread()[13] is usually used
to set the priority of a thread. It can also be used

5. SwitchDesktop()

Platforms based on Windows NT allow for
multiple desktop sessions. The windows of the
previous active desktop can be hidden by
choosing a different active desktop, but there is
no visible way to return to the previous
desktop. the mouse and keyboard events won't
be sent to the debugger from the debugger's
desktop.[13] , they no longer divulge their
source, either. Debugging could become
impossible as a result. Both the 32-bit and
64-bit versions of Windows can be used to
make this call. Here is an example of a 32-bit
version of Windows as we can see in Figure 9.

Figure 9. Assembly code of SwitchDesk-
top()

C/C++ Code:
As we can see the C/C++ code in the Figure 10.

Figure 10 C/C++ code of SwitchDesktop()

6. Execution Time / Timing
Checks

When a reverse engineer tries to debug a

process and uses a single step in code, there is
a significant delay between the execution of
the individual’s instructions[13]. The process
is running under a debugger if the amount of
time required is excessive compared to a
typical execution. Here is a list of some
instructions that can be used to increase the
execution time of the instruction.

a. RDTSC (Read Time-Stamp Counter)

b. RDPMC (Read Performance-Monitor-
ing Counters)

c. GetLocalTime

d. GetSystemTime

e. GetTickCount

Now we will take an example of a timing
check.

As we can see in Figure 11.

Figure 11 Assembly Code of GetTick-
Count()

We check the synchronization using the
kernel32 GetTickCount() API or manually
verify that the SharedUserData structure's
TickCountLow and TickCountMultiplier
entries are always set to 0xc.Identifying these
timing techniques can be challenging,
especially when RDTSC is used as spam, when
other obscure techniques are used to mask
them.

 Static Dynamic

Difficulty
Level

Easy, Medium Hard

Main Idea Use System
Info

Reverse and exploit
Debugger

Target
Detect
Debugger

Hide its own code
and data

Time Point When
debugging start

While debugger is
running

Defend
Method(s)

API Hook,
debugger plugin

API hook, Debugger
Plugin

Example(s) PEB, TEB, TLS Breakpoints (INT3),
TimingCheck

situations. They are an essential part of the
silent weapon that kills people stealthily and
invisibly. The subject of the current research is
forensic chemistry and toxicology, which is
fully concerned with the introduction, classifi-
cation, effects, and influencing factors of
poisons, as well as their detection and testing.
The purpose of this article is to investigate how
they act and function after they enter the
human body.

5. References

1. Ibrahim, M. S., & Abdullah, M. (2010).
Forensic Accounting in Malaysia: Some
Insights from Practitioners. Asian
Journal of Accounting Perspectives,
3(1), 14-21.

2. Kloosterman, A., Mapes, A., Geradts,
Z., van Eijk, E., Koper, C., van den Berg,
J., ... & van Asten, A. (2015). The
interface between forensic science and
technology: how technology could cause
a paradigm shift in the role of forensic
institutes in the criminal justice system.
Philosophical Transactions of the Royal
Society B: Biological Sciences,
370(1674), 20140264.

3. Yaman, F. (2021). Examining students’
quality and perceptions of argumenta-
tive and summary writing within a
knowledge generation approach to
learning in an analytical chemistry
course. Chemistry Education Research
and Practice, 22(4), 985-1002.

4. Hibbert, D. B. (2007). Quality assurance
in the analytical chemistry laboratory.
Oxford University Press.

may be divided into three groups: homicidal,
suicidal, and accidental [16].

Homicidal Poisoning
The victim is frequently subjected to attempts
to "nurse" them back to health by poisoners
[17]. Serial poisoners typically enjoy the rush
of having control over the victim's life and
suffering, and poisoners frequently take
delight in seeing their victims suffer. Homicide
by poisoning perpetrators frequently work in
the healthcare or medical industries. The
substances that are most appealing to offenders
are those that are deadly in little doses. The
ideal poison for a homicide has no taste, is
undetectable, has no odour, and exhibits symp-
toms that are comparable to those of illnesses
that are found in nature [18]. Since current
scientific techniques and advancements have
made poison detection simpler, it has becom-
ing more and more challenging to find a poison
having all of these characteristics [19].

Sucidal Poisoning:
Self-poisoning, the non-violent way of suicide,
most frequently involves the use of medicine,
either over-the-counter (paracetamol) or
prescribed (such as antidepressants and
prescription analgesics), chemicals (pesti-
cides), or illegal narcotics [20].

Accidental poisoning
Accidental poisoning, which includes acciden-
tal drug overdose, occurs when a person
inadvertently poisons themself. Alcohol,
opioids (such as heroin or methadone),
sedatives, psychiatric pharmaceuticals (such as
antidepressants), antiepileptic, and anti-in-
flammatory medications are some of the
substances from which poisoning may result
[21].

Classification of poisons
Poisons are divided into two categories based
on how they affect the body and depending on
their chemical and physical characteristics.

Classification based upon the effect of
poison on the body:
A) Corrosive: When poisons come into
contact with tissues or organs, they become
corrosive, for example: a. Strong acids like
H2SO4,HCl, HNO3, etc. and strong alkalis
include NH4, Na/K hydroxides, etc [22].

B) Neurotoxins: Toxins known as neurotoxins
cause damage to nerve tissue. Exogenous
chemicals known as neurotoxins are a broad
category of neurological insults that can
negatively impact the function of both growing
and mature brain tissue.Lead, , glutamate,
ethanol (drinking alcohol), botulinum toxin
(e.g., Botox), tetanus toxin, nitric oxide and
tetrodotoxin are typical examples of neurotox-
ins [23].

C) Irritants poisons: They mostly cause
inflammation at the point of contact, particu-
larly in the skin, gastrointestinal system, and
respiratory tract [24]. A poison is categorized
as one that affects a system the most when it
causes death as a result of a systemic impact,
such as a heart poison, brain poison, or spinal
poison. The inorganic toxin arsenic is a hefty
metallic irritation. Due to its insoluble nature
in water and inability to be absorbed by the
digestive system, metallic arsenic is not harm-
ful. Arsenic trioxide, often known as sankhyal
or somalkar, is toxic. Arsenobetaine and arsen-
ocholine are two organic arsenic non-toxic
forms that are typically present in food that
humans frequently ingest [25]. Cod, haddock,
and shellfish contain them.

nervous system, particularly the brain, can be
proved by the use of proper and sensitive
procedures, even if many substances have
obvious effects elsewhere. The circulatory
system, the blood and hematopoietic system,
visceral organs such the liver, kidney, and lung,
and the skin follow in order of frequency of
involvement in systemic toxicity. The least
often targeted tissues for systemic effects
include muscle and bone. The frequency of
tissue reactions when drugs have a localized
effect primarily depends on the portal of
entrance (skin, gastrointestinal tract, respirato-
ry tract) [36].

Reversible versus Irreversible Toxic
Effects
Chemical toxicity can have both reversible and
irreversible consequences. The tissue's capaci-
ty to regenerate will play a significant role in
determining whether a chemical insult to a
tissue results in reversible or irreversible
damage. Therefore, whereas most injuries to
the central nervous system are mostly irrevers-
ible due to the differentiated cells of the central
nervous system being unable to divide and be
replaced, most injuries to a tissue like the liver,
which has a high capacity for regeneration, are
reversible. Chemicals can cause cancer and
permanent harmful consequences [37].

4. Conclusion

By analyzing the medical and legal elements of
a drug's harmful effects on organisms, forensic
toxicology uses chemical and analytical tools
to help establish the facts in forensic investiga-
tions. In situations of fatal poisoning and those
that may be related to criminal conduct, foren-
sic practise is essential. Poisons are typically
found in murder, suicide, or accident

5. Robertson, B., Vignaux, G. A., &
Berger, C. E. (2016). Interpreting
evidence: evaluating forensic science in
the courtroom. John Wiley & Sons.

6. Koehler, J. J. (2017). Forensics or
fauxrensics? Ascertaining accuracy in
the forensic sciences. Ariz. St. LJ, 49,
1369.

7. Klaassen, C. D., Hardman, J. G.,
Limbird, L. E., Molinoff, P. B., Ruddon,
R. W., & Gilman, A. G. (2006). Princi-
ples of toxicology and treatment of
poisoning. Goodman and GilmanÕs The
Pharmacological Basis of Therapeutics,
Eleventh Edition., McGraw Hill,
Columbus, OH, USA, 1739-1752.

8. Shorter, E. (2008). Before Prozac: The
troubled history of mood disorders in
psychiatry. Oxford University Press.

9. Yuan, H., Ma, Q., Ye, L., & Piao, G.
(2016). The traditional medicine and
modern medicine from natural products.
Molecules, 21(5), 559.

10. Li, L., Liu, T., Fu, C., Tan, L., Meng, X.,
& Liu, H. (2015). Biodistribution, excre-
tion, and toxicity of mesoporous silica
nanoparticles after oral administration
depend on their shape. Nanomedicine:
Nanotechnology, Biology and Medicine,
11(8), 1915-1924.

11. Newton, D. E. (2007). Forensic chemis-
try. Infobase Publishing.

12. Sharma, A. K., Tjell, J. C., Sloth, J. J., &
Holm, P. E. (2014). Review of arsenic
contamination, exposure through water

and food and low cost mitigation options
for rural areas. Applied Geochemistry,
41, 11-33.

13. Spitz, W. U., & Diaz, F. J. (2020). Spitz
and Fisher's medicolegal investigation
of death: guidelines for the application
of pathology to crime investigation.
Charles C Thomas Publisher.

14. Pétillon, J. M., & Ducasse, S. (2012).
From flakes to grooves: A technical shift
in antlerworking during the last glacial
maximum in southwest France. Journal
of Human Evolution, 62(4), 435-465.

15. Sharma, M., Jabin, S., & Sharma, M.
PHARMACEUTICAL POLLUTION: A
GRAVE CONCERN!!.

16. Sikary, A. K. (2019). Homicidal poison-
ing in India: A short review. Journal of
forensic and legal medicine, 61, 13-16.

17. Van Landeghem, A. A., De Letter, E. A.,
Lambert, W. E., Van Peteghem, C. H., &
Piette, M. H. (2007). Aconitine involve-
ment in an unusual homicide case.
International journal of legal medicine,
121(3), 214-219.

18. Gunn, A. (2019). Essential forensic
biology. John Wiley & Sons.

19. Trestrail, J. H. (2007). Types of Poisons.
Criminal Poisoning: Investigational
Guide for Law Enforcement, Toxicolo-
gists, Forensic Scientists, and Attorneys,
29-46.

20. Bonvoisin, T., Utyasheva, L., Knipe, D.,
Gunnell, D., & Eddleston, M. (2020).

Suicide by pesticide poisoning in India:
a review of pesticide regulations and
their impact on suicide trends. BMC
public health, 20(1), 1-16.

21. Manzar, N., Saad, S. M. A., Manzar, B.,
& Fatima, S. S. (2010). The study of
etiological and demographic character-
istics of acute household accidental
poisoning in children-a consecutive case
series study from Pakistan. BMC pediat-
rics, 10(1), 1-6.

22. Chibishev, A., Pereska, Z., Chibisheva,
V., & Simonovska, N. (2012). Corrosive
poisonings in adults. Materia
socio-medica.

23. Hu, Y., Chen, J., Fan, H., Xie, P., & He,
J. (2016). A review of neurotoxicity of
microcystins. Environmental science
and pollution research, 23(8),
7211-7219.

24. Waserman, S., & Watson, W. (2011).
Food allergy. Allergy, Asthma & Clini-
cal Immunology, 7(1), 1-7.

25. Borak, J., & Hosgood, H. D. (2007).
Seafood arsenic: implications for human
risk assessment. Regulatory Toxicology
and Pharmacology, 47(2), 204-212.

26. Pandey, G., & Madhuri, S. (2014).
Heavy metals causing toxicity in
animals and fishes. Research Journal of
Animal, Veterinary and Fishery Scienc-
es, 2(2), 17-23.

27. Stejskal, V., Vendl, T., Aulicky, R., &
Athanassiou, C. (2021). Synthetic and

natural insecticides: Gas, liquid, gel and
solid formulations for stored-product
and food-industry pest control. Insects,
12(7), 590.

28. Francois, M. R., & Stephen, F. (2015).
Phosphorus Compounds. In Hamilton &
Hardy's Industrial Toxicology (pp.
383-390). Hoboken, New Jersey: John
Wiley & Sons, Inc..

29. Kaushik, R. D. (2021). Methyl bromide:
Risk assessment, environmental, and
health hazard. In Hazardous Gases (pp.
239-250). Academic Press.

30. Thompson, J. P., & Marrs, T. C. (2012).
Hydroxocobalamin in cyanide poison-
ing. Clinical Toxicology, 50(10),
875-885.

31. Dash, R. R., Gaur, A., & Balomajumder,
C. (2009). Cyanide in industrial waste-
waters and its removal: a review on
biotreatment. Journal of hazardous
materials, 163(1), 1-11.

32. Mishra, A. (2020). Forensic Chemistry
and Toxicology. In Medical Toxicology.
IntechOpen.

33. Donovan, M. D. (2009). Effect of route
of administration and distribution on
drug action. In Modern Pharmaceutics
Volume 1 (pp. 173-198). CRC Press.

34. Boey, A., & Ho, H. K. (2020). All roads
lead to the liver: metal nanoparticles and
their implications for liver health. Small,
16(21), 2000153.

35. Jett, D. A., Sibrizzi, C. A., Blain, R. B.,

C) Cyanides
The majority of cases of severe or deadly
cyanide poisoning involve the suicide intake of
cyanide salts. A very poisonous volatile liquid,
hydrogen cyanide. When cyanide salts react
with acids or are formed in the stomach after
oral consumption, hydrogen cyanide fumes are
released [30]. Although HCN has a distinctive
almond-like odour, up to 50% of people cannot
detect it. Even while this might have been
connected to air flow ventilation systems in
post-mortem rooms, it was surprising that it
was not a distinguishing feature during autopsy
of a significant number of cyanide suicide
fatalities. The industrial applications of potas-
sium and sodium cyanide as soluble salts of
cyanide include electroplating, metal process-
ing, and laboratory reagents [31].

B. Organic poisons

a)Ethanol: A much of ethanol is toxic, so
avoid using it.

b. Other alcohols: Poisonous alcohols include
methyl and isopropyl.

Methanol, a substance used in the chemical
and polish industries as well as clandestine
alcoholic beverages, may be fatal when
consumed.

c. Phenol: Carboxylic acid or phenol may be
toxic. The main purpose of it is as a disinfect-
ant .

d. Other substances: Poisonous industrial
chemicals include benzene, chloral hydrate,
chlorinated hydrocarbons, and others. Chloral
hydrate might be present in illegal alcoholic

beverages in a number of poisoning instances
[32].

Route & Site of Exposure
When administered intravenously, toxic
substances often have the most impact and the
fastest reaction. For alternative routes, inhala-
tion, intraperitoneal, sucutaneous, intramuscu-
lar, intradermal, oral, and topical would rough-
ly be listed in decreasing order of efficacy [33].
Additionally, the method of delivery might
affect an agent's toxicity. For instance, it would
be reasonable to anticipate that a substance that
is detoxified in the liver would be less hazard-
ous when administered orally through the
portal circulation than systemically (inhala-
tion) [34].

Duration & Frequency of Exposure
The toxic effects brought on by a single expo-
sure to multiple substances differ significantly
from those brought on by repeated exposure.
For instance, benzene's major acute toxic
symptom is central nervous system depression,
but prolonged exposure can cause leukaemia.
Acute exposure to quickly absorbed substances
is likely to result in immediate toxicity, but it is
also possible for acute exposure to result in
delayed toxicity that may or may not be
comparable to the toxic consequences of
chronic exposure. In contrast, repeated admin-
istration of a hazardous agent may result in
certain short-term (acute) side effects in
addition to the agent's long-term, low-level, or
chronic effects [35].

Local versus Systemic Toxicity
The central nervous system is the target organ
of toxicity that is most commonly engaged in
systemic toxicity. Damage to the central

Hartman, P. A., Lein, P. J., Taylor, K. W.,
& Rooney, A. A. (2020). A national
toxicology program systematic review
of the evidence for long-term effects
after acute exposure to sarin nerve agent.
Critical reviews in toxicology, 50(6),
474-490.

36. El-Boghdadly, K., Pawa, A., & Chin, K.
J. (2018). Local anesthetic systemic
toxicity: current perspectives. Local and
regional anesthesia, 11, 35.

37. Grandin, E. W., Ky, B., Cornell, R. F.,
Carver, J., & Lenihan, D. J. (2015).
Patterns of cardiac toxicity associated
with irreversible proteasome inhibition
in the treatment of multiple myeloma.
Journal of cardiac failure, 21(2),
138-144.

Poisons are also Categorized According
to their Characteristics:

A) Inorganic Poisons
i) Metallic Poisoning
After exposure, microscopic metal molecules
build up in your body and cause heavy metal

poisoning. Without treatment, heavy metals
can produce symptoms that are potentially
fatal because they adhere to your cells and stop
them from functioning.Your body can become
poisonous to a variety of metals [26]. The most
prevalent poisonous metals are:

Ii) Non Metallic Poisons

A) Phosphine and phosphides
A variety of industrial operations employ
phosphonate, a highly poisonous colourless
gas with a pungent garlic or fishy odour. It is
also produced when phosphides are exposed to
moisture.[27] In underdeveloped nations,
aluminium phosphide is widely utilized as a
cheap and efficient grain fumigant and rodenti-
cide [28].

B) Bromide
The colourless gas methyl bromide has histori-
cally been employed as a refrigerant and in fire
extinguishers, but it is most frequently utilized
as an insecticidal fumigant for grain storage

and soil. Methyl bromide is a metabolite that
produces the bromide ion and is linked to
unintentional poisoning, especially in work
environments [29]. By passive diffusion, the
bromide ion is quickly absorbed from the
stomach and proximal small intestines.
Bromide ions are mostly found in extracellular
fluid, where they have similar properties to
chloride ions. The kidney is the most signifi-
cant organ for elimination. Their half-life of
elimination is relatively lengthy, lasting around
10 days after an acute dose or many weeks
after stopping a long-term consumption,
especially in situations of bromide intoxica-
tion.

Forensic Analysis
The use of scientific knowledge that is based
on legal issues is known as forensic science
[5]. In order to determine what happened,
when it happened, and who was responsible,
forensic science primarily examines biological
and physical evidence. To attain accuracy and
precision, forensic scientific proficiency is
crucial [6].

2. Forensic Toxicology

The study of poisons' and drugs' detrimental
effects on living things is known as toxicology
[7]. It include the investigation of the signs,
causes, effects, and methods of handling
certain toxins and medications. If the use of
medications and poisons results in death in
dubious circumstances, it becomes rhetorical
pharmacological medicine [8].

The field of medicine may include pharmaco-
logical medicine as a sub-field. The study of
medicine includes all interactions between
drugs and other chemicals on living things [9].
Drug administration, body absorption, activi-
ties and interactions, metabolism, and excre-
tion are all aspects of medicine [10].

Fig: Stages of forensic toxicology

3. History of Forensic Chemistry

Rhetorical chemistry advancements started to
become apparent by the middle of the 19th
century. Blood tests were developed at this

time, the Marsh test for arsenic was created in
1832, and experiments on bullet "fingerprint-
ing" were conducted in the 1980s. Christian
Friedrich Schönbein (1799–1868), a
German–Swiss scientist, developed the first
accurate method for differentiating human
blood in 1863 [11]. For more than a century
and a half, arsenic has been widely used as a
toxin. Its excellence goes back to the seventh
century. During the 16th century, the Arab
philosopher Abu Musa Jabir Ibn Hayyan
(about 721-ca. 815), also known as Geber,
found the process for transforming the grey,
metallic-looking elemental arsenic ,an elemen-
tal chemical compound (As2O3; a material)
into (White, flavourless, and odourless
powder). Arsenic may just be an extra chemi-
cal in person's food or beverage without raising
suspicion [12]. Over the following sixty years,
attempts to employ bullet "fingerprinting" in
criminal investigations were few [13]. But by
the 1890s, a number of events spurred renewed
interest in the method as a means of identifying
possible offenders. Of those aspects, the devel-
opment of the replacement method known as
"grooving" for making gun barrels was
perhaps the most crucial. The process of
grooving involves carving spiral grooves into
the inner surface of tubing. When a bullet
travels through the barrel, the grooves allow it
to spin; this motion prevents the bullet from
tipping over after it exits the tube. Different
grooving techniques have been employed by
numerous gun makers [14].

Poisoning
It is referred to as the harmful consequence of
a poison or harmful chemical agent. It causes
the emergence of negative reactions to danger-
ous substances or chemicals [15]. Basically, it

1. Introduction

 The word "forensic" comes from the
Latin word "forensis," which means "public,"
"to the prospect and discussion"[1]. Legal
concerns can be resolved in a variety of ways
thanks to rhetorical science. Rhetorical
science, which includes a variety of disciplines
such as rhetorical chemistry, rhetorical social
science, rhetorical biology, rhetorical medi-
cine, rhetorical engineering, rhetorical material
sciences, machine rhetorical, and others, is
generally used to settle legal disputes, fairly
enforce criminal and civil laws, and protect the

public. A broad phrase that covers most of the
duties performed by the law laboratory is
forensic chemistry[2]. Trace analysis and
medicine are techniques employed in the field
of rhetorical chemistry. Analytical chemistry
that is applied is forensic chemistry. Rhetorical
chemistry adds comparison study to the assign-
ment whereas analytical chemistry covers both
quantitative and qualitative chemical analysis
[3]. Similarly, spectrometry can quickly deter-
mine whether a sample is made of nylon or
polythene. Therefore, analytical chemistry
offers the quantitative and qualitative data
needed to respond to rhetorical questions [4].

1. Introduction

 Prior to then, malware Development
served as a showcase for malware coders.
Malware analysts have used debuggers to run a
malware program's instructions one by one,
introducing modifications to memory spaces,
settings as well as variable values. Debuggers
are the most commonly used reverse engineer-
ing tools, such as Interactive Disassembler
(IDA), x64dbg, and OllyDBG. If debugging is
successful, it helps to understand malware
behavior and its capabilities. This is something

malware developers would like to avoid. That
is why they must implement anti-debugging
techniques. Anti-debugging techniques[3] can
be used to merely detect the presence of a
debugger, deactivate it, lose control of it, or
even take advantage of a flaw in the debugger.
Disabling or avoiding debugger checks can be
done generally and specifically. However, you
can exploit this vulnerability against specific
debuggers. Furthermore, The Supervisory
Control and Data Acquisition (SCADA)[4]
system has a vulnerability, according to the
Trend Micro report "Unseen Threats, Immi-
nent losses,” which is the part of industrial

manually. The fs segment register can access
the Process Environment Block (PEB) at fs:
[30]. On an x86 [8] computer, this register
corresponds to a Thread Information Block
(TIB).There is also a flag below the Process
Environment Block (PEB) that indicates
whether the first memory space of the process
was created in debug mode. Provide an offset
of 0x18 in the Process Environment Bloc
(PEB). So, here I break down the anti-debug-
ging techniques into two categories: static
anti-debugging and dynamic anti-debugging
[9], as seen in the Table 1 below.

Table 1. Static Vs Dynamic Techniques
Difference

In our research we will discuss we will discuss
some of the main anti-debugging techniques
and how a reverse engineer can be able to
identify them easily for example in this paper
we will discuss about the IsDebuggerPresent,
TimeChecks, NtQueryInformationProcess,
NtSetInformationThread, SwitchDesktops,
SeDebugPrivilege, ParentProcess, Debugger-
Window, DeviceDrivers etc.

Anti-Debugging Techniques Mechanism:
Anti-debugging[10] is the implementation of

control systems (ICS)[5]. In addition, In many
situations, knowing how to apply anti-debug-
ging techniques to malicious code to prevent it
from being tracked down and evaluated is also
helpful. One of the main tools used by malware
analysts and reverse engineers is the debugger.
What is a debugger? A debugger is software
that is used to evaluate and control the flow of
execution of other executables or software. By
using a debugger, we can execute each instruc-
tion step by step and can note down the chang-
es that can be displayed on the stack, memory
dumps, registers, etc. Most packers use these
techniques to determine whether the system is
running a debugger or if a process is being
debugged. These debugger detection meth-
ods[6] include checks that are relatively basic
all the way up to ones that are applicable to
native Application Programming Interfaces
(APIs) and kernel objects[7].This section
discusses how anti-debugging techniques
work. Each process's user space contains a data
structure called a Process Environment Block
(PEB), which holds information about the
related process. Each process's user space
contains a data structure called a Process
Environment Block (PEB), which holds infor-
mation about the related process. It is intended
to access Windows API (WinAPI)It is intended
to access Windows API (WinAPI) but access is
not restricted by this. Process Environment
Block (PEB) can be accessed directly from
memory. Checking the value of the Process
Environment Block (PEB) structure that has
been debugged is a relatively straightforward
implementation and technique. As we know
that there are so many Applications Program-
mable Interfaces (APIs) which are documented
and undocumented. For example, IsDebugger-
Present, which we will discuss later in this
paper. To enhance, we can also check the APIs

If the process can open the CSRSS.EXE
process, then SeDebugPrivilege is active when
the process is accessed.

Token pointing to the process being debugged.
The test is valid for the following reasons: The
Process Security Descriptor CSRSS.EXE
allows the system access to the process.

However, if the process has SeDebugPrivilege
privilege, other processes have independent
access to the Security Descriptor. This permis-
sion is only granted to administrative groups
by default, as we can see in Figure 12.

Figure 12 Assembly Code of SeDebugPrivi-
lege()

This control uses ntdll! The CSRSS.exe
GetProcessId() API gets the Process ID (PID)
 from CSRSS.EXE. You can get it manually by
looking at the Process ID CSRSS.EXE
processes. If OpenProcess() succeeds, SeDe-
bugPrivilege is activated, indicating that the
process is currently running and debugging,
too.

Solution:
The ntdll breakpoint can be hit by setting a
breakpoint as a solution. Returns from
NtOpenProcess(). If PID passed by
CSRSS.exe is CSRSS.exe, set the EX-value to
0xC0000022 (STATUS_ACCESS_DENIED).

Solution:
One of the solutions is to identify where the
time checks are and try to avoid stepping into
them. and the code between these time checks.
Reverse Engineers can place a breakpoint
before that delta and execute instead of steps
until a breakpoint is reached or a breakpoint is
reached. We can also set a breakpoint in
GetTickCount() to specify where to call it or to
change its return value. Mitigations During
Debugging: just fill time checks with NOPs
and set the result of these checks to the appro-
priate value. For anti-debugging solution
development: there is no great need to do
anything with it, as time checks are not very
reliable, but you can still hook timing functions
and accelerate the time between calls.

Mitigations:
• During Debugging, just fill time checks

with NOPs and set the result of these
checks to the appropriate value.

• For anti-debugging solution develop-
ment: there is no great need to do
anything with it, as time checks are not
very reliable, but you can still hook
timing functions and accelerate the time
between calls.

7. SeDebugPrivilege:

By default, the SeDebugPrivilege permission
is disabled for the process access token. When
a debugger like x32dbg, OllyDBG, etc. loads a
process, SeDebugPrivilege permission is
enabled. This is because these debuggers keep
trying . SeDebugPrivilege permissions are
inherited.

Parent Process:
Users launch apps by clicking on the executa-
ble's icon that the shell process displays
(Explorer.exe).By clicking on the executable's
icon that the shell process displays, users can
launch apps (Explorer.exe).Due to this,Explor-
er.exe becomes the parent process of the active
process. This will show that the program was
created by someone else and suggest that you
can debug it.

1. Using Process32First/Next(), it will list
every process and note explorer.exe.
PROCESS32.szExeFile and the PRO-
CESSENTRY32.th32parentProcessID
are the two files that provide the process
ID and the parent process ID of the
current process, respectively.

2. The target is being debugged if the
Process ID (PID) of the parent process
differs from the Process ID (PID) of the
explorer.exe.

Solution:
We need to patch the element of
Kernel32!Process32NextW() that contains the
code that performs a return after setting the
value of EAX to 0.

8. Debugger Window:

The presence of the debug window is a flag
that the debugger is running system[13].
Because the debugger creates windows with
special class names (OllyDBG for OLLYDBG
and WinDbgFrameClass for WinDbg), user32
can easily identify these debug windows!
FindWindow`() or User32! findWindowEx().

Solution:
One solution is to set breakpoints in FindWin-
dow() and FindWindowEx() When the break-
point is hit, modify the value of the
lpClassName string parameter to prevent the
API from functioning. Setting the return value
to NULL is another option.

9. Debugger Process:

List all the processes on the system and see
whether the process name matches the name of
the debugger to find out if it is currently
running (for example, OLLYDBG.EXE, wind-
bg.exe, etc.).Simple to implement; just use
Process32First / Next() after confirming that
the image name corresponds to the name of the
debugger.

Sometimes these methods also use Kernel32
ReadProcessMemory() to read process
memory and then look for debugger-related
strings such as "x64dbg", "IDA", "OllyDBG",
etc. to reverse engineer the debugger. to imple-
ment. After getting the debugger. The malware
will stop his execution and silently exit or
terminates the process.

Solution:
Another solution is to check the main process,
including patching the kernel 32 patch!
Process32NextW() always fails and prevents
the developer from enumerating the process.

10. Device Drivers

An old technique is to verify that the debugger
is running in a Kernel Mode in the system and
try to, access device drivers. This technique is
very simple and consists of simply making a
call to the against well-known device names

byte value 0xCC (INT3 / Breakpoint
Interrupt)[17]. Finding the byte 0xCC in the
API code and protector code will help you
locate software breakpoints as seen by the
example of assembly code in Figure 13.

Figure 13 Assembly Code of Software
Breakpoint Detection

C/C++ Code:
As we can C/C++ code in the Figure 14.

Figure 14. C/C++ code of Software Break-
point Detection

Solution:
Hardware breakpoints can be reverse
engineered if software breakpoints are identi-
fied. If you need to set a breakpoint in the API
code, and when the packer tries to find a break-
point in the API code, reverse engineering the
UNICODE API version allows for the setting
of breakpoints. That eventually calls the ANSI
version, such as LoadLibraryExW LoadLibrar-

used by kernel-mode debuggers, such as
SoftICE, using Kernel32!CreateFile().Some
versions of Soft-ICE also add numbers to the
device name, making it to check. The reversing
forum's suggested technique is to brute force
the corresponding digits until the right device
name is discovered[14].The new packer also
uses device driver detection techniques to
detect system monitors such as “Process Moni-
tor” etc.

Solution:
Establishing a breakpoint in kernel32 is the
simple fix. When the breakpoint is reached,
CreateFileFileW() should either handle the
FileName parameter or alter its return value to
INVALID HANDLE VALUE (0xFFFFFFFF).

Process Memory:
A process can check or interact with its own
memory for the presence of a debugger. This
section includes anti-hitch methods[15] such
as process memory and thread context check-
ing, breakpoint DETECTION, PATCHING function
and debugging functions.

11. Breakpoint and Patching
Detection:

To verify if our code has any software break-
points, we may still inspect the process
memory, and we can also check the CPU
debug registers to see if any hardware break-
points have been set.

12. Software Breakpoints
Detection:

Software breakpoints are defined as break-
points that are created by altering the code at
the target location and replacing it with the

Of course, as with all malware analysis, the
best way to learn how to stop it by using
debugging techniques by continuously testing
malware. Malware developers are constantly
coming up with new techniques to evade
debuggers and keep security researchers like
you on their toes.

17. References:

[1] V. Bhardwaj, V. Kukreja, C. Sharma, I.
Kansal, and R. Popali, “Reverse
Engineering-A Method for Analyzing
Malicious Code Behavior,” in 2021
International Conference on Advances
in Computing, Communication, and
Control (ICAC3), Dec. 2021, pp. 1–5.
doi: 10.1109/ICAC353642.2021.
9697150.

[2] M. N. Gagnon, S. Taylor, and A. K.
Ghosh, “Software Protection through
Anti-Debugging,” IEEE Security &
Privacy Magazine, vol. 5, no. 3, pp.
82–84, May 2007, doi: 10.1109/M-
SP.2007.71.

[3] J.-W. Kim, J. Bang, Y.-S. Moon, and
M.-J. Choi, “Disabling Anti-Debugging
Techniques for Unpacking System in
User-level Debugger,” in 2019 Interna-
tional Conference on Information and
Communication Technology Conver-
gence (ICTC), Oct. 2019, pp. 954–959.
doi: 10.1109/ICTC46691.2019.
8939719.

[4] T. Akhtar, B. B. Gupta, and S. Yamagu-
chi, “Malware propagation effects on
SCADA system and smart power grid,”
in 2018 IEEE International Conference
on Consumer Electronics (ICCE), Jan.

looking for breakpoints in the process memory,
we can check to see if kernel32IsDebuggerPre-
sent() has been altered[20].The first few bytes
of this function can be read and compared to
the same function's bytes from other processes.
Windows libraries are loaded at the same base
address throughout the process, even if the
Address Space Layout Randomization (ASLR)
feature is enabled. The base address only
changes across reboots but remains the same
for the duration of the session.

Mitigations:
• During Debugging: Enter the function

that conducts the Step-Over check and
run it till the end(Ctrl + F9).

• Finding the specific check and either
path it with NOPs or setting the return to
a value that permits the application to
keep running are the best ways to
mitigate all "memory" techniques,
including anti-step over.

Conclusion:
To defend itself against reverse engineering
analysis, the malware employs anti-debugging
techniques. Debug analysis can be avoided by
anti-debugging techniques. Reverse engineers
need advanced debuggers and knowledge to
analyze malware using anti-debugging
techniques. By applying common sense and
slowly debugging the process, it is possible to
identify the majority of anti-debugging
techniques. For example, if you see that the
code is terminating too rapidly in a conditional
jump, which could mean preventing debugging
technical. The most widely used anti-debug-
ging methods involve fs access: [30h] by using
a Windows API or performing a time check.

ison of Machine Learning Models in Malware
Packing Detection,” in 2020 21st
Asia-Pacific Network Operations and
Management Symposium (APNOMS),
Sep. 2020, pp. 377–380. doi:
10 .23919 /APNOMS50412 .2020 .
9237007.

[16] R. R. Branco and G. N. Barbosa,
“Distributed malware analysis schedul-
ing,” in 2011 6th International Confer-
ence on Malicious and Unwanted
Software, Oct. 2011, pp. 34–41. doi:
10.1109/MALWARE.2011.6112324.

[17] K. Coogan, S. Debray, T. Kaochar, and
G. Townsend, “Automatic Static
Unpacking of Malware Binaries,” in
2009 16th Working Conference on
Reverse Engineering, 2009, pp.
167–176. doi: 10.1109/WCRE.2009.24.

[18] G. Jeong, E. Choo, J. Lee, M.
Bat-Erdene, and H. Lee, “Generic
unpacking using entropy analysis,” in
2010 5th International Conference on
Malicious and Unwanted Software, Oct.
2010, pp. 98–105. doi: 10.1109/MAL-
WARE.2010.5665789.

[19] C. R. Hill, “A real-time microprocessor
debugging technique,” ACM SIGPLAN
Notices, vol. 18, no. 8, pp. 145–148,
Aug. 1983, doi: 10.1145/1006142.
1006179.

[20] R. Sihwail, K. Omar, K. Zainol Ariffin,
and S. al Afghani, “Malware Detection
Approach Based on Artifacts in Memory
Image and Dynamic Analysis,” Applied
Sciences, vol. 9, no. 18, p. 3680, Sep.
2019, doi: 10.3390/app9183680.

yA or the native API corresponding to Load-
DLL to replace.

13. Hardware Breakpoints:

DR0, DR1, DR2, and DR3 are debug registers
that can be obtained from the thread context.
Debug registers 0-3 are used to store virtual
address of the so-called hardware breakpoints.
C/C++ Code:

As we can see C/C++ code in the figure 15.

Figure 15 C/C++ code of Hardware
Breakpoints

14. Memory Checks:

This section includes methods for directly
inspecting or modifying a process's virtual
memory in order to spot and stop debug-
ging[18].

15. Nt Query Virtual Memory ():

The memory page of the process in which the
code is located is shared by all processes prior
to the page being written. Then the OS creates
a replica of this page and allocates it to the
process's virtual memory[19], so the page is no
longer "shared". Now we can see how to
declare NTDLL, as we can see in figure 16.

NTDLL declarations:

Figure 16 NTDLL Deceleration of
NtQueryVirtualMemory()

C/C++ Code:
As we can see the C/C++ code in the Figure
17.

Figure 17 C/C++ Code for Hardware
Breakpoints

16. Detecting A function Patch:

Calling kernel32 is a common approach to find
a debugger. IsDebuggerPresent(). By altering
the outcome in the EAX register or hacking the
kernel32, you may easily get around this
check! IsDebuggerPresent(). Instead of

2018, pp. 1–6. doi: 10.1109/ICCE.2018.
8326281.

[5] G. Wang, L. Zhuang, T. Liu, S. Li, S.
Yang, and J. Lan, “Formal analysis and
verification of industrial control system
security via timed automata,” in 2020
International Conference on Internet of
Things and Intelligent Applications
(ITIA), Nov. 2020, pp. 1–5. doi:
10.1109/ITIA50152.2020.9312289.

[6] A. J. Smith, R. F. Mills, A. R. Bryant, G.
L. Peterson, and M. R. Grimaila,
“REDIR: Automated static detection of
obfuscated anti-debugging techniques,”
in 2014 International Conference on
Collaboration Technologies and
Systems (CTS), May 2014, pp. 173–180.
doi: 10.1109/CTS.2014.6867561.

[7] J. Raber, “Stealthy Profiling and Debug-
ging of Malware Trampolining from
User to Kernel Space,” in 2011 18th
Working Conference on Reverse
Engineering, Oct. 2011, pp. 431–432.
doi: 10.1109/WCRE.2011.62.

[8] J. G. Alcalde, G. Chua, I. M. Demabildo,
M. A. Ong, and R. L. Uy, “CALVIS32:
Customizable assembly language
visualizer and simulator for intel x86-32
architecture,” in 2016 IEEE Region 10
Conference (TENCON), Nov. 2016, pp.
214–217. doi: 10.1109/TEN-
CON.2016.7847992.

[9] Chan Lee Yee, Lee Ling Chuan, M.
Ismail, and N. Zainal, “A static and
dynamic visual debugger for malware
analysis,” in 2012 18th Asia-Pacific
Conference on Communications

(APCC), Oct. 2012, pp. 765–769. doi:
10.1109/APCC.2012.6388211.

[10] Xu Chen, J. Andersen, Z. M. Mao, M.
Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and
anti-debugging behavior in modern
malware,” in 2008 IEEE International
Conference on Dependable Systems and
Networks With FTCS and DCC (DSN),
2008, pp. 177–186. doi: 10.1109/
DSN.2008.4630086.

[11] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[12] P. Xie, X. Lu, Y. Wang, J. Su, and M. Li,
“An Automatic Approach to Detect
Anti-debugging in Malware Analysis,”
2013, pp. 436–442. doi: 10.1007/
978-3-642-35795-4_55.

[13] A. Mylonas and D. Gritzalis, “Practical
Malware Analysis: The Hands-On
Guide to Dissecting Malicious
Software,” Comput Secur, vol. 31, no. 6,
pp. 802–803, Sep. 2012, doi: 10.1016/j.-
cose.2012.05.004.

[14] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[15] J.-W. Kim, J. Namgung, Y.-S. Moon,
and M.-J. Choi, “Experimental Compar-

one or more techniques in computer code that
make it difficult to reverse engineer or debug
the target process. These techniques are ways
for a program to detect whether it is running
under the control of a debugger[11]. If a
debugger is detected, the malware will execute
arbitrary code, usually code to terminate. The
anti-debugging process slows down the
reverse engineering process but doesn't stop it.

2. Is Debugger Present:

The easiest debugger detection technique is to
check the BeingDebugged flag in the Process
Environment Block (PEB). The kernel32IsDe-
buggerPresent() function was introduced in
Windows 95, and the Application Programma-
ble Interface (API) checks the value of this flag
to identify the process whether it is in the
user-mode debugger. This code (same 32-bit or
64-bit Windows environment) can be used for
verification to check the 32-bit or 64-bit
Windows environment. As we can see the
assembly code of the IsDebuggerPresent() in
Figure 1.

Figure 1. Assembly code of IsDebuggerPre-
sent()

C/C++ Code:
As we can see in the example if IsDebugger-
Present() in Figure 2.

Figure 2. C/C++ code of IsDebuggerPre-
sent()

Solution:
This technique can be easily bypassed by
manually patching the Process Environment
Block (PEB). BeingDebugged flag with the
value 0x00 in the bytes.

3. Nt Query Information Process
() / Check Remote Debugger
Present ()

CheckRemoteDebuggerPresent() is another a
debugger should be attached to a process? Use
this Check Remote DebuggerPresent() to
decide. The API calls ntdll!ProcessDebugPort
inside the kernel A value that is not zero in the
DebugPort field tells that the process is being
debugged in user mode by the debugger. If so,
ProcessInformation will be set to
0xFFFFFFFF, otherwise the value of
ProcessInformation will be 0x0.The Check-
RemoteDebuggerPresent()[12] function in
Kernel32 is functional.On either the 32-bit or
64-bit version of Windows, the check can be
made by using this 32-bit code to look at the
32-bit window environment. The Function The
function CheckRemoteDebuggerPresent()
takes 2 parameters; the first parameter is the
(PID), and the A pointer to a Boolean variable
serves as the second parameter. That will hold
TRUE if the process is being debugged. As we
can see from the C/C++ code in Figure 3.

Figure 3 C/C++ Code for CheckRemoteDe-
bugger

Ntdll! NtQueryInformationProcess() has 5
parameters. To detect the debugger, the

Study of the Anti-Debugging Techniques and their Mitigations

31LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

to hide threads from the debugger. It can also be
done with the help of a non-documented value,
which is not documented but can be used.
THREAD_INFORMATION_CLASS::Threa-
dHideFromDebugger (0x11). When a thread is
hidden in the debugger, it will not be informed
of anything pertaining to that thread not be
informed of anything pertaining to that thread.
The thread is also capable of anti-debugging
methods, such as examining debug flags, code
checksums, etc. If there are hidden breakpoints
in the thread, If we try to keep the main thread
hidden from the debugger, either the process
will crash or the debugger will gets stuck. An
example of calling the NtSetInformation-
Thread would be like this, as we can see in
Figure 7.

Figure 7. Assembly code of NtSetInforma-
tionThread()

C/C++ Code:
As we can see, C/C++ code in Figure 8.

Figure 8. C/C++ code of NtSetInformation-
Thread()

Solution:
The breakpoint is set to ntdll!NtSetInforma-
tionThread(), and when the breakpoint is hit,
reverse engineers can modify the EIP, to
prevent the API calls from reaching the kernel
and being called from other functions.

ProcessInformation class is set to as
ProcessDebugPort as we can see C/C++ code
in the Figure 4.

Figure 4. C/C++ Code for NtQueryInfor-
mationProcess()

This example shows how the call to the Check-
RemoteDebuggerPresent() and To see whether
the current process is being debugged, utilize
the NtQueryInformationProcess function. as
we can see in Figure 5 and Figure 6.

Figure 5 Assembly code of CheckRemot-
eDebuggerPresent()

Figure 6. Assembly code of NtQueryInfor-
mationProcess()

Solution:
One solution is to set NtQueryInformationPro-
cess(return)'s value is a breakpoint. ProcessIn-
formation is patched to a DWORD value of 0
when the breakpoint is reached of 0.

4. Nt SetInformation Thread:

NtSetInformationThread()[13] is usually used
to set the priority of a thread. It can also be used

5. SwitchDesktop()

Platforms based on Windows NT allow for
multiple desktop sessions. The windows of the
previous active desktop can be hidden by
choosing a different active desktop, but there is
no visible way to return to the previous
desktop. the mouse and keyboard events won't
be sent to the debugger from the debugger's
desktop.[13] , they no longer divulge their
source, either. Debugging could become
impossible as a result. Both the 32-bit and
64-bit versions of Windows can be used to
make this call. Here is an example of a 32-bit
version of Windows as we can see in Figure 9.

Figure 9. Assembly code of SwitchDesk-
top()

C/C++ Code:
As we can see the C/C++ code in the Figure 10.

Figure 10 C/C++ code of SwitchDesktop()

6. Execution Time / Timing
Checks

When a reverse engineer tries to debug a

process and uses a single step in code, there is
a significant delay between the execution of
the individual’s instructions[13]. The process
is running under a debugger if the amount of
time required is excessive compared to a
typical execution. Here is a list of some
instructions that can be used to increase the
execution time of the instruction.

a. RDTSC (Read Time-Stamp Counter)

b. RDPMC (Read Performance-Monitor-
ing Counters)

c. GetLocalTime

d. GetSystemTime

e. GetTickCount

Now we will take an example of a timing
check.

As we can see in Figure 11.

Figure 11 Assembly Code of GetTick-
Count()

We check the synchronization using the
kernel32 GetTickCount() API or manually
verify that the SharedUserData structure's
TickCountLow and TickCountMultiplier
entries are always set to 0xc.Identifying these
timing techniques can be challenging,
especially when RDTSC is used as spam, when
other obscure techniques are used to mask
them.

situations. They are an essential part of the
silent weapon that kills people stealthily and
invisibly. The subject of the current research is
forensic chemistry and toxicology, which is
fully concerned with the introduction, classifi-
cation, effects, and influencing factors of
poisons, as well as their detection and testing.
The purpose of this article is to investigate how
they act and function after they enter the
human body.

5. References

1. Ibrahim, M. S., & Abdullah, M. (2010).
Forensic Accounting in Malaysia: Some
Insights from Practitioners. Asian
Journal of Accounting Perspectives,
3(1), 14-21.

2. Kloosterman, A., Mapes, A., Geradts,
Z., van Eijk, E., Koper, C., van den Berg,
J., ... & van Asten, A. (2015). The
interface between forensic science and
technology: how technology could cause
a paradigm shift in the role of forensic
institutes in the criminal justice system.
Philosophical Transactions of the Royal
Society B: Biological Sciences,
370(1674), 20140264.

3. Yaman, F. (2021). Examining students’
quality and perceptions of argumenta-
tive and summary writing within a
knowledge generation approach to
learning in an analytical chemistry
course. Chemistry Education Research
and Practice, 22(4), 985-1002.

4. Hibbert, D. B. (2007). Quality assurance
in the analytical chemistry laboratory.
Oxford University Press.

may be divided into three groups: homicidal,
suicidal, and accidental [16].

Homicidal Poisoning
The victim is frequently subjected to attempts
to "nurse" them back to health by poisoners
[17]. Serial poisoners typically enjoy the rush
of having control over the victim's life and
suffering, and poisoners frequently take
delight in seeing their victims suffer. Homicide
by poisoning perpetrators frequently work in
the healthcare or medical industries. The
substances that are most appealing to offenders
are those that are deadly in little doses. The
ideal poison for a homicide has no taste, is
undetectable, has no odour, and exhibits symp-
toms that are comparable to those of illnesses
that are found in nature [18]. Since current
scientific techniques and advancements have
made poison detection simpler, it has becom-
ing more and more challenging to find a poison
having all of these characteristics [19].

Sucidal Poisoning:
Self-poisoning, the non-violent way of suicide,
most frequently involves the use of medicine,
either over-the-counter (paracetamol) or
prescribed (such as antidepressants and
prescription analgesics), chemicals (pesti-
cides), or illegal narcotics [20].

Accidental poisoning
Accidental poisoning, which includes acciden-
tal drug overdose, occurs when a person
inadvertently poisons themself. Alcohol,
opioids (such as heroin or methadone),
sedatives, psychiatric pharmaceuticals (such as
antidepressants), antiepileptic, and anti-in-
flammatory medications are some of the
substances from which poisoning may result
[21].

Classification of poisons
Poisons are divided into two categories based
on how they affect the body and depending on
their chemical and physical characteristics.

Classification based upon the effect of
poison on the body:
A) Corrosive: When poisons come into
contact with tissues or organs, they become
corrosive, for example: a. Strong acids like
H2SO4,HCl, HNO3, etc. and strong alkalis
include NH4, Na/K hydroxides, etc [22].

B) Neurotoxins: Toxins known as neurotoxins
cause damage to nerve tissue. Exogenous
chemicals known as neurotoxins are a broad
category of neurological insults that can
negatively impact the function of both growing
and mature brain tissue.Lead, , glutamate,
ethanol (drinking alcohol), botulinum toxin
(e.g., Botox), tetanus toxin, nitric oxide and
tetrodotoxin are typical examples of neurotox-
ins [23].

C) Irritants poisons: They mostly cause
inflammation at the point of contact, particu-
larly in the skin, gastrointestinal system, and
respiratory tract [24]. A poison is categorized
as one that affects a system the most when it
causes death as a result of a systemic impact,
such as a heart poison, brain poison, or spinal
poison. The inorganic toxin arsenic is a hefty
metallic irritation. Due to its insoluble nature
in water and inability to be absorbed by the
digestive system, metallic arsenic is not harm-
ful. Arsenic trioxide, often known as sankhyal
or somalkar, is toxic. Arsenobetaine and arsen-
ocholine are two organic arsenic non-toxic
forms that are typically present in food that
humans frequently ingest [25]. Cod, haddock,
and shellfish contain them.

nervous system, particularly the brain, can be
proved by the use of proper and sensitive
procedures, even if many substances have
obvious effects elsewhere. The circulatory
system, the blood and hematopoietic system,
visceral organs such the liver, kidney, and lung,
and the skin follow in order of frequency of
involvement in systemic toxicity. The least
often targeted tissues for systemic effects
include muscle and bone. The frequency of
tissue reactions when drugs have a localized
effect primarily depends on the portal of
entrance (skin, gastrointestinal tract, respirato-
ry tract) [36].

Reversible versus Irreversible Toxic
Effects
Chemical toxicity can have both reversible and
irreversible consequences. The tissue's capaci-
ty to regenerate will play a significant role in
determining whether a chemical insult to a
tissue results in reversible or irreversible
damage. Therefore, whereas most injuries to
the central nervous system are mostly irrevers-
ible due to the differentiated cells of the central
nervous system being unable to divide and be
replaced, most injuries to a tissue like the liver,
which has a high capacity for regeneration, are
reversible. Chemicals can cause cancer and
permanent harmful consequences [37].

4. Conclusion

By analyzing the medical and legal elements of
a drug's harmful effects on organisms, forensic
toxicology uses chemical and analytical tools
to help establish the facts in forensic investiga-
tions. In situations of fatal poisoning and those
that may be related to criminal conduct, foren-
sic practise is essential. Poisons are typically
found in murder, suicide, or accident

5. Robertson, B., Vignaux, G. A., &
Berger, C. E. (2016). Interpreting
evidence: evaluating forensic science in
the courtroom. John Wiley & Sons.

6. Koehler, J. J. (2017). Forensics or
fauxrensics? Ascertaining accuracy in
the forensic sciences. Ariz. St. LJ, 49,
1369.

7. Klaassen, C. D., Hardman, J. G.,
Limbird, L. E., Molinoff, P. B., Ruddon,
R. W., & Gilman, A. G. (2006). Princi-
ples of toxicology and treatment of
poisoning. Goodman and GilmanÕs The
Pharmacological Basis of Therapeutics,
Eleventh Edition., McGraw Hill,
Columbus, OH, USA, 1739-1752.

8. Shorter, E. (2008). Before Prozac: The
troubled history of mood disorders in
psychiatry. Oxford University Press.

9. Yuan, H., Ma, Q., Ye, L., & Piao, G.
(2016). The traditional medicine and
modern medicine from natural products.
Molecules, 21(5), 559.

10. Li, L., Liu, T., Fu, C., Tan, L., Meng, X.,
& Liu, H. (2015). Biodistribution, excre-
tion, and toxicity of mesoporous silica
nanoparticles after oral administration
depend on their shape. Nanomedicine:
Nanotechnology, Biology and Medicine,
11(8), 1915-1924.

11. Newton, D. E. (2007). Forensic chemis-
try. Infobase Publishing.

12. Sharma, A. K., Tjell, J. C., Sloth, J. J., &
Holm, P. E. (2014). Review of arsenic
contamination, exposure through water

and food and low cost mitigation options
for rural areas. Applied Geochemistry,
41, 11-33.

13. Spitz, W. U., & Diaz, F. J. (2020). Spitz
and Fisher's medicolegal investigation
of death: guidelines for the application
of pathology to crime investigation.
Charles C Thomas Publisher.

14. Pétillon, J. M., & Ducasse, S. (2012).
From flakes to grooves: A technical shift
in antlerworking during the last glacial
maximum in southwest France. Journal
of Human Evolution, 62(4), 435-465.

15. Sharma, M., Jabin, S., & Sharma, M.
PHARMACEUTICAL POLLUTION: A
GRAVE CONCERN!!.

16. Sikary, A. K. (2019). Homicidal poison-
ing in India: A short review. Journal of
forensic and legal medicine, 61, 13-16.

17. Van Landeghem, A. A., De Letter, E. A.,
Lambert, W. E., Van Peteghem, C. H., &
Piette, M. H. (2007). Aconitine involve-
ment in an unusual homicide case.
International journal of legal medicine,
121(3), 214-219.

18. Gunn, A. (2019). Essential forensic
biology. John Wiley & Sons.

19. Trestrail, J. H. (2007). Types of Poisons.
Criminal Poisoning: Investigational
Guide for Law Enforcement, Toxicolo-
gists, Forensic Scientists, and Attorneys,
29-46.

20. Bonvoisin, T., Utyasheva, L., Knipe, D.,
Gunnell, D., & Eddleston, M. (2020).

Suicide by pesticide poisoning in India:
a review of pesticide regulations and
their impact on suicide trends. BMC
public health, 20(1), 1-16.

21. Manzar, N., Saad, S. M. A., Manzar, B.,
& Fatima, S. S. (2010). The study of
etiological and demographic character-
istics of acute household accidental
poisoning in children-a consecutive case
series study from Pakistan. BMC pediat-
rics, 10(1), 1-6.

22. Chibishev, A., Pereska, Z., Chibisheva,
V., & Simonovska, N. (2012). Corrosive
poisonings in adults. Materia
socio-medica.

23. Hu, Y., Chen, J., Fan, H., Xie, P., & He,
J. (2016). A review of neurotoxicity of
microcystins. Environmental science
and pollution research, 23(8),
7211-7219.

24. Waserman, S., & Watson, W. (2011).
Food allergy. Allergy, Asthma & Clini-
cal Immunology, 7(1), 1-7.

25. Borak, J., & Hosgood, H. D. (2007).
Seafood arsenic: implications for human
risk assessment. Regulatory Toxicology
and Pharmacology, 47(2), 204-212.

26. Pandey, G., & Madhuri, S. (2014).
Heavy metals causing toxicity in
animals and fishes. Research Journal of
Animal, Veterinary and Fishery Scienc-
es, 2(2), 17-23.

27. Stejskal, V., Vendl, T., Aulicky, R., &
Athanassiou, C. (2021). Synthetic and

natural insecticides: Gas, liquid, gel and
solid formulations for stored-product
and food-industry pest control. Insects,
12(7), 590.

28. Francois, M. R., & Stephen, F. (2015).
Phosphorus Compounds. In Hamilton &
Hardy's Industrial Toxicology (pp.
383-390). Hoboken, New Jersey: John
Wiley & Sons, Inc..

29. Kaushik, R. D. (2021). Methyl bromide:
Risk assessment, environmental, and
health hazard. In Hazardous Gases (pp.
239-250). Academic Press.

30. Thompson, J. P., & Marrs, T. C. (2012).
Hydroxocobalamin in cyanide poison-
ing. Clinical Toxicology, 50(10),
875-885.

31. Dash, R. R., Gaur, A., & Balomajumder,
C. (2009). Cyanide in industrial waste-
waters and its removal: a review on
biotreatment. Journal of hazardous
materials, 163(1), 1-11.

32. Mishra, A. (2020). Forensic Chemistry
and Toxicology. In Medical Toxicology.
IntechOpen.

33. Donovan, M. D. (2009). Effect of route
of administration and distribution on
drug action. In Modern Pharmaceutics
Volume 1 (pp. 173-198). CRC Press.

34. Boey, A., & Ho, H. K. (2020). All roads
lead to the liver: metal nanoparticles and
their implications for liver health. Small,
16(21), 2000153.

35. Jett, D. A., Sibrizzi, C. A., Blain, R. B.,

C) Cyanides
The majority of cases of severe or deadly
cyanide poisoning involve the suicide intake of
cyanide salts. A very poisonous volatile liquid,
hydrogen cyanide. When cyanide salts react
with acids or are formed in the stomach after
oral consumption, hydrogen cyanide fumes are
released [30]. Although HCN has a distinctive
almond-like odour, up to 50% of people cannot
detect it. Even while this might have been
connected to air flow ventilation systems in
post-mortem rooms, it was surprising that it
was not a distinguishing feature during autopsy
of a significant number of cyanide suicide
fatalities. The industrial applications of potas-
sium and sodium cyanide as soluble salts of
cyanide include electroplating, metal process-
ing, and laboratory reagents [31].

B. Organic poisons

a)Ethanol: A much of ethanol is toxic, so
avoid using it.

b. Other alcohols: Poisonous alcohols include
methyl and isopropyl.

Methanol, a substance used in the chemical
and polish industries as well as clandestine
alcoholic beverages, may be fatal when
consumed.

c. Phenol: Carboxylic acid or phenol may be
toxic. The main purpose of it is as a disinfect-
ant .

d. Other substances: Poisonous industrial
chemicals include benzene, chloral hydrate,
chlorinated hydrocarbons, and others. Chloral
hydrate might be present in illegal alcoholic

beverages in a number of poisoning instances
[32].

Route & Site of Exposure
When administered intravenously, toxic
substances often have the most impact and the
fastest reaction. For alternative routes, inhala-
tion, intraperitoneal, sucutaneous, intramuscu-
lar, intradermal, oral, and topical would rough-
ly be listed in decreasing order of efficacy [33].
Additionally, the method of delivery might
affect an agent's toxicity. For instance, it would
be reasonable to anticipate that a substance that
is detoxified in the liver would be less hazard-
ous when administered orally through the
portal circulation than systemically (inhala-
tion) [34].

Duration & Frequency of Exposure
The toxic effects brought on by a single expo-
sure to multiple substances differ significantly
from those brought on by repeated exposure.
For instance, benzene's major acute toxic
symptom is central nervous system depression,
but prolonged exposure can cause leukaemia.
Acute exposure to quickly absorbed substances
is likely to result in immediate toxicity, but it is
also possible for acute exposure to result in
delayed toxicity that may or may not be
comparable to the toxic consequences of
chronic exposure. In contrast, repeated admin-
istration of a hazardous agent may result in
certain short-term (acute) side effects in
addition to the agent's long-term, low-level, or
chronic effects [35].

Local versus Systemic Toxicity
The central nervous system is the target organ
of toxicity that is most commonly engaged in
systemic toxicity. Damage to the central

Hartman, P. A., Lein, P. J., Taylor, K. W.,
& Rooney, A. A. (2020). A national
toxicology program systematic review
of the evidence for long-term effects
after acute exposure to sarin nerve agent.
Critical reviews in toxicology, 50(6),
474-490.

36. El-Boghdadly, K., Pawa, A., & Chin, K.
J. (2018). Local anesthetic systemic
toxicity: current perspectives. Local and
regional anesthesia, 11, 35.

37. Grandin, E. W., Ky, B., Cornell, R. F.,
Carver, J., & Lenihan, D. J. (2015).
Patterns of cardiac toxicity associated
with irreversible proteasome inhibition
in the treatment of multiple myeloma.
Journal of cardiac failure, 21(2),
138-144.

Poisons are also Categorized According
to their Characteristics:

A) Inorganic Poisons
i) Metallic Poisoning
After exposure, microscopic metal molecules
build up in your body and cause heavy metal

poisoning. Without treatment, heavy metals
can produce symptoms that are potentially
fatal because they adhere to your cells and stop
them from functioning.Your body can become
poisonous to a variety of metals [26]. The most
prevalent poisonous metals are:

Ii) Non Metallic Poisons

A) Phosphine and phosphides
A variety of industrial operations employ
phosphonate, a highly poisonous colourless
gas with a pungent garlic or fishy odour. It is
also produced when phosphides are exposed to
moisture.[27] In underdeveloped nations,
aluminium phosphide is widely utilized as a
cheap and efficient grain fumigant and rodenti-
cide [28].

B) Bromide
The colourless gas methyl bromide has histori-
cally been employed as a refrigerant and in fire
extinguishers, but it is most frequently utilized
as an insecticidal fumigant for grain storage

and soil. Methyl bromide is a metabolite that
produces the bromide ion and is linked to
unintentional poisoning, especially in work
environments [29]. By passive diffusion, the
bromide ion is quickly absorbed from the
stomach and proximal small intestines.
Bromide ions are mostly found in extracellular
fluid, where they have similar properties to
chloride ions. The kidney is the most signifi-
cant organ for elimination. Their half-life of
elimination is relatively lengthy, lasting around
10 days after an acute dose or many weeks
after stopping a long-term consumption,
especially in situations of bromide intoxica-
tion.

Forensic Analysis
The use of scientific knowledge that is based
on legal issues is known as forensic science
[5]. In order to determine what happened,
when it happened, and who was responsible,
forensic science primarily examines biological
and physical evidence. To attain accuracy and
precision, forensic scientific proficiency is
crucial [6].

2. Forensic Toxicology

The study of poisons' and drugs' detrimental
effects on living things is known as toxicology
[7]. It include the investigation of the signs,
causes, effects, and methods of handling
certain toxins and medications. If the use of
medications and poisons results in death in
dubious circumstances, it becomes rhetorical
pharmacological medicine [8].

The field of medicine may include pharmaco-
logical medicine as a sub-field. The study of
medicine includes all interactions between
drugs and other chemicals on living things [9].
Drug administration, body absorption, activi-
ties and interactions, metabolism, and excre-
tion are all aspects of medicine [10].

Fig: Stages of forensic toxicology

3. History of Forensic Chemistry

Rhetorical chemistry advancements started to
become apparent by the middle of the 19th
century. Blood tests were developed at this

time, the Marsh test for arsenic was created in
1832, and experiments on bullet "fingerprint-
ing" were conducted in the 1980s. Christian
Friedrich Schönbein (1799–1868), a
German–Swiss scientist, developed the first
accurate method for differentiating human
blood in 1863 [11]. For more than a century
and a half, arsenic has been widely used as a
toxin. Its excellence goes back to the seventh
century. During the 16th century, the Arab
philosopher Abu Musa Jabir Ibn Hayyan
(about 721-ca. 815), also known as Geber,
found the process for transforming the grey,
metallic-looking elemental arsenic ,an elemen-
tal chemical compound (As2O3; a material)
into (White, flavourless, and odourless
powder). Arsenic may just be an extra chemi-
cal in person's food or beverage without raising
suspicion [12]. Over the following sixty years,
attempts to employ bullet "fingerprinting" in
criminal investigations were few [13]. But by
the 1890s, a number of events spurred renewed
interest in the method as a means of identifying
possible offenders. Of those aspects, the devel-
opment of the replacement method known as
"grooving" for making gun barrels was
perhaps the most crucial. The process of
grooving involves carving spiral grooves into
the inner surface of tubing. When a bullet
travels through the barrel, the grooves allow it
to spin; this motion prevents the bullet from
tipping over after it exits the tube. Different
grooving techniques have been employed by
numerous gun makers [14].

Poisoning
It is referred to as the harmful consequence of
a poison or harmful chemical agent. It causes
the emergence of negative reactions to danger-
ous substances or chemicals [15]. Basically, it

1. Introduction

 The word "forensic" comes from the
Latin word "forensis," which means "public,"
"to the prospect and discussion"[1]. Legal
concerns can be resolved in a variety of ways
thanks to rhetorical science. Rhetorical
science, which includes a variety of disciplines
such as rhetorical chemistry, rhetorical social
science, rhetorical biology, rhetorical medi-
cine, rhetorical engineering, rhetorical material
sciences, machine rhetorical, and others, is
generally used to settle legal disputes, fairly
enforce criminal and civil laws, and protect the

public. A broad phrase that covers most of the
duties performed by the law laboratory is
forensic chemistry[2]. Trace analysis and
medicine are techniques employed in the field
of rhetorical chemistry. Analytical chemistry
that is applied is forensic chemistry. Rhetorical
chemistry adds comparison study to the assign-
ment whereas analytical chemistry covers both
quantitative and qualitative chemical analysis
[3]. Similarly, spectrometry can quickly deter-
mine whether a sample is made of nylon or
polythene. Therefore, analytical chemistry
offers the quantitative and qualitative data
needed to respond to rhetorical questions [4].

1. Introduction

 Prior to then, malware Development
served as a showcase for malware coders.
Malware analysts have used debuggers to run a
malware program's instructions one by one,
introducing modifications to memory spaces,
settings as well as variable values. Debuggers
are the most commonly used reverse engineer-
ing tools, such as Interactive Disassembler
(IDA), x64dbg, and OllyDBG. If debugging is
successful, it helps to understand malware
behavior and its capabilities. This is something

malware developers would like to avoid. That
is why they must implement anti-debugging
techniques. Anti-debugging techniques[3] can
be used to merely detect the presence of a
debugger, deactivate it, lose control of it, or
even take advantage of a flaw in the debugger.
Disabling or avoiding debugger checks can be
done generally and specifically. However, you
can exploit this vulnerability against specific
debuggers. Furthermore, The Supervisory
Control and Data Acquisition (SCADA)[4]
system has a vulnerability, according to the
Trend Micro report "Unseen Threats, Immi-
nent losses,” which is the part of industrial

manually. The fs segment register can access
the Process Environment Block (PEB) at fs:
[30]. On an x86 [8] computer, this register
corresponds to a Thread Information Block
(TIB).There is also a flag below the Process
Environment Block (PEB) that indicates
whether the first memory space of the process
was created in debug mode. Provide an offset
of 0x18 in the Process Environment Bloc
(PEB). So, here I break down the anti-debug-
ging techniques into two categories: static
anti-debugging and dynamic anti-debugging
[9], as seen in the Table 1 below.

Table 1. Static Vs Dynamic Techniques
Difference

In our research we will discuss we will discuss
some of the main anti-debugging techniques
and how a reverse engineer can be able to
identify them easily for example in this paper
we will discuss about the IsDebuggerPresent,
TimeChecks, NtQueryInformationProcess,
NtSetInformationThread, SwitchDesktops,
SeDebugPrivilege, ParentProcess, Debugger-
Window, DeviceDrivers etc.

Anti-Debugging Techniques Mechanism:
Anti-debugging[10] is the implementation of

control systems (ICS)[5]. In addition, In many
situations, knowing how to apply anti-debug-
ging techniques to malicious code to prevent it
from being tracked down and evaluated is also
helpful. One of the main tools used by malware
analysts and reverse engineers is the debugger.
What is a debugger? A debugger is software
that is used to evaluate and control the flow of
execution of other executables or software. By
using a debugger, we can execute each instruc-
tion step by step and can note down the chang-
es that can be displayed on the stack, memory
dumps, registers, etc. Most packers use these
techniques to determine whether the system is
running a debugger or if a process is being
debugged. These debugger detection meth-
ods[6] include checks that are relatively basic
all the way up to ones that are applicable to
native Application Programming Interfaces
(APIs) and kernel objects[7].This section
discusses how anti-debugging techniques
work. Each process's user space contains a data
structure called a Process Environment Block
(PEB), which holds information about the
related process. Each process's user space
contains a data structure called a Process
Environment Block (PEB), which holds infor-
mation about the related process. It is intended
to access Windows API (WinAPI)It is intended
to access Windows API (WinAPI) but access is
not restricted by this. Process Environment
Block (PEB) can be accessed directly from
memory. Checking the value of the Process
Environment Block (PEB) structure that has
been debugged is a relatively straightforward
implementation and technique. As we know
that there are so many Applications Program-
mable Interfaces (APIs) which are documented
and undocumented. For example, IsDebugger-
Present, which we will discuss later in this
paper. To enhance, we can also check the APIs

If the process can open the CSRSS.EXE
process, then SeDebugPrivilege is active when
the process is accessed.

Token pointing to the process being debugged.
The test is valid for the following reasons: The
Process Security Descriptor CSRSS.EXE
allows the system access to the process.

However, if the process has SeDebugPrivilege
privilege, other processes have independent
access to the Security Descriptor. This permis-
sion is only granted to administrative groups
by default, as we can see in Figure 12.

Figure 12 Assembly Code of SeDebugPrivi-
lege()

This control uses ntdll! The CSRSS.exe
GetProcessId() API gets the Process ID (PID)
 from CSRSS.EXE. You can get it manually by
looking at the Process ID CSRSS.EXE
processes. If OpenProcess() succeeds, SeDe-
bugPrivilege is activated, indicating that the
process is currently running and debugging,
too.

Solution:
The ntdll breakpoint can be hit by setting a
breakpoint as a solution. Returns from
NtOpenProcess(). If PID passed by
CSRSS.exe is CSRSS.exe, set the EX-value to
0xC0000022 (STATUS_ACCESS_DENIED).

Solution:
One of the solutions is to identify where the
time checks are and try to avoid stepping into
them. and the code between these time checks.
Reverse Engineers can place a breakpoint
before that delta and execute instead of steps
until a breakpoint is reached or a breakpoint is
reached. We can also set a breakpoint in
GetTickCount() to specify where to call it or to
change its return value. Mitigations During
Debugging: just fill time checks with NOPs
and set the result of these checks to the appro-
priate value. For anti-debugging solution
development: there is no great need to do
anything with it, as time checks are not very
reliable, but you can still hook timing functions
and accelerate the time between calls.

Mitigations:
• During Debugging, just fill time checks

with NOPs and set the result of these
checks to the appropriate value.

• For anti-debugging solution develop-
ment: there is no great need to do
anything with it, as time checks are not
very reliable, but you can still hook
timing functions and accelerate the time
between calls.

7. SeDebugPrivilege:

By default, the SeDebugPrivilege permission
is disabled for the process access token. When
a debugger like x32dbg, OllyDBG, etc. loads a
process, SeDebugPrivilege permission is
enabled. This is because these debuggers keep
trying . SeDebugPrivilege permissions are
inherited.

Parent Process:
Users launch apps by clicking on the executa-
ble's icon that the shell process displays
(Explorer.exe).By clicking on the executable's
icon that the shell process displays, users can
launch apps (Explorer.exe).Due to this,Explor-
er.exe becomes the parent process of the active
process. This will show that the program was
created by someone else and suggest that you
can debug it.

1. Using Process32First/Next(), it will list
every process and note explorer.exe.
PROCESS32.szExeFile and the PRO-
CESSENTRY32.th32parentProcessID
are the two files that provide the process
ID and the parent process ID of the
current process, respectively.

2. The target is being debugged if the
Process ID (PID) of the parent process
differs from the Process ID (PID) of the
explorer.exe.

Solution:
We need to patch the element of
Kernel32!Process32NextW() that contains the
code that performs a return after setting the
value of EAX to 0.

8. Debugger Window:

The presence of the debug window is a flag
that the debugger is running system[13].
Because the debugger creates windows with
special class names (OllyDBG for OLLYDBG
and WinDbgFrameClass for WinDbg), user32
can easily identify these debug windows!
FindWindow`() or User32! findWindowEx().

Solution:
One solution is to set breakpoints in FindWin-
dow() and FindWindowEx() When the break-
point is hit, modify the value of the
lpClassName string parameter to prevent the
API from functioning. Setting the return value
to NULL is another option.

9. Debugger Process:

List all the processes on the system and see
whether the process name matches the name of
the debugger to find out if it is currently
running (for example, OLLYDBG.EXE, wind-
bg.exe, etc.).Simple to implement; just use
Process32First / Next() after confirming that
the image name corresponds to the name of the
debugger.

Sometimes these methods also use Kernel32
ReadProcessMemory() to read process
memory and then look for debugger-related
strings such as "x64dbg", "IDA", "OllyDBG",
etc. to reverse engineer the debugger. to imple-
ment. After getting the debugger. The malware
will stop his execution and silently exit or
terminates the process.

Solution:
Another solution is to check the main process,
including patching the kernel 32 patch!
Process32NextW() always fails and prevents
the developer from enumerating the process.

10. Device Drivers

An old technique is to verify that the debugger
is running in a Kernel Mode in the system and
try to, access device drivers. This technique is
very simple and consists of simply making a
call to the against well-known device names

byte value 0xCC (INT3 / Breakpoint
Interrupt)[17]. Finding the byte 0xCC in the
API code and protector code will help you
locate software breakpoints as seen by the
example of assembly code in Figure 13.

Figure 13 Assembly Code of Software
Breakpoint Detection

C/C++ Code:
As we can C/C++ code in the Figure 14.

Figure 14. C/C++ code of Software Break-
point Detection

Solution:
Hardware breakpoints can be reverse
engineered if software breakpoints are identi-
fied. If you need to set a breakpoint in the API
code, and when the packer tries to find a break-
point in the API code, reverse engineering the
UNICODE API version allows for the setting
of breakpoints. That eventually calls the ANSI
version, such as LoadLibraryExW LoadLibrar-

used by kernel-mode debuggers, such as
SoftICE, using Kernel32!CreateFile().Some
versions of Soft-ICE also add numbers to the
device name, making it to check. The reversing
forum's suggested technique is to brute force
the corresponding digits until the right device
name is discovered[14].The new packer also
uses device driver detection techniques to
detect system monitors such as “Process Moni-
tor” etc.

Solution:
Establishing a breakpoint in kernel32 is the
simple fix. When the breakpoint is reached,
CreateFileFileW() should either handle the
FileName parameter or alter its return value to
INVALID HANDLE VALUE (0xFFFFFFFF).

Process Memory:
A process can check or interact with its own
memory for the presence of a debugger. This
section includes anti-hitch methods[15] such
as process memory and thread context check-
ing, breakpoint DETECTION, PATCHING function
and debugging functions.

11. Breakpoint and Patching
Detection:

To verify if our code has any software break-
points, we may still inspect the process
memory, and we can also check the CPU
debug registers to see if any hardware break-
points have been set.

12. Software Breakpoints
Detection:

Software breakpoints are defined as break-
points that are created by altering the code at
the target location and replacing it with the

Of course, as with all malware analysis, the
best way to learn how to stop it by using
debugging techniques by continuously testing
malware. Malware developers are constantly
coming up with new techniques to evade
debuggers and keep security researchers like
you on their toes.

17. References:

[1] V. Bhardwaj, V. Kukreja, C. Sharma, I.
Kansal, and R. Popali, “Reverse
Engineering-A Method for Analyzing
Malicious Code Behavior,” in 2021
International Conference on Advances
in Computing, Communication, and
Control (ICAC3), Dec. 2021, pp. 1–5.
doi: 10.1109/ICAC353642.2021.
9697150.

[2] M. N. Gagnon, S. Taylor, and A. K.
Ghosh, “Software Protection through
Anti-Debugging,” IEEE Security &
Privacy Magazine, vol. 5, no. 3, pp.
82–84, May 2007, doi: 10.1109/M-
SP.2007.71.

[3] J.-W. Kim, J. Bang, Y.-S. Moon, and
M.-J. Choi, “Disabling Anti-Debugging
Techniques for Unpacking System in
User-level Debugger,” in 2019 Interna-
tional Conference on Information and
Communication Technology Conver-
gence (ICTC), Oct. 2019, pp. 954–959.
doi: 10.1109/ICTC46691.2019.
8939719.

[4] T. Akhtar, B. B. Gupta, and S. Yamagu-
chi, “Malware propagation effects on
SCADA system and smart power grid,”
in 2018 IEEE International Conference
on Consumer Electronics (ICCE), Jan.

looking for breakpoints in the process memory,
we can check to see if kernel32IsDebuggerPre-
sent() has been altered[20].The first few bytes
of this function can be read and compared to
the same function's bytes from other processes.
Windows libraries are loaded at the same base
address throughout the process, even if the
Address Space Layout Randomization (ASLR)
feature is enabled. The base address only
changes across reboots but remains the same
for the duration of the session.

Mitigations:
• During Debugging: Enter the function

that conducts the Step-Over check and
run it till the end(Ctrl + F9).

• Finding the specific check and either
path it with NOPs or setting the return to
a value that permits the application to
keep running are the best ways to
mitigate all "memory" techniques,
including anti-step over.

Conclusion:
To defend itself against reverse engineering
analysis, the malware employs anti-debugging
techniques. Debug analysis can be avoided by
anti-debugging techniques. Reverse engineers
need advanced debuggers and knowledge to
analyze malware using anti-debugging
techniques. By applying common sense and
slowly debugging the process, it is possible to
identify the majority of anti-debugging
techniques. For example, if you see that the
code is terminating too rapidly in a conditional
jump, which could mean preventing debugging
technical. The most widely used anti-debug-
ging methods involve fs access: [30h] by using
a Windows API or performing a time check.

ison of Machine Learning Models in Malware
Packing Detection,” in 2020 21st
Asia-Pacific Network Operations and
Management Symposium (APNOMS),
Sep. 2020, pp. 377–380. doi:
10 .23919 /APNOMS50412 .2020 .
9237007.

[16] R. R. Branco and G. N. Barbosa,
“Distributed malware analysis schedul-
ing,” in 2011 6th International Confer-
ence on Malicious and Unwanted
Software, Oct. 2011, pp. 34–41. doi:
10.1109/MALWARE.2011.6112324.

[17] K. Coogan, S. Debray, T. Kaochar, and
G. Townsend, “Automatic Static
Unpacking of Malware Binaries,” in
2009 16th Working Conference on
Reverse Engineering, 2009, pp.
167–176. doi: 10.1109/WCRE.2009.24.

[18] G. Jeong, E. Choo, J. Lee, M.
Bat-Erdene, and H. Lee, “Generic
unpacking using entropy analysis,” in
2010 5th International Conference on
Malicious and Unwanted Software, Oct.
2010, pp. 98–105. doi: 10.1109/MAL-
WARE.2010.5665789.

[19] C. R. Hill, “A real-time microprocessor
debugging technique,” ACM SIGPLAN
Notices, vol. 18, no. 8, pp. 145–148,
Aug. 1983, doi: 10.1145/1006142.
1006179.

[20] R. Sihwail, K. Omar, K. Zainol Ariffin,
and S. al Afghani, “Malware Detection
Approach Based on Artifacts in Memory
Image and Dynamic Analysis,” Applied
Sciences, vol. 9, no. 18, p. 3680, Sep.
2019, doi: 10.3390/app9183680.

yA or the native API corresponding to Load-
DLL to replace.

13. Hardware Breakpoints:

DR0, DR1, DR2, and DR3 are debug registers
that can be obtained from the thread context.
Debug registers 0-3 are used to store virtual
address of the so-called hardware breakpoints.
C/C++ Code:

As we can see C/C++ code in the figure 15.

Figure 15 C/C++ code of Hardware
Breakpoints

14. Memory Checks:

This section includes methods for directly
inspecting or modifying a process's virtual
memory in order to spot and stop debug-
ging[18].

15. Nt Query Virtual Memory ():

The memory page of the process in which the
code is located is shared by all processes prior
to the page being written. Then the OS creates
a replica of this page and allocates it to the
process's virtual memory[19], so the page is no
longer "shared". Now we can see how to
declare NTDLL, as we can see in figure 16.

NTDLL declarations:

Figure 16 NTDLL Deceleration of
NtQueryVirtualMemory()

C/C++ Code:
As we can see the C/C++ code in the Figure
17.

Figure 17 C/C++ Code for Hardware
Breakpoints

16. Detecting A function Patch:

Calling kernel32 is a common approach to find
a debugger. IsDebuggerPresent(). By altering
the outcome in the EAX register or hacking the
kernel32, you may easily get around this
check! IsDebuggerPresent(). Instead of

2018, pp. 1–6. doi: 10.1109/ICCE.2018.
8326281.

[5] G. Wang, L. Zhuang, T. Liu, S. Li, S.
Yang, and J. Lan, “Formal analysis and
verification of industrial control system
security via timed automata,” in 2020
International Conference on Internet of
Things and Intelligent Applications
(ITIA), Nov. 2020, pp. 1–5. doi:
10.1109/ITIA50152.2020.9312289.

[6] A. J. Smith, R. F. Mills, A. R. Bryant, G.
L. Peterson, and M. R. Grimaila,
“REDIR: Automated static detection of
obfuscated anti-debugging techniques,”
in 2014 International Conference on
Collaboration Technologies and
Systems (CTS), May 2014, pp. 173–180.
doi: 10.1109/CTS.2014.6867561.

[7] J. Raber, “Stealthy Profiling and Debug-
ging of Malware Trampolining from
User to Kernel Space,” in 2011 18th
Working Conference on Reverse
Engineering, Oct. 2011, pp. 431–432.
doi: 10.1109/WCRE.2011.62.

[8] J. G. Alcalde, G. Chua, I. M. Demabildo,
M. A. Ong, and R. L. Uy, “CALVIS32:
Customizable assembly language
visualizer and simulator for intel x86-32
architecture,” in 2016 IEEE Region 10
Conference (TENCON), Nov. 2016, pp.
214–217. doi: 10.1109/TEN-
CON.2016.7847992.

[9] Chan Lee Yee, Lee Ling Chuan, M.
Ismail, and N. Zainal, “A static and
dynamic visual debugger for malware
analysis,” in 2012 18th Asia-Pacific
Conference on Communications

(APCC), Oct. 2012, pp. 765–769. doi:
10.1109/APCC.2012.6388211.

[10] Xu Chen, J. Andersen, Z. M. Mao, M.
Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and
anti-debugging behavior in modern
malware,” in 2008 IEEE International
Conference on Dependable Systems and
Networks With FTCS and DCC (DSN),
2008, pp. 177–186. doi: 10.1109/
DSN.2008.4630086.

[11] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[12] P. Xie, X. Lu, Y. Wang, J. Su, and M. Li,
“An Automatic Approach to Detect
Anti-debugging in Malware Analysis,”
2013, pp. 436–442. doi: 10.1007/
978-3-642-35795-4_55.

[13] A. Mylonas and D. Gritzalis, “Practical
Malware Analysis: The Hands-On
Guide to Dissecting Malicious
Software,” Comput Secur, vol. 31, no. 6,
pp. 802–803, Sep. 2012, doi: 10.1016/j.-
cose.2012.05.004.

[14] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[15] J.-W. Kim, J. Namgung, Y.-S. Moon,
and M.-J. Choi, “Experimental Compar-

one or more techniques in computer code that
make it difficult to reverse engineer or debug
the target process. These techniques are ways
for a program to detect whether it is running
under the control of a debugger[11]. If a
debugger is detected, the malware will execute
arbitrary code, usually code to terminate. The
anti-debugging process slows down the
reverse engineering process but doesn't stop it.

2. Is Debugger Present:

The easiest debugger detection technique is to
check the BeingDebugged flag in the Process
Environment Block (PEB). The kernel32IsDe-
buggerPresent() function was introduced in
Windows 95, and the Application Programma-
ble Interface (API) checks the value of this flag
to identify the process whether it is in the
user-mode debugger. This code (same 32-bit or
64-bit Windows environment) can be used for
verification to check the 32-bit or 64-bit
Windows environment. As we can see the
assembly code of the IsDebuggerPresent() in
Figure 1.

Figure 1. Assembly code of IsDebuggerPre-
sent()

C/C++ Code:
As we can see in the example if IsDebugger-
Present() in Figure 2.

Figure 2. C/C++ code of IsDebuggerPre-
sent()

Solution:
This technique can be easily bypassed by
manually patching the Process Environment
Block (PEB). BeingDebugged flag with the
value 0x00 in the bytes.

3. Nt Query Information Process
() / Check Remote Debugger
Present ()

CheckRemoteDebuggerPresent() is another a
debugger should be attached to a process? Use
this Check Remote DebuggerPresent() to
decide. The API calls ntdll!ProcessDebugPort
inside the kernel A value that is not zero in the
DebugPort field tells that the process is being
debugged in user mode by the debugger. If so,
ProcessInformation will be set to
0xFFFFFFFF, otherwise the value of
ProcessInformation will be 0x0.The Check-
RemoteDebuggerPresent()[12] function in
Kernel32 is functional.On either the 32-bit or
64-bit version of Windows, the check can be
made by using this 32-bit code to look at the
32-bit window environment. The Function The
function CheckRemoteDebuggerPresent()
takes 2 parameters; the first parameter is the
(PID), and the A pointer to a Boolean variable
serves as the second parameter. That will hold
TRUE if the process is being debugged. As we
can see from the C/C++ code in Figure 3.

Figure 3 C/C++ Code for CheckRemoteDe-
bugger

Ntdll! NtQueryInformationProcess() has 5
parameters. To detect the debugger, the

to hide threads from the debugger. It can also be
done with the help of a non-documented value,
which is not documented but can be used.
THREAD_INFORMATION_CLASS::Threa-
dHideFromDebugger (0x11). When a thread is
hidden in the debugger, it will not be informed
of anything pertaining to that thread not be
informed of anything pertaining to that thread.
The thread is also capable of anti-debugging
methods, such as examining debug flags, code
checksums, etc. If there are hidden breakpoints
in the thread, If we try to keep the main thread
hidden from the debugger, either the process
will crash or the debugger will gets stuck. An
example of calling the NtSetInformation-
Thread would be like this, as we can see in
Figure 7.

Figure 7. Assembly code of NtSetInforma-
tionThread()

C/C++ Code:
As we can see, C/C++ code in Figure 8.

Figure 8. C/C++ code of NtSetInformation-
Thread()

Solution:
The breakpoint is set to ntdll!NtSetInforma-
tionThread(), and when the breakpoint is hit,
reverse engineers can modify the EIP, to
prevent the API calls from reaching the kernel
and being called from other functions.

ProcessInformation class is set to as
ProcessDebugPort as we can see C/C++ code
in the Figure 4.

Figure 4. C/C++ Code for NtQueryInfor-
mationProcess()

This example shows how the call to the Check-
RemoteDebuggerPresent() and To see whether
the current process is being debugged, utilize
the NtQueryInformationProcess function. as
we can see in Figure 5 and Figure 6.

Figure 5 Assembly code of CheckRemot-
eDebuggerPresent()

Figure 6. Assembly code of NtQueryInfor-
mationProcess()

Solution:
One solution is to set NtQueryInformationPro-
cess(return)'s value is a breakpoint. ProcessIn-
formation is patched to a DWORD value of 0
when the breakpoint is reached of 0.

4. Nt SetInformation Thread:

NtSetInformationThread()[13] is usually used
to set the priority of a thread. It can also be used

Study of the Anti-Debugging Techniques and their Mitigations

32 LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

5. SwitchDesktop()

Platforms based on Windows NT allow for
multiple desktop sessions. The windows of the
previous active desktop can be hidden by
choosing a different active desktop, but there is
no visible way to return to the previous
desktop. the mouse and keyboard events won't
be sent to the debugger from the debugger's
desktop.[13] , they no longer divulge their
source, either. Debugging could become
impossible as a result. Both the 32-bit and
64-bit versions of Windows can be used to
make this call. Here is an example of a 32-bit
version of Windows as we can see in Figure 9.

Figure 9. Assembly code of SwitchDesk-
top()

C/C++ Code:
As we can see the C/C++ code in the Figure 10.

Figure 10 C/C++ code of SwitchDesktop()

6. Execution Time / Timing
Checks

When a reverse engineer tries to debug a

process and uses a single step in code, there is
a significant delay between the execution of
the individual’s instructions[13]. The process
is running under a debugger if the amount of
time required is excessive compared to a
typical execution. Here is a list of some
instructions that can be used to increase the
execution time of the instruction.

a. RDTSC (Read Time-Stamp Counter)

b. RDPMC (Read Performance-Monitor-
ing Counters)

c. GetLocalTime

d. GetSystemTime

e. GetTickCount

Now we will take an example of a timing
check.

As we can see in Figure 11.

Figure 11 Assembly Code of GetTick-
Count()

We check the synchronization using the
kernel32 GetTickCount() API or manually
verify that the SharedUserData structure's
TickCountLow and TickCountMultiplier
entries are always set to 0xc.Identifying these
timing techniques can be challenging,
especially when RDTSC is used as spam, when
other obscure techniques are used to mask
them.

situations. They are an essential part of the
silent weapon that kills people stealthily and
invisibly. The subject of the current research is
forensic chemistry and toxicology, which is
fully concerned with the introduction, classifi-
cation, effects, and influencing factors of
poisons, as well as their detection and testing.
The purpose of this article is to investigate how
they act and function after they enter the
human body.

5. References

1. Ibrahim, M. S., & Abdullah, M. (2010).
Forensic Accounting in Malaysia: Some
Insights from Practitioners. Asian
Journal of Accounting Perspectives,
3(1), 14-21.

2. Kloosterman, A., Mapes, A., Geradts,
Z., van Eijk, E., Koper, C., van den Berg,
J., ... & van Asten, A. (2015). The
interface between forensic science and
technology: how technology could cause
a paradigm shift in the role of forensic
institutes in the criminal justice system.
Philosophical Transactions of the Royal
Society B: Biological Sciences,
370(1674), 20140264.

3. Yaman, F. (2021). Examining students’
quality and perceptions of argumenta-
tive and summary writing within a
knowledge generation approach to
learning in an analytical chemistry
course. Chemistry Education Research
and Practice, 22(4), 985-1002.

4. Hibbert, D. B. (2007). Quality assurance
in the analytical chemistry laboratory.
Oxford University Press.

may be divided into three groups: homicidal,
suicidal, and accidental [16].

Homicidal Poisoning
The victim is frequently subjected to attempts
to "nurse" them back to health by poisoners
[17]. Serial poisoners typically enjoy the rush
of having control over the victim's life and
suffering, and poisoners frequently take
delight in seeing their victims suffer. Homicide
by poisoning perpetrators frequently work in
the healthcare or medical industries. The
substances that are most appealing to offenders
are those that are deadly in little doses. The
ideal poison for a homicide has no taste, is
undetectable, has no odour, and exhibits symp-
toms that are comparable to those of illnesses
that are found in nature [18]. Since current
scientific techniques and advancements have
made poison detection simpler, it has becom-
ing more and more challenging to find a poison
having all of these characteristics [19].

Sucidal Poisoning:
Self-poisoning, the non-violent way of suicide,
most frequently involves the use of medicine,
either over-the-counter (paracetamol) or
prescribed (such as antidepressants and
prescription analgesics), chemicals (pesti-
cides), or illegal narcotics [20].

Accidental poisoning
Accidental poisoning, which includes acciden-
tal drug overdose, occurs when a person
inadvertently poisons themself. Alcohol,
opioids (such as heroin or methadone),
sedatives, psychiatric pharmaceuticals (such as
antidepressants), antiepileptic, and anti-in-
flammatory medications are some of the
substances from which poisoning may result
[21].

Classification of poisons
Poisons are divided into two categories based
on how they affect the body and depending on
their chemical and physical characteristics.

Classification based upon the effect of
poison on the body:
A) Corrosive: When poisons come into
contact with tissues or organs, they become
corrosive, for example: a. Strong acids like
H2SO4,HCl, HNO3, etc. and strong alkalis
include NH4, Na/K hydroxides, etc [22].

B) Neurotoxins: Toxins known as neurotoxins
cause damage to nerve tissue. Exogenous
chemicals known as neurotoxins are a broad
category of neurological insults that can
negatively impact the function of both growing
and mature brain tissue.Lead, , glutamate,
ethanol (drinking alcohol), botulinum toxin
(e.g., Botox), tetanus toxin, nitric oxide and
tetrodotoxin are typical examples of neurotox-
ins [23].

C) Irritants poisons: They mostly cause
inflammation at the point of contact, particu-
larly in the skin, gastrointestinal system, and
respiratory tract [24]. A poison is categorized
as one that affects a system the most when it
causes death as a result of a systemic impact,
such as a heart poison, brain poison, or spinal
poison. The inorganic toxin arsenic is a hefty
metallic irritation. Due to its insoluble nature
in water and inability to be absorbed by the
digestive system, metallic arsenic is not harm-
ful. Arsenic trioxide, often known as sankhyal
or somalkar, is toxic. Arsenobetaine and arsen-
ocholine are two organic arsenic non-toxic
forms that are typically present in food that
humans frequently ingest [25]. Cod, haddock,
and shellfish contain them.

nervous system, particularly the brain, can be
proved by the use of proper and sensitive
procedures, even if many substances have
obvious effects elsewhere. The circulatory
system, the blood and hematopoietic system,
visceral organs such the liver, kidney, and lung,
and the skin follow in order of frequency of
involvement in systemic toxicity. The least
often targeted tissues for systemic effects
include muscle and bone. The frequency of
tissue reactions when drugs have a localized
effect primarily depends on the portal of
entrance (skin, gastrointestinal tract, respirato-
ry tract) [36].

Reversible versus Irreversible Toxic
Effects
Chemical toxicity can have both reversible and
irreversible consequences. The tissue's capaci-
ty to regenerate will play a significant role in
determining whether a chemical insult to a
tissue results in reversible or irreversible
damage. Therefore, whereas most injuries to
the central nervous system are mostly irrevers-
ible due to the differentiated cells of the central
nervous system being unable to divide and be
replaced, most injuries to a tissue like the liver,
which has a high capacity for regeneration, are
reversible. Chemicals can cause cancer and
permanent harmful consequences [37].

4. Conclusion

By analyzing the medical and legal elements of
a drug's harmful effects on organisms, forensic
toxicology uses chemical and analytical tools
to help establish the facts in forensic investiga-
tions. In situations of fatal poisoning and those
that may be related to criminal conduct, foren-
sic practise is essential. Poisons are typically
found in murder, suicide, or accident

5. Robertson, B., Vignaux, G. A., &
Berger, C. E. (2016). Interpreting
evidence: evaluating forensic science in
the courtroom. John Wiley & Sons.

6. Koehler, J. J. (2017). Forensics or
fauxrensics? Ascertaining accuracy in
the forensic sciences. Ariz. St. LJ, 49,
1369.

7. Klaassen, C. D., Hardman, J. G.,
Limbird, L. E., Molinoff, P. B., Ruddon,
R. W., & Gilman, A. G. (2006). Princi-
ples of toxicology and treatment of
poisoning. Goodman and GilmanÕs The
Pharmacological Basis of Therapeutics,
Eleventh Edition., McGraw Hill,
Columbus, OH, USA, 1739-1752.

8. Shorter, E. (2008). Before Prozac: The
troubled history of mood disorders in
psychiatry. Oxford University Press.

9. Yuan, H., Ma, Q., Ye, L., & Piao, G.
(2016). The traditional medicine and
modern medicine from natural products.
Molecules, 21(5), 559.

10. Li, L., Liu, T., Fu, C., Tan, L., Meng, X.,
& Liu, H. (2015). Biodistribution, excre-
tion, and toxicity of mesoporous silica
nanoparticles after oral administration
depend on their shape. Nanomedicine:
Nanotechnology, Biology and Medicine,
11(8), 1915-1924.

11. Newton, D. E. (2007). Forensic chemis-
try. Infobase Publishing.

12. Sharma, A. K., Tjell, J. C., Sloth, J. J., &
Holm, P. E. (2014). Review of arsenic
contamination, exposure through water

and food and low cost mitigation options
for rural areas. Applied Geochemistry,
41, 11-33.

13. Spitz, W. U., & Diaz, F. J. (2020). Spitz
and Fisher's medicolegal investigation
of death: guidelines for the application
of pathology to crime investigation.
Charles C Thomas Publisher.

14. Pétillon, J. M., & Ducasse, S. (2012).
From flakes to grooves: A technical shift
in antlerworking during the last glacial
maximum in southwest France. Journal
of Human Evolution, 62(4), 435-465.

15. Sharma, M., Jabin, S., & Sharma, M.
PHARMACEUTICAL POLLUTION: A
GRAVE CONCERN!!.

16. Sikary, A. K. (2019). Homicidal poison-
ing in India: A short review. Journal of
forensic and legal medicine, 61, 13-16.

17. Van Landeghem, A. A., De Letter, E. A.,
Lambert, W. E., Van Peteghem, C. H., &
Piette, M. H. (2007). Aconitine involve-
ment in an unusual homicide case.
International journal of legal medicine,
121(3), 214-219.

18. Gunn, A. (2019). Essential forensic
biology. John Wiley & Sons.

19. Trestrail, J. H. (2007). Types of Poisons.
Criminal Poisoning: Investigational
Guide for Law Enforcement, Toxicolo-
gists, Forensic Scientists, and Attorneys,
29-46.

20. Bonvoisin, T., Utyasheva, L., Knipe, D.,
Gunnell, D., & Eddleston, M. (2020).

Suicide by pesticide poisoning in India:
a review of pesticide regulations and
their impact on suicide trends. BMC
public health, 20(1), 1-16.

21. Manzar, N., Saad, S. M. A., Manzar, B.,
& Fatima, S. S. (2010). The study of
etiological and demographic character-
istics of acute household accidental
poisoning in children-a consecutive case
series study from Pakistan. BMC pediat-
rics, 10(1), 1-6.

22. Chibishev, A., Pereska, Z., Chibisheva,
V., & Simonovska, N. (2012). Corrosive
poisonings in adults. Materia
socio-medica.

23. Hu, Y., Chen, J., Fan, H., Xie, P., & He,
J. (2016). A review of neurotoxicity of
microcystins. Environmental science
and pollution research, 23(8),
7211-7219.

24. Waserman, S., & Watson, W. (2011).
Food allergy. Allergy, Asthma & Clini-
cal Immunology, 7(1), 1-7.

25. Borak, J., & Hosgood, H. D. (2007).
Seafood arsenic: implications for human
risk assessment. Regulatory Toxicology
and Pharmacology, 47(2), 204-212.

26. Pandey, G., & Madhuri, S. (2014).
Heavy metals causing toxicity in
animals and fishes. Research Journal of
Animal, Veterinary and Fishery Scienc-
es, 2(2), 17-23.

27. Stejskal, V., Vendl, T., Aulicky, R., &
Athanassiou, C. (2021). Synthetic and

natural insecticides: Gas, liquid, gel and
solid formulations for stored-product
and food-industry pest control. Insects,
12(7), 590.

28. Francois, M. R., & Stephen, F. (2015).
Phosphorus Compounds. In Hamilton &
Hardy's Industrial Toxicology (pp.
383-390). Hoboken, New Jersey: John
Wiley & Sons, Inc..

29. Kaushik, R. D. (2021). Methyl bromide:
Risk assessment, environmental, and
health hazard. In Hazardous Gases (pp.
239-250). Academic Press.

30. Thompson, J. P., & Marrs, T. C. (2012).
Hydroxocobalamin in cyanide poison-
ing. Clinical Toxicology, 50(10),
875-885.

31. Dash, R. R., Gaur, A., & Balomajumder,
C. (2009). Cyanide in industrial waste-
waters and its removal: a review on
biotreatment. Journal of hazardous
materials, 163(1), 1-11.

32. Mishra, A. (2020). Forensic Chemistry
and Toxicology. In Medical Toxicology.
IntechOpen.

33. Donovan, M. D. (2009). Effect of route
of administration and distribution on
drug action. In Modern Pharmaceutics
Volume 1 (pp. 173-198). CRC Press.

34. Boey, A., & Ho, H. K. (2020). All roads
lead to the liver: metal nanoparticles and
their implications for liver health. Small,
16(21), 2000153.

35. Jett, D. A., Sibrizzi, C. A., Blain, R. B.,

C) Cyanides
The majority of cases of severe or deadly
cyanide poisoning involve the suicide intake of
cyanide salts. A very poisonous volatile liquid,
hydrogen cyanide. When cyanide salts react
with acids or are formed in the stomach after
oral consumption, hydrogen cyanide fumes are
released [30]. Although HCN has a distinctive
almond-like odour, up to 50% of people cannot
detect it. Even while this might have been
connected to air flow ventilation systems in
post-mortem rooms, it was surprising that it
was not a distinguishing feature during autopsy
of a significant number of cyanide suicide
fatalities. The industrial applications of potas-
sium and sodium cyanide as soluble salts of
cyanide include electroplating, metal process-
ing, and laboratory reagents [31].

B. Organic poisons

a)Ethanol: A much of ethanol is toxic, so
avoid using it.

b. Other alcohols: Poisonous alcohols include
methyl and isopropyl.

Methanol, a substance used in the chemical
and polish industries as well as clandestine
alcoholic beverages, may be fatal when
consumed.

c. Phenol: Carboxylic acid or phenol may be
toxic. The main purpose of it is as a disinfect-
ant .

d. Other substances: Poisonous industrial
chemicals include benzene, chloral hydrate,
chlorinated hydrocarbons, and others. Chloral
hydrate might be present in illegal alcoholic

beverages in a number of poisoning instances
[32].

Route & Site of Exposure
When administered intravenously, toxic
substances often have the most impact and the
fastest reaction. For alternative routes, inhala-
tion, intraperitoneal, sucutaneous, intramuscu-
lar, intradermal, oral, and topical would rough-
ly be listed in decreasing order of efficacy [33].
Additionally, the method of delivery might
affect an agent's toxicity. For instance, it would
be reasonable to anticipate that a substance that
is detoxified in the liver would be less hazard-
ous when administered orally through the
portal circulation than systemically (inhala-
tion) [34].

Duration & Frequency of Exposure
The toxic effects brought on by a single expo-
sure to multiple substances differ significantly
from those brought on by repeated exposure.
For instance, benzene's major acute toxic
symptom is central nervous system depression,
but prolonged exposure can cause leukaemia.
Acute exposure to quickly absorbed substances
is likely to result in immediate toxicity, but it is
also possible for acute exposure to result in
delayed toxicity that may or may not be
comparable to the toxic consequences of
chronic exposure. In contrast, repeated admin-
istration of a hazardous agent may result in
certain short-term (acute) side effects in
addition to the agent's long-term, low-level, or
chronic effects [35].

Local versus Systemic Toxicity
The central nervous system is the target organ
of toxicity that is most commonly engaged in
systemic toxicity. Damage to the central

Hartman, P. A., Lein, P. J., Taylor, K. W.,
& Rooney, A. A. (2020). A national
toxicology program systematic review
of the evidence for long-term effects
after acute exposure to sarin nerve agent.
Critical reviews in toxicology, 50(6),
474-490.

36. El-Boghdadly, K., Pawa, A., & Chin, K.
J. (2018). Local anesthetic systemic
toxicity: current perspectives. Local and
regional anesthesia, 11, 35.

37. Grandin, E. W., Ky, B., Cornell, R. F.,
Carver, J., & Lenihan, D. J. (2015).
Patterns of cardiac toxicity associated
with irreversible proteasome inhibition
in the treatment of multiple myeloma.
Journal of cardiac failure, 21(2),
138-144.

Poisons are also Categorized According
to their Characteristics:

A) Inorganic Poisons
i) Metallic Poisoning
After exposure, microscopic metal molecules
build up in your body and cause heavy metal

poisoning. Without treatment, heavy metals
can produce symptoms that are potentially
fatal because they adhere to your cells and stop
them from functioning.Your body can become
poisonous to a variety of metals [26]. The most
prevalent poisonous metals are:

Ii) Non Metallic Poisons

A) Phosphine and phosphides
A variety of industrial operations employ
phosphonate, a highly poisonous colourless
gas with a pungent garlic or fishy odour. It is
also produced when phosphides are exposed to
moisture.[27] In underdeveloped nations,
aluminium phosphide is widely utilized as a
cheap and efficient grain fumigant and rodenti-
cide [28].

B) Bromide
The colourless gas methyl bromide has histori-
cally been employed as a refrigerant and in fire
extinguishers, but it is most frequently utilized
as an insecticidal fumigant for grain storage

and soil. Methyl bromide is a metabolite that
produces the bromide ion and is linked to
unintentional poisoning, especially in work
environments [29]. By passive diffusion, the
bromide ion is quickly absorbed from the
stomach and proximal small intestines.
Bromide ions are mostly found in extracellular
fluid, where they have similar properties to
chloride ions. The kidney is the most signifi-
cant organ for elimination. Their half-life of
elimination is relatively lengthy, lasting around
10 days after an acute dose or many weeks
after stopping a long-term consumption,
especially in situations of bromide intoxica-
tion.

Forensic Analysis
The use of scientific knowledge that is based
on legal issues is known as forensic science
[5]. In order to determine what happened,
when it happened, and who was responsible,
forensic science primarily examines biological
and physical evidence. To attain accuracy and
precision, forensic scientific proficiency is
crucial [6].

2. Forensic Toxicology

The study of poisons' and drugs' detrimental
effects on living things is known as toxicology
[7]. It include the investigation of the signs,
causes, effects, and methods of handling
certain toxins and medications. If the use of
medications and poisons results in death in
dubious circumstances, it becomes rhetorical
pharmacological medicine [8].

The field of medicine may include pharmaco-
logical medicine as a sub-field. The study of
medicine includes all interactions between
drugs and other chemicals on living things [9].
Drug administration, body absorption, activi-
ties and interactions, metabolism, and excre-
tion are all aspects of medicine [10].

Fig: Stages of forensic toxicology

3. History of Forensic Chemistry

Rhetorical chemistry advancements started to
become apparent by the middle of the 19th
century. Blood tests were developed at this

time, the Marsh test for arsenic was created in
1832, and experiments on bullet "fingerprint-
ing" were conducted in the 1980s. Christian
Friedrich Schönbein (1799–1868), a
German–Swiss scientist, developed the first
accurate method for differentiating human
blood in 1863 [11]. For more than a century
and a half, arsenic has been widely used as a
toxin. Its excellence goes back to the seventh
century. During the 16th century, the Arab
philosopher Abu Musa Jabir Ibn Hayyan
(about 721-ca. 815), also known as Geber,
found the process for transforming the grey,
metallic-looking elemental arsenic ,an elemen-
tal chemical compound (As2O3; a material)
into (White, flavourless, and odourless
powder). Arsenic may just be an extra chemi-
cal in person's food or beverage without raising
suspicion [12]. Over the following sixty years,
attempts to employ bullet "fingerprinting" in
criminal investigations were few [13]. But by
the 1890s, a number of events spurred renewed
interest in the method as a means of identifying
possible offenders. Of those aspects, the devel-
opment of the replacement method known as
"grooving" for making gun barrels was
perhaps the most crucial. The process of
grooving involves carving spiral grooves into
the inner surface of tubing. When a bullet
travels through the barrel, the grooves allow it
to spin; this motion prevents the bullet from
tipping over after it exits the tube. Different
grooving techniques have been employed by
numerous gun makers [14].

Poisoning
It is referred to as the harmful consequence of
a poison or harmful chemical agent. It causes
the emergence of negative reactions to danger-
ous substances or chemicals [15]. Basically, it

1. Introduction

 The word "forensic" comes from the
Latin word "forensis," which means "public,"
"to the prospect and discussion"[1]. Legal
concerns can be resolved in a variety of ways
thanks to rhetorical science. Rhetorical
science, which includes a variety of disciplines
such as rhetorical chemistry, rhetorical social
science, rhetorical biology, rhetorical medi-
cine, rhetorical engineering, rhetorical material
sciences, machine rhetorical, and others, is
generally used to settle legal disputes, fairly
enforce criminal and civil laws, and protect the

public. A broad phrase that covers most of the
duties performed by the law laboratory is
forensic chemistry[2]. Trace analysis and
medicine are techniques employed in the field
of rhetorical chemistry. Analytical chemistry
that is applied is forensic chemistry. Rhetorical
chemistry adds comparison study to the assign-
ment whereas analytical chemistry covers both
quantitative and qualitative chemical analysis
[3]. Similarly, spectrometry can quickly deter-
mine whether a sample is made of nylon or
polythene. Therefore, analytical chemistry
offers the quantitative and qualitative data
needed to respond to rhetorical questions [4].

1. Introduction

 Prior to then, malware Development
served as a showcase for malware coders.
Malware analysts have used debuggers to run a
malware program's instructions one by one,
introducing modifications to memory spaces,
settings as well as variable values. Debuggers
are the most commonly used reverse engineer-
ing tools, such as Interactive Disassembler
(IDA), x64dbg, and OllyDBG. If debugging is
successful, it helps to understand malware
behavior and its capabilities. This is something

malware developers would like to avoid. That
is why they must implement anti-debugging
techniques. Anti-debugging techniques[3] can
be used to merely detect the presence of a
debugger, deactivate it, lose control of it, or
even take advantage of a flaw in the debugger.
Disabling or avoiding debugger checks can be
done generally and specifically. However, you
can exploit this vulnerability against specific
debuggers. Furthermore, The Supervisory
Control and Data Acquisition (SCADA)[4]
system has a vulnerability, according to the
Trend Micro report "Unseen Threats, Immi-
nent losses,” which is the part of industrial

manually. The fs segment register can access
the Process Environment Block (PEB) at fs:
[30]. On an x86 [8] computer, this register
corresponds to a Thread Information Block
(TIB).There is also a flag below the Process
Environment Block (PEB) that indicates
whether the first memory space of the process
was created in debug mode. Provide an offset
of 0x18 in the Process Environment Bloc
(PEB). So, here I break down the anti-debug-
ging techniques into two categories: static
anti-debugging and dynamic anti-debugging
[9], as seen in the Table 1 below.

Table 1. Static Vs Dynamic Techniques
Difference

In our research we will discuss we will discuss
some of the main anti-debugging techniques
and how a reverse engineer can be able to
identify them easily for example in this paper
we will discuss about the IsDebuggerPresent,
TimeChecks, NtQueryInformationProcess,
NtSetInformationThread, SwitchDesktops,
SeDebugPrivilege, ParentProcess, Debugger-
Window, DeviceDrivers etc.

Anti-Debugging Techniques Mechanism:
Anti-debugging[10] is the implementation of

control systems (ICS)[5]. In addition, In many
situations, knowing how to apply anti-debug-
ging techniques to malicious code to prevent it
from being tracked down and evaluated is also
helpful. One of the main tools used by malware
analysts and reverse engineers is the debugger.
What is a debugger? A debugger is software
that is used to evaluate and control the flow of
execution of other executables or software. By
using a debugger, we can execute each instruc-
tion step by step and can note down the chang-
es that can be displayed on the stack, memory
dumps, registers, etc. Most packers use these
techniques to determine whether the system is
running a debugger or if a process is being
debugged. These debugger detection meth-
ods[6] include checks that are relatively basic
all the way up to ones that are applicable to
native Application Programming Interfaces
(APIs) and kernel objects[7].This section
discusses how anti-debugging techniques
work. Each process's user space contains a data
structure called a Process Environment Block
(PEB), which holds information about the
related process. Each process's user space
contains a data structure called a Process
Environment Block (PEB), which holds infor-
mation about the related process. It is intended
to access Windows API (WinAPI)It is intended
to access Windows API (WinAPI) but access is
not restricted by this. Process Environment
Block (PEB) can be accessed directly from
memory. Checking the value of the Process
Environment Block (PEB) structure that has
been debugged is a relatively straightforward
implementation and technique. As we know
that there are so many Applications Program-
mable Interfaces (APIs) which are documented
and undocumented. For example, IsDebugger-
Present, which we will discuss later in this
paper. To enhance, we can also check the APIs

If the process can open the CSRSS.EXE
process, then SeDebugPrivilege is active when
the process is accessed.

Token pointing to the process being debugged.
The test is valid for the following reasons: The
Process Security Descriptor CSRSS.EXE
allows the system access to the process.

However, if the process has SeDebugPrivilege
privilege, other processes have independent
access to the Security Descriptor. This permis-
sion is only granted to administrative groups
by default, as we can see in Figure 12.

Figure 12 Assembly Code of SeDebugPrivi-
lege()

This control uses ntdll! The CSRSS.exe
GetProcessId() API gets the Process ID (PID)
 from CSRSS.EXE. You can get it manually by
looking at the Process ID CSRSS.EXE
processes. If OpenProcess() succeeds, SeDe-
bugPrivilege is activated, indicating that the
process is currently running and debugging,
too.

Solution:
The ntdll breakpoint can be hit by setting a
breakpoint as a solution. Returns from
NtOpenProcess(). If PID passed by
CSRSS.exe is CSRSS.exe, set the EX-value to
0xC0000022 (STATUS_ACCESS_DENIED).

Solution:
One of the solutions is to identify where the
time checks are and try to avoid stepping into
them. and the code between these time checks.
Reverse Engineers can place a breakpoint
before that delta and execute instead of steps
until a breakpoint is reached or a breakpoint is
reached. We can also set a breakpoint in
GetTickCount() to specify where to call it or to
change its return value. Mitigations During
Debugging: just fill time checks with NOPs
and set the result of these checks to the appro-
priate value. For anti-debugging solution
development: there is no great need to do
anything with it, as time checks are not very
reliable, but you can still hook timing functions
and accelerate the time between calls.

Mitigations:
• During Debugging, just fill time checks

with NOPs and set the result of these
checks to the appropriate value.

• For anti-debugging solution develop-
ment: there is no great need to do
anything with it, as time checks are not
very reliable, but you can still hook
timing functions and accelerate the time
between calls.

7. SeDebugPrivilege:

By default, the SeDebugPrivilege permission
is disabled for the process access token. When
a debugger like x32dbg, OllyDBG, etc. loads a
process, SeDebugPrivilege permission is
enabled. This is because these debuggers keep
trying . SeDebugPrivilege permissions are
inherited.

Parent Process:
Users launch apps by clicking on the executa-
ble's icon that the shell process displays
(Explorer.exe).By clicking on the executable's
icon that the shell process displays, users can
launch apps (Explorer.exe).Due to this,Explor-
er.exe becomes the parent process of the active
process. This will show that the program was
created by someone else and suggest that you
can debug it.

1. Using Process32First/Next(), it will list
every process and note explorer.exe.
PROCESS32.szExeFile and the PRO-
CESSENTRY32.th32parentProcessID
are the two files that provide the process
ID and the parent process ID of the
current process, respectively.

2. The target is being debugged if the
Process ID (PID) of the parent process
differs from the Process ID (PID) of the
explorer.exe.

Solution:
We need to patch the element of
Kernel32!Process32NextW() that contains the
code that performs a return after setting the
value of EAX to 0.

8. Debugger Window:

The presence of the debug window is a flag
that the debugger is running system[13].
Because the debugger creates windows with
special class names (OllyDBG for OLLYDBG
and WinDbgFrameClass for WinDbg), user32
can easily identify these debug windows!
FindWindow`() or User32! findWindowEx().

Solution:
One solution is to set breakpoints in FindWin-
dow() and FindWindowEx() When the break-
point is hit, modify the value of the
lpClassName string parameter to prevent the
API from functioning. Setting the return value
to NULL is another option.

9. Debugger Process:

List all the processes on the system and see
whether the process name matches the name of
the debugger to find out if it is currently
running (for example, OLLYDBG.EXE, wind-
bg.exe, etc.).Simple to implement; just use
Process32First / Next() after confirming that
the image name corresponds to the name of the
debugger.

Sometimes these methods also use Kernel32
ReadProcessMemory() to read process
memory and then look for debugger-related
strings such as "x64dbg", "IDA", "OllyDBG",
etc. to reverse engineer the debugger. to imple-
ment. After getting the debugger. The malware
will stop his execution and silently exit or
terminates the process.

Solution:
Another solution is to check the main process,
including patching the kernel 32 patch!
Process32NextW() always fails and prevents
the developer from enumerating the process.

10. Device Drivers

An old technique is to verify that the debugger
is running in a Kernel Mode in the system and
try to, access device drivers. This technique is
very simple and consists of simply making a
call to the against well-known device names

byte value 0xCC (INT3 / Breakpoint
Interrupt)[17]. Finding the byte 0xCC in the
API code and protector code will help you
locate software breakpoints as seen by the
example of assembly code in Figure 13.

Figure 13 Assembly Code of Software
Breakpoint Detection

C/C++ Code:
As we can C/C++ code in the Figure 14.

Figure 14. C/C++ code of Software Break-
point Detection

Solution:
Hardware breakpoints can be reverse
engineered if software breakpoints are identi-
fied. If you need to set a breakpoint in the API
code, and when the packer tries to find a break-
point in the API code, reverse engineering the
UNICODE API version allows for the setting
of breakpoints. That eventually calls the ANSI
version, such as LoadLibraryExW LoadLibrar-

used by kernel-mode debuggers, such as
SoftICE, using Kernel32!CreateFile().Some
versions of Soft-ICE also add numbers to the
device name, making it to check. The reversing
forum's suggested technique is to brute force
the corresponding digits until the right device
name is discovered[14].The new packer also
uses device driver detection techniques to
detect system monitors such as “Process Moni-
tor” etc.

Solution:
Establishing a breakpoint in kernel32 is the
simple fix. When the breakpoint is reached,
CreateFileFileW() should either handle the
FileName parameter or alter its return value to
INVALID HANDLE VALUE (0xFFFFFFFF).

Process Memory:
A process can check or interact with its own
memory for the presence of a debugger. This
section includes anti-hitch methods[15] such
as process memory and thread context check-
ing, breakpoint DETECTION, PATCHING function
and debugging functions.

11. Breakpoint and Patching
Detection:

To verify if our code has any software break-
points, we may still inspect the process
memory, and we can also check the CPU
debug registers to see if any hardware break-
points have been set.

12. Software Breakpoints
Detection:

Software breakpoints are defined as break-
points that are created by altering the code at
the target location and replacing it with the

Of course, as with all malware analysis, the
best way to learn how to stop it by using
debugging techniques by continuously testing
malware. Malware developers are constantly
coming up with new techniques to evade
debuggers and keep security researchers like
you on their toes.

17. References:

[1] V. Bhardwaj, V. Kukreja, C. Sharma, I.
Kansal, and R. Popali, “Reverse
Engineering-A Method for Analyzing
Malicious Code Behavior,” in 2021
International Conference on Advances
in Computing, Communication, and
Control (ICAC3), Dec. 2021, pp. 1–5.
doi: 10.1109/ICAC353642.2021.
9697150.

[2] M. N. Gagnon, S. Taylor, and A. K.
Ghosh, “Software Protection through
Anti-Debugging,” IEEE Security &
Privacy Magazine, vol. 5, no. 3, pp.
82–84, May 2007, doi: 10.1109/M-
SP.2007.71.

[3] J.-W. Kim, J. Bang, Y.-S. Moon, and
M.-J. Choi, “Disabling Anti-Debugging
Techniques for Unpacking System in
User-level Debugger,” in 2019 Interna-
tional Conference on Information and
Communication Technology Conver-
gence (ICTC), Oct. 2019, pp. 954–959.
doi: 10.1109/ICTC46691.2019.
8939719.

[4] T. Akhtar, B. B. Gupta, and S. Yamagu-
chi, “Malware propagation effects on
SCADA system and smart power grid,”
in 2018 IEEE International Conference
on Consumer Electronics (ICCE), Jan.

looking for breakpoints in the process memory,
we can check to see if kernel32IsDebuggerPre-
sent() has been altered[20].The first few bytes
of this function can be read and compared to
the same function's bytes from other processes.
Windows libraries are loaded at the same base
address throughout the process, even if the
Address Space Layout Randomization (ASLR)
feature is enabled. The base address only
changes across reboots but remains the same
for the duration of the session.

Mitigations:
• During Debugging: Enter the function

that conducts the Step-Over check and
run it till the end(Ctrl + F9).

• Finding the specific check and either
path it with NOPs or setting the return to
a value that permits the application to
keep running are the best ways to
mitigate all "memory" techniques,
including anti-step over.

Conclusion:
To defend itself against reverse engineering
analysis, the malware employs anti-debugging
techniques. Debug analysis can be avoided by
anti-debugging techniques. Reverse engineers
need advanced debuggers and knowledge to
analyze malware using anti-debugging
techniques. By applying common sense and
slowly debugging the process, it is possible to
identify the majority of anti-debugging
techniques. For example, if you see that the
code is terminating too rapidly in a conditional
jump, which could mean preventing debugging
technical. The most widely used anti-debug-
ging methods involve fs access: [30h] by using
a Windows API or performing a time check.

ison of Machine Learning Models in Malware
Packing Detection,” in 2020 21st
Asia-Pacific Network Operations and
Management Symposium (APNOMS),
Sep. 2020, pp. 377–380. doi:
10 .23919 /APNOMS50412 .2020 .
9237007.

[16] R. R. Branco and G. N. Barbosa,
“Distributed malware analysis schedul-
ing,” in 2011 6th International Confer-
ence on Malicious and Unwanted
Software, Oct. 2011, pp. 34–41. doi:
10.1109/MALWARE.2011.6112324.

[17] K. Coogan, S. Debray, T. Kaochar, and
G. Townsend, “Automatic Static
Unpacking of Malware Binaries,” in
2009 16th Working Conference on
Reverse Engineering, 2009, pp.
167–176. doi: 10.1109/WCRE.2009.24.

[18] G. Jeong, E. Choo, J. Lee, M.
Bat-Erdene, and H. Lee, “Generic
unpacking using entropy analysis,” in
2010 5th International Conference on
Malicious and Unwanted Software, Oct.
2010, pp. 98–105. doi: 10.1109/MAL-
WARE.2010.5665789.

[19] C. R. Hill, “A real-time microprocessor
debugging technique,” ACM SIGPLAN
Notices, vol. 18, no. 8, pp. 145–148,
Aug. 1983, doi: 10.1145/1006142.
1006179.

[20] R. Sihwail, K. Omar, K. Zainol Ariffin,
and S. al Afghani, “Malware Detection
Approach Based on Artifacts in Memory
Image and Dynamic Analysis,” Applied
Sciences, vol. 9, no. 18, p. 3680, Sep.
2019, doi: 10.3390/app9183680.

yA or the native API corresponding to Load-
DLL to replace.

13. Hardware Breakpoints:

DR0, DR1, DR2, and DR3 are debug registers
that can be obtained from the thread context.
Debug registers 0-3 are used to store virtual
address of the so-called hardware breakpoints.
C/C++ Code:

As we can see C/C++ code in the figure 15.

Figure 15 C/C++ code of Hardware
Breakpoints

14. Memory Checks:

This section includes methods for directly
inspecting or modifying a process's virtual
memory in order to spot and stop debug-
ging[18].

15. Nt Query Virtual Memory ():

The memory page of the process in which the
code is located is shared by all processes prior
to the page being written. Then the OS creates
a replica of this page and allocates it to the
process's virtual memory[19], so the page is no
longer "shared". Now we can see how to
declare NTDLL, as we can see in figure 16.

NTDLL declarations:

Figure 16 NTDLL Deceleration of
NtQueryVirtualMemory()

C/C++ Code:
As we can see the C/C++ code in the Figure
17.

Figure 17 C/C++ Code for Hardware
Breakpoints

16. Detecting A function Patch:

Calling kernel32 is a common approach to find
a debugger. IsDebuggerPresent(). By altering
the outcome in the EAX register or hacking the
kernel32, you may easily get around this
check! IsDebuggerPresent(). Instead of

2018, pp. 1–6. doi: 10.1109/ICCE.2018.
8326281.

[5] G. Wang, L. Zhuang, T. Liu, S. Li, S.
Yang, and J. Lan, “Formal analysis and
verification of industrial control system
security via timed automata,” in 2020
International Conference on Internet of
Things and Intelligent Applications
(ITIA), Nov. 2020, pp. 1–5. doi:
10.1109/ITIA50152.2020.9312289.

[6] A. J. Smith, R. F. Mills, A. R. Bryant, G.
L. Peterson, and M. R. Grimaila,
“REDIR: Automated static detection of
obfuscated anti-debugging techniques,”
in 2014 International Conference on
Collaboration Technologies and
Systems (CTS), May 2014, pp. 173–180.
doi: 10.1109/CTS.2014.6867561.

[7] J. Raber, “Stealthy Profiling and Debug-
ging of Malware Trampolining from
User to Kernel Space,” in 2011 18th
Working Conference on Reverse
Engineering, Oct. 2011, pp. 431–432.
doi: 10.1109/WCRE.2011.62.

[8] J. G. Alcalde, G. Chua, I. M. Demabildo,
M. A. Ong, and R. L. Uy, “CALVIS32:
Customizable assembly language
visualizer and simulator for intel x86-32
architecture,” in 2016 IEEE Region 10
Conference (TENCON), Nov. 2016, pp.
214–217. doi: 10.1109/TEN-
CON.2016.7847992.

[9] Chan Lee Yee, Lee Ling Chuan, M.
Ismail, and N. Zainal, “A static and
dynamic visual debugger for malware
analysis,” in 2012 18th Asia-Pacific
Conference on Communications

(APCC), Oct. 2012, pp. 765–769. doi:
10.1109/APCC.2012.6388211.

[10] Xu Chen, J. Andersen, Z. M. Mao, M.
Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and
anti-debugging behavior in modern
malware,” in 2008 IEEE International
Conference on Dependable Systems and
Networks With FTCS and DCC (DSN),
2008, pp. 177–186. doi: 10.1109/
DSN.2008.4630086.

[11] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[12] P. Xie, X. Lu, Y. Wang, J. Su, and M. Li,
“An Automatic Approach to Detect
Anti-debugging in Malware Analysis,”
2013, pp. 436–442. doi: 10.1007/
978-3-642-35795-4_55.

[13] A. Mylonas and D. Gritzalis, “Practical
Malware Analysis: The Hands-On
Guide to Dissecting Malicious
Software,” Comput Secur, vol. 31, no. 6,
pp. 802–803, Sep. 2012, doi: 10.1016/j.-
cose.2012.05.004.

[14] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[15] J.-W. Kim, J. Namgung, Y.-S. Moon,
and M.-J. Choi, “Experimental Compar-

one or more techniques in computer code that
make it difficult to reverse engineer or debug
the target process. These techniques are ways
for a program to detect whether it is running
under the control of a debugger[11]. If a
debugger is detected, the malware will execute
arbitrary code, usually code to terminate. The
anti-debugging process slows down the
reverse engineering process but doesn't stop it.

2. Is Debugger Present:

The easiest debugger detection technique is to
check the BeingDebugged flag in the Process
Environment Block (PEB). The kernel32IsDe-
buggerPresent() function was introduced in
Windows 95, and the Application Programma-
ble Interface (API) checks the value of this flag
to identify the process whether it is in the
user-mode debugger. This code (same 32-bit or
64-bit Windows environment) can be used for
verification to check the 32-bit or 64-bit
Windows environment. As we can see the
assembly code of the IsDebuggerPresent() in
Figure 1.

Figure 1. Assembly code of IsDebuggerPre-
sent()

C/C++ Code:
As we can see in the example if IsDebugger-
Present() in Figure 2.

Figure 2. C/C++ code of IsDebuggerPre-
sent()

Solution:
This technique can be easily bypassed by
manually patching the Process Environment
Block (PEB). BeingDebugged flag with the
value 0x00 in the bytes.

3. Nt Query Information Process
() / Check Remote Debugger
Present ()

CheckRemoteDebuggerPresent() is another a
debugger should be attached to a process? Use
this Check Remote DebuggerPresent() to
decide. The API calls ntdll!ProcessDebugPort
inside the kernel A value that is not zero in the
DebugPort field tells that the process is being
debugged in user mode by the debugger. If so,
ProcessInformation will be set to
0xFFFFFFFF, otherwise the value of
ProcessInformation will be 0x0.The Check-
RemoteDebuggerPresent()[12] function in
Kernel32 is functional.On either the 32-bit or
64-bit version of Windows, the check can be
made by using this 32-bit code to look at the
32-bit window environment. The Function The
function CheckRemoteDebuggerPresent()
takes 2 parameters; the first parameter is the
(PID), and the A pointer to a Boolean variable
serves as the second parameter. That will hold
TRUE if the process is being debugged. As we
can see from the C/C++ code in Figure 3.

Figure 3 C/C++ Code for CheckRemoteDe-
bugger

Ntdll! NtQueryInformationProcess() has 5
parameters. To detect the debugger, the

to hide threads from the debugger. It can also be
done with the help of a non-documented value,
which is not documented but can be used.
THREAD_INFORMATION_CLASS::Threa-
dHideFromDebugger (0x11). When a thread is
hidden in the debugger, it will not be informed
of anything pertaining to that thread not be
informed of anything pertaining to that thread.
The thread is also capable of anti-debugging
methods, such as examining debug flags, code
checksums, etc. If there are hidden breakpoints
in the thread, If we try to keep the main thread
hidden from the debugger, either the process
will crash or the debugger will gets stuck. An
example of calling the NtSetInformation-
Thread would be like this, as we can see in
Figure 7.

Figure 7. Assembly code of NtSetInforma-
tionThread()

C/C++ Code:
As we can see, C/C++ code in Figure 8.

Figure 8. C/C++ code of NtSetInformation-
Thread()

Solution:
The breakpoint is set to ntdll!NtSetInforma-
tionThread(), and when the breakpoint is hit,
reverse engineers can modify the EIP, to
prevent the API calls from reaching the kernel
and being called from other functions.

ProcessInformation class is set to as
ProcessDebugPort as we can see C/C++ code
in the Figure 4.

Figure 4. C/C++ Code for NtQueryInfor-
mationProcess()

This example shows how the call to the Check-
RemoteDebuggerPresent() and To see whether
the current process is being debugged, utilize
the NtQueryInformationProcess function. as
we can see in Figure 5 and Figure 6.

Figure 5 Assembly code of CheckRemot-
eDebuggerPresent()

Figure 6. Assembly code of NtQueryInfor-
mationProcess()

Solution:
One solution is to set NtQueryInformationPro-
cess(return)'s value is a breakpoint. ProcessIn-
formation is patched to a DWORD value of 0
when the breakpoint is reached of 0.

4. Nt SetInformation Thread:

NtSetInformationThread()[13] is usually used
to set the priority of a thread. It can also be used

5. SwitchDesktop()

Platforms based on Windows NT allow for
multiple desktop sessions. The windows of the
previous active desktop can be hidden by
choosing a different active desktop, but there is
no visible way to return to the previous
desktop. the mouse and keyboard events won't
be sent to the debugger from the debugger's
desktop.[13] , they no longer divulge their
source, either. Debugging could become
impossible as a result. Both the 32-bit and
64-bit versions of Windows can be used to
make this call. Here is an example of a 32-bit
version of Windows as we can see in Figure 9.

Figure 9. Assembly code of SwitchDesk-
top()

C/C++ Code:
As we can see the C/C++ code in the Figure 10.

Figure 10 C/C++ code of SwitchDesktop()

6. Execution Time / Timing
Checks

When a reverse engineer tries to debug a

process and uses a single step in code, there is
a significant delay between the execution of
the individual’s instructions[13]. The process
is running under a debugger if the amount of
time required is excessive compared to a
typical execution. Here is a list of some
instructions that can be used to increase the
execution time of the instruction.

a. RDTSC (Read Time-Stamp Counter)

b. RDPMC (Read Performance-Monitor-
ing Counters)

c. GetLocalTime

d. GetSystemTime

e. GetTickCount

Now we will take an example of a timing
check.

As we can see in Figure 11.

Figure 11 Assembly Code of GetTick-
Count()

We check the synchronization using the
kernel32 GetTickCount() API or manually
verify that the SharedUserData structure's
TickCountLow and TickCountMultiplier
entries are always set to 0xc.Identifying these
timing techniques can be challenging,
especially when RDTSC is used as spam, when
other obscure techniques are used to mask
them.

Study of the Anti-Debugging Techniques and their Mitigations

33LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

situations. They are an essential part of the
silent weapon that kills people stealthily and
invisibly. The subject of the current research is
forensic chemistry and toxicology, which is
fully concerned with the introduction, classifi-
cation, effects, and influencing factors of
poisons, as well as their detection and testing.
The purpose of this article is to investigate how
they act and function after they enter the
human body.

5. References

1. Ibrahim, M. S., & Abdullah, M. (2010).
Forensic Accounting in Malaysia: Some
Insights from Practitioners. Asian
Journal of Accounting Perspectives,
3(1), 14-21.

2. Kloosterman, A., Mapes, A., Geradts,
Z., van Eijk, E., Koper, C., van den Berg,
J., ... & van Asten, A. (2015). The
interface between forensic science and
technology: how technology could cause
a paradigm shift in the role of forensic
institutes in the criminal justice system.
Philosophical Transactions of the Royal
Society B: Biological Sciences,
370(1674), 20140264.

3. Yaman, F. (2021). Examining students’
quality and perceptions of argumenta-
tive and summary writing within a
knowledge generation approach to
learning in an analytical chemistry
course. Chemistry Education Research
and Practice, 22(4), 985-1002.

4. Hibbert, D. B. (2007). Quality assurance
in the analytical chemistry laboratory.
Oxford University Press.

may be divided into three groups: homicidal,
suicidal, and accidental [16].

Homicidal Poisoning
The victim is frequently subjected to attempts
to "nurse" them back to health by poisoners
[17]. Serial poisoners typically enjoy the rush
of having control over the victim's life and
suffering, and poisoners frequently take
delight in seeing their victims suffer. Homicide
by poisoning perpetrators frequently work in
the healthcare or medical industries. The
substances that are most appealing to offenders
are those that are deadly in little doses. The
ideal poison for a homicide has no taste, is
undetectable, has no odour, and exhibits symp-
toms that are comparable to those of illnesses
that are found in nature [18]. Since current
scientific techniques and advancements have
made poison detection simpler, it has becom-
ing more and more challenging to find a poison
having all of these characteristics [19].

Sucidal Poisoning:
Self-poisoning, the non-violent way of suicide,
most frequently involves the use of medicine,
either over-the-counter (paracetamol) or
prescribed (such as antidepressants and
prescription analgesics), chemicals (pesti-
cides), or illegal narcotics [20].

Accidental poisoning
Accidental poisoning, which includes acciden-
tal drug overdose, occurs when a person
inadvertently poisons themself. Alcohol,
opioids (such as heroin or methadone),
sedatives, psychiatric pharmaceuticals (such as
antidepressants), antiepileptic, and anti-in-
flammatory medications are some of the
substances from which poisoning may result
[21].

Classification of poisons
Poisons are divided into two categories based
on how they affect the body and depending on
their chemical and physical characteristics.

Classification based upon the effect of
poison on the body:
A) Corrosive: When poisons come into
contact with tissues or organs, they become
corrosive, for example: a. Strong acids like
H2SO4,HCl, HNO3, etc. and strong alkalis
include NH4, Na/K hydroxides, etc [22].

B) Neurotoxins: Toxins known as neurotoxins
cause damage to nerve tissue. Exogenous
chemicals known as neurotoxins are a broad
category of neurological insults that can
negatively impact the function of both growing
and mature brain tissue.Lead, , glutamate,
ethanol (drinking alcohol), botulinum toxin
(e.g., Botox), tetanus toxin, nitric oxide and
tetrodotoxin are typical examples of neurotox-
ins [23].

C) Irritants poisons: They mostly cause
inflammation at the point of contact, particu-
larly in the skin, gastrointestinal system, and
respiratory tract [24]. A poison is categorized
as one that affects a system the most when it
causes death as a result of a systemic impact,
such as a heart poison, brain poison, or spinal
poison. The inorganic toxin arsenic is a hefty
metallic irritation. Due to its insoluble nature
in water and inability to be absorbed by the
digestive system, metallic arsenic is not harm-
ful. Arsenic trioxide, often known as sankhyal
or somalkar, is toxic. Arsenobetaine and arsen-
ocholine are two organic arsenic non-toxic
forms that are typically present in food that
humans frequently ingest [25]. Cod, haddock,
and shellfish contain them.

nervous system, particularly the brain, can be
proved by the use of proper and sensitive
procedures, even if many substances have
obvious effects elsewhere. The circulatory
system, the blood and hematopoietic system,
visceral organs such the liver, kidney, and lung,
and the skin follow in order of frequency of
involvement in systemic toxicity. The least
often targeted tissues for systemic effects
include muscle and bone. The frequency of
tissue reactions when drugs have a localized
effect primarily depends on the portal of
entrance (skin, gastrointestinal tract, respirato-
ry tract) [36].

Reversible versus Irreversible Toxic
Effects
Chemical toxicity can have both reversible and
irreversible consequences. The tissue's capaci-
ty to regenerate will play a significant role in
determining whether a chemical insult to a
tissue results in reversible or irreversible
damage. Therefore, whereas most injuries to
the central nervous system are mostly irrevers-
ible due to the differentiated cells of the central
nervous system being unable to divide and be
replaced, most injuries to a tissue like the liver,
which has a high capacity for regeneration, are
reversible. Chemicals can cause cancer and
permanent harmful consequences [37].

4. Conclusion

By analyzing the medical and legal elements of
a drug's harmful effects on organisms, forensic
toxicology uses chemical and analytical tools
to help establish the facts in forensic investiga-
tions. In situations of fatal poisoning and those
that may be related to criminal conduct, foren-
sic practise is essential. Poisons are typically
found in murder, suicide, or accident

5. Robertson, B., Vignaux, G. A., &
Berger, C. E. (2016). Interpreting
evidence: evaluating forensic science in
the courtroom. John Wiley & Sons.

6. Koehler, J. J. (2017). Forensics or
fauxrensics? Ascertaining accuracy in
the forensic sciences. Ariz. St. LJ, 49,
1369.

7. Klaassen, C. D., Hardman, J. G.,
Limbird, L. E., Molinoff, P. B., Ruddon,
R. W., & Gilman, A. G. (2006). Princi-
ples of toxicology and treatment of
poisoning. Goodman and GilmanÕs The
Pharmacological Basis of Therapeutics,
Eleventh Edition., McGraw Hill,
Columbus, OH, USA, 1739-1752.

8. Shorter, E. (2008). Before Prozac: The
troubled history of mood disorders in
psychiatry. Oxford University Press.

9. Yuan, H., Ma, Q., Ye, L., & Piao, G.
(2016). The traditional medicine and
modern medicine from natural products.
Molecules, 21(5), 559.

10. Li, L., Liu, T., Fu, C., Tan, L., Meng, X.,
& Liu, H. (2015). Biodistribution, excre-
tion, and toxicity of mesoporous silica
nanoparticles after oral administration
depend on their shape. Nanomedicine:
Nanotechnology, Biology and Medicine,
11(8), 1915-1924.

11. Newton, D. E. (2007). Forensic chemis-
try. Infobase Publishing.

12. Sharma, A. K., Tjell, J. C., Sloth, J. J., &
Holm, P. E. (2014). Review of arsenic
contamination, exposure through water

and food and low cost mitigation options
for rural areas. Applied Geochemistry,
41, 11-33.

13. Spitz, W. U., & Diaz, F. J. (2020). Spitz
and Fisher's medicolegal investigation
of death: guidelines for the application
of pathology to crime investigation.
Charles C Thomas Publisher.

14. Pétillon, J. M., & Ducasse, S. (2012).
From flakes to grooves: A technical shift
in antlerworking during the last glacial
maximum in southwest France. Journal
of Human Evolution, 62(4), 435-465.

15. Sharma, M., Jabin, S., & Sharma, M.
PHARMACEUTICAL POLLUTION: A
GRAVE CONCERN!!.

16. Sikary, A. K. (2019). Homicidal poison-
ing in India: A short review. Journal of
forensic and legal medicine, 61, 13-16.

17. Van Landeghem, A. A., De Letter, E. A.,
Lambert, W. E., Van Peteghem, C. H., &
Piette, M. H. (2007). Aconitine involve-
ment in an unusual homicide case.
International journal of legal medicine,
121(3), 214-219.

18. Gunn, A. (2019). Essential forensic
biology. John Wiley & Sons.

19. Trestrail, J. H. (2007). Types of Poisons.
Criminal Poisoning: Investigational
Guide for Law Enforcement, Toxicolo-
gists, Forensic Scientists, and Attorneys,
29-46.

20. Bonvoisin, T., Utyasheva, L., Knipe, D.,
Gunnell, D., & Eddleston, M. (2020).

Suicide by pesticide poisoning in India:
a review of pesticide regulations and
their impact on suicide trends. BMC
public health, 20(1), 1-16.

21. Manzar, N., Saad, S. M. A., Manzar, B.,
& Fatima, S. S. (2010). The study of
etiological and demographic character-
istics of acute household accidental
poisoning in children-a consecutive case
series study from Pakistan. BMC pediat-
rics, 10(1), 1-6.

22. Chibishev, A., Pereska, Z., Chibisheva,
V., & Simonovska, N. (2012). Corrosive
poisonings in adults. Materia
socio-medica.

23. Hu, Y., Chen, J., Fan, H., Xie, P., & He,
J. (2016). A review of neurotoxicity of
microcystins. Environmental science
and pollution research, 23(8),
7211-7219.

24. Waserman, S., & Watson, W. (2011).
Food allergy. Allergy, Asthma & Clini-
cal Immunology, 7(1), 1-7.

25. Borak, J., & Hosgood, H. D. (2007).
Seafood arsenic: implications for human
risk assessment. Regulatory Toxicology
and Pharmacology, 47(2), 204-212.

26. Pandey, G., & Madhuri, S. (2014).
Heavy metals causing toxicity in
animals and fishes. Research Journal of
Animal, Veterinary and Fishery Scienc-
es, 2(2), 17-23.

27. Stejskal, V., Vendl, T., Aulicky, R., &
Athanassiou, C. (2021). Synthetic and

natural insecticides: Gas, liquid, gel and
solid formulations for stored-product
and food-industry pest control. Insects,
12(7), 590.

28. Francois, M. R., & Stephen, F. (2015).
Phosphorus Compounds. In Hamilton &
Hardy's Industrial Toxicology (pp.
383-390). Hoboken, New Jersey: John
Wiley & Sons, Inc..

29. Kaushik, R. D. (2021). Methyl bromide:
Risk assessment, environmental, and
health hazard. In Hazardous Gases (pp.
239-250). Academic Press.

30. Thompson, J. P., & Marrs, T. C. (2012).
Hydroxocobalamin in cyanide poison-
ing. Clinical Toxicology, 50(10),
875-885.

31. Dash, R. R., Gaur, A., & Balomajumder,
C. (2009). Cyanide in industrial waste-
waters and its removal: a review on
biotreatment. Journal of hazardous
materials, 163(1), 1-11.

32. Mishra, A. (2020). Forensic Chemistry
and Toxicology. In Medical Toxicology.
IntechOpen.

33. Donovan, M. D. (2009). Effect of route
of administration and distribution on
drug action. In Modern Pharmaceutics
Volume 1 (pp. 173-198). CRC Press.

34. Boey, A., & Ho, H. K. (2020). All roads
lead to the liver: metal nanoparticles and
their implications for liver health. Small,
16(21), 2000153.

35. Jett, D. A., Sibrizzi, C. A., Blain, R. B.,

C) Cyanides
The majority of cases of severe or deadly
cyanide poisoning involve the suicide intake of
cyanide salts. A very poisonous volatile liquid,
hydrogen cyanide. When cyanide salts react
with acids or are formed in the stomach after
oral consumption, hydrogen cyanide fumes are
released [30]. Although HCN has a distinctive
almond-like odour, up to 50% of people cannot
detect it. Even while this might have been
connected to air flow ventilation systems in
post-mortem rooms, it was surprising that it
was not a distinguishing feature during autopsy
of a significant number of cyanide suicide
fatalities. The industrial applications of potas-
sium and sodium cyanide as soluble salts of
cyanide include electroplating, metal process-
ing, and laboratory reagents [31].

B. Organic poisons

a)Ethanol: A much of ethanol is toxic, so
avoid using it.

b. Other alcohols: Poisonous alcohols include
methyl and isopropyl.

Methanol, a substance used in the chemical
and polish industries as well as clandestine
alcoholic beverages, may be fatal when
consumed.

c. Phenol: Carboxylic acid or phenol may be
toxic. The main purpose of it is as a disinfect-
ant .

d. Other substances: Poisonous industrial
chemicals include benzene, chloral hydrate,
chlorinated hydrocarbons, and others. Chloral
hydrate might be present in illegal alcoholic

beverages in a number of poisoning instances
[32].

Route & Site of Exposure
When administered intravenously, toxic
substances often have the most impact and the
fastest reaction. For alternative routes, inhala-
tion, intraperitoneal, sucutaneous, intramuscu-
lar, intradermal, oral, and topical would rough-
ly be listed in decreasing order of efficacy [33].
Additionally, the method of delivery might
affect an agent's toxicity. For instance, it would
be reasonable to anticipate that a substance that
is detoxified in the liver would be less hazard-
ous when administered orally through the
portal circulation than systemically (inhala-
tion) [34].

Duration & Frequency of Exposure
The toxic effects brought on by a single expo-
sure to multiple substances differ significantly
from those brought on by repeated exposure.
For instance, benzene's major acute toxic
symptom is central nervous system depression,
but prolonged exposure can cause leukaemia.
Acute exposure to quickly absorbed substances
is likely to result in immediate toxicity, but it is
also possible for acute exposure to result in
delayed toxicity that may or may not be
comparable to the toxic consequences of
chronic exposure. In contrast, repeated admin-
istration of a hazardous agent may result in
certain short-term (acute) side effects in
addition to the agent's long-term, low-level, or
chronic effects [35].

Local versus Systemic Toxicity
The central nervous system is the target organ
of toxicity that is most commonly engaged in
systemic toxicity. Damage to the central

Hartman, P. A., Lein, P. J., Taylor, K. W.,
& Rooney, A. A. (2020). A national
toxicology program systematic review
of the evidence for long-term effects
after acute exposure to sarin nerve agent.
Critical reviews in toxicology, 50(6),
474-490.

36. El-Boghdadly, K., Pawa, A., & Chin, K.
J. (2018). Local anesthetic systemic
toxicity: current perspectives. Local and
regional anesthesia, 11, 35.

37. Grandin, E. W., Ky, B., Cornell, R. F.,
Carver, J., & Lenihan, D. J. (2015).
Patterns of cardiac toxicity associated
with irreversible proteasome inhibition
in the treatment of multiple myeloma.
Journal of cardiac failure, 21(2),
138-144.

Poisons are also Categorized According
to their Characteristics:

A) Inorganic Poisons
i) Metallic Poisoning
After exposure, microscopic metal molecules
build up in your body and cause heavy metal

poisoning. Without treatment, heavy metals
can produce symptoms that are potentially
fatal because they adhere to your cells and stop
them from functioning.Your body can become
poisonous to a variety of metals [26]. The most
prevalent poisonous metals are:

Ii) Non Metallic Poisons

A) Phosphine and phosphides
A variety of industrial operations employ
phosphonate, a highly poisonous colourless
gas with a pungent garlic or fishy odour. It is
also produced when phosphides are exposed to
moisture.[27] In underdeveloped nations,
aluminium phosphide is widely utilized as a
cheap and efficient grain fumigant and rodenti-
cide [28].

B) Bromide
The colourless gas methyl bromide has histori-
cally been employed as a refrigerant and in fire
extinguishers, but it is most frequently utilized
as an insecticidal fumigant for grain storage

and soil. Methyl bromide is a metabolite that
produces the bromide ion and is linked to
unintentional poisoning, especially in work
environments [29]. By passive diffusion, the
bromide ion is quickly absorbed from the
stomach and proximal small intestines.
Bromide ions are mostly found in extracellular
fluid, where they have similar properties to
chloride ions. The kidney is the most signifi-
cant organ for elimination. Their half-life of
elimination is relatively lengthy, lasting around
10 days after an acute dose or many weeks
after stopping a long-term consumption,
especially in situations of bromide intoxica-
tion.

Forensic Analysis
The use of scientific knowledge that is based
on legal issues is known as forensic science
[5]. In order to determine what happened,
when it happened, and who was responsible,
forensic science primarily examines biological
and physical evidence. To attain accuracy and
precision, forensic scientific proficiency is
crucial [6].

2. Forensic Toxicology

The study of poisons' and drugs' detrimental
effects on living things is known as toxicology
[7]. It include the investigation of the signs,
causes, effects, and methods of handling
certain toxins and medications. If the use of
medications and poisons results in death in
dubious circumstances, it becomes rhetorical
pharmacological medicine [8].

The field of medicine may include pharmaco-
logical medicine as a sub-field. The study of
medicine includes all interactions between
drugs and other chemicals on living things [9].
Drug administration, body absorption, activi-
ties and interactions, metabolism, and excre-
tion are all aspects of medicine [10].

Fig: Stages of forensic toxicology

3. History of Forensic Chemistry

Rhetorical chemistry advancements started to
become apparent by the middle of the 19th
century. Blood tests were developed at this

time, the Marsh test for arsenic was created in
1832, and experiments on bullet "fingerprint-
ing" were conducted in the 1980s. Christian
Friedrich Schönbein (1799–1868), a
German–Swiss scientist, developed the first
accurate method for differentiating human
blood in 1863 [11]. For more than a century
and a half, arsenic has been widely used as a
toxin. Its excellence goes back to the seventh
century. During the 16th century, the Arab
philosopher Abu Musa Jabir Ibn Hayyan
(about 721-ca. 815), also known as Geber,
found the process for transforming the grey,
metallic-looking elemental arsenic ,an elemen-
tal chemical compound (As2O3; a material)
into (White, flavourless, and odourless
powder). Arsenic may just be an extra chemi-
cal in person's food or beverage without raising
suspicion [12]. Over the following sixty years,
attempts to employ bullet "fingerprinting" in
criminal investigations were few [13]. But by
the 1890s, a number of events spurred renewed
interest in the method as a means of identifying
possible offenders. Of those aspects, the devel-
opment of the replacement method known as
"grooving" for making gun barrels was
perhaps the most crucial. The process of
grooving involves carving spiral grooves into
the inner surface of tubing. When a bullet
travels through the barrel, the grooves allow it
to spin; this motion prevents the bullet from
tipping over after it exits the tube. Different
grooving techniques have been employed by
numerous gun makers [14].

Poisoning
It is referred to as the harmful consequence of
a poison or harmful chemical agent. It causes
the emergence of negative reactions to danger-
ous substances or chemicals [15]. Basically, it

1. Introduction

 The word "forensic" comes from the
Latin word "forensis," which means "public,"
"to the prospect and discussion"[1]. Legal
concerns can be resolved in a variety of ways
thanks to rhetorical science. Rhetorical
science, which includes a variety of disciplines
such as rhetorical chemistry, rhetorical social
science, rhetorical biology, rhetorical medi-
cine, rhetorical engineering, rhetorical material
sciences, machine rhetorical, and others, is
generally used to settle legal disputes, fairly
enforce criminal and civil laws, and protect the

public. A broad phrase that covers most of the
duties performed by the law laboratory is
forensic chemistry[2]. Trace analysis and
medicine are techniques employed in the field
of rhetorical chemistry. Analytical chemistry
that is applied is forensic chemistry. Rhetorical
chemistry adds comparison study to the assign-
ment whereas analytical chemistry covers both
quantitative and qualitative chemical analysis
[3]. Similarly, spectrometry can quickly deter-
mine whether a sample is made of nylon or
polythene. Therefore, analytical chemistry
offers the quantitative and qualitative data
needed to respond to rhetorical questions [4].

1. Introduction

 Prior to then, malware Development
served as a showcase for malware coders.
Malware analysts have used debuggers to run a
malware program's instructions one by one,
introducing modifications to memory spaces,
settings as well as variable values. Debuggers
are the most commonly used reverse engineer-
ing tools, such as Interactive Disassembler
(IDA), x64dbg, and OllyDBG. If debugging is
successful, it helps to understand malware
behavior and its capabilities. This is something

malware developers would like to avoid. That
is why they must implement anti-debugging
techniques. Anti-debugging techniques[3] can
be used to merely detect the presence of a
debugger, deactivate it, lose control of it, or
even take advantage of a flaw in the debugger.
Disabling or avoiding debugger checks can be
done generally and specifically. However, you
can exploit this vulnerability against specific
debuggers. Furthermore, The Supervisory
Control and Data Acquisition (SCADA)[4]
system has a vulnerability, according to the
Trend Micro report "Unseen Threats, Immi-
nent losses,” which is the part of industrial

manually. The fs segment register can access
the Process Environment Block (PEB) at fs:
[30]. On an x86 [8] computer, this register
corresponds to a Thread Information Block
(TIB).There is also a flag below the Process
Environment Block (PEB) that indicates
whether the first memory space of the process
was created in debug mode. Provide an offset
of 0x18 in the Process Environment Bloc
(PEB). So, here I break down the anti-debug-
ging techniques into two categories: static
anti-debugging and dynamic anti-debugging
[9], as seen in the Table 1 below.

Table 1. Static Vs Dynamic Techniques
Difference

In our research we will discuss we will discuss
some of the main anti-debugging techniques
and how a reverse engineer can be able to
identify them easily for example in this paper
we will discuss about the IsDebuggerPresent,
TimeChecks, NtQueryInformationProcess,
NtSetInformationThread, SwitchDesktops,
SeDebugPrivilege, ParentProcess, Debugger-
Window, DeviceDrivers etc.

Anti-Debugging Techniques Mechanism:
Anti-debugging[10] is the implementation of

control systems (ICS)[5]. In addition, In many
situations, knowing how to apply anti-debug-
ging techniques to malicious code to prevent it
from being tracked down and evaluated is also
helpful. One of the main tools used by malware
analysts and reverse engineers is the debugger.
What is a debugger? A debugger is software
that is used to evaluate and control the flow of
execution of other executables or software. By
using a debugger, we can execute each instruc-
tion step by step and can note down the chang-
es that can be displayed on the stack, memory
dumps, registers, etc. Most packers use these
techniques to determine whether the system is
running a debugger or if a process is being
debugged. These debugger detection meth-
ods[6] include checks that are relatively basic
all the way up to ones that are applicable to
native Application Programming Interfaces
(APIs) and kernel objects[7].This section
discusses how anti-debugging techniques
work. Each process's user space contains a data
structure called a Process Environment Block
(PEB), which holds information about the
related process. Each process's user space
contains a data structure called a Process
Environment Block (PEB), which holds infor-
mation about the related process. It is intended
to access Windows API (WinAPI)It is intended
to access Windows API (WinAPI) but access is
not restricted by this. Process Environment
Block (PEB) can be accessed directly from
memory. Checking the value of the Process
Environment Block (PEB) structure that has
been debugged is a relatively straightforward
implementation and technique. As we know
that there are so many Applications Program-
mable Interfaces (APIs) which are documented
and undocumented. For example, IsDebugger-
Present, which we will discuss later in this
paper. To enhance, we can also check the APIs

If the process can open the CSRSS.EXE
process, then SeDebugPrivilege is active when
the process is accessed.

Token pointing to the process being debugged.
The test is valid for the following reasons: The
Process Security Descriptor CSRSS.EXE
allows the system access to the process.

However, if the process has SeDebugPrivilege
privilege, other processes have independent
access to the Security Descriptor. This permis-
sion is only granted to administrative groups
by default, as we can see in Figure 12.

Figure 12 Assembly Code of SeDebugPrivi-
lege()

This control uses ntdll! The CSRSS.exe
GetProcessId() API gets the Process ID (PID)
 from CSRSS.EXE. You can get it manually by
looking at the Process ID CSRSS.EXE
processes. If OpenProcess() succeeds, SeDe-
bugPrivilege is activated, indicating that the
process is currently running and debugging,
too.

Solution:
The ntdll breakpoint can be hit by setting a
breakpoint as a solution. Returns from
NtOpenProcess(). If PID passed by
CSRSS.exe is CSRSS.exe, set the EX-value to
0xC0000022 (STATUS_ACCESS_DENIED).

Solution:
One of the solutions is to identify where the
time checks are and try to avoid stepping into
them. and the code between these time checks.
Reverse Engineers can place a breakpoint
before that delta and execute instead of steps
until a breakpoint is reached or a breakpoint is
reached. We can also set a breakpoint in
GetTickCount() to specify where to call it or to
change its return value. Mitigations During
Debugging: just fill time checks with NOPs
and set the result of these checks to the appro-
priate value. For anti-debugging solution
development: there is no great need to do
anything with it, as time checks are not very
reliable, but you can still hook timing functions
and accelerate the time between calls.

Mitigations:
• During Debugging, just fill time checks

with NOPs and set the result of these
checks to the appropriate value.

• For anti-debugging solution develop-
ment: there is no great need to do
anything with it, as time checks are not
very reliable, but you can still hook
timing functions and accelerate the time
between calls.

7. SeDebugPrivilege:

By default, the SeDebugPrivilege permission
is disabled for the process access token. When
a debugger like x32dbg, OllyDBG, etc. loads a
process, SeDebugPrivilege permission is
enabled. This is because these debuggers keep
trying . SeDebugPrivilege permissions are
inherited.

Study of the Anti-Debugging Techniques and their Mitigations

34 LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

Parent Process:
Users launch apps by clicking on the executa-
ble's icon that the shell process displays
(Explorer.exe).By clicking on the executable's
icon that the shell process displays, users can
launch apps (Explorer.exe).Due to this,Explor-
er.exe becomes the parent process of the active
process. This will show that the program was
created by someone else and suggest that you
can debug it.

1. Using Process32First/Next(), it will list
every process and note explorer.exe.
PROCESS32.szExeFile and the PRO-
CESSENTRY32.th32parentProcessID
are the two files that provide the process
ID and the parent process ID of the
current process, respectively.

2. The target is being debugged if the
Process ID (PID) of the parent process
differs from the Process ID (PID) of the
explorer.exe.

Solution:
We need to patch the element of
Kernel32!Process32NextW() that contains the
code that performs a return after setting the
value of EAX to 0.

8. Debugger Window:

The presence of the debug window is a flag
that the debugger is running system[13].
Because the debugger creates windows with
special class names (OllyDBG for OLLYDBG
and WinDbgFrameClass for WinDbg), user32
can easily identify these debug windows!
FindWindow`() or User32! findWindowEx().

Solution:
One solution is to set breakpoints in FindWin-
dow() and FindWindowEx() When the break-
point is hit, modify the value of the
lpClassName string parameter to prevent the
API from functioning. Setting the return value
to NULL is another option.

9. Debugger Process:

List all the processes on the system and see
whether the process name matches the name of
the debugger to find out if it is currently
running (for example, OLLYDBG.EXE, wind-
bg.exe, etc.).Simple to implement; just use
Process32First / Next() after confirming that
the image name corresponds to the name of the
debugger.

Sometimes these methods also use Kernel32
ReadProcessMemory() to read process
memory and then look for debugger-related
strings such as "x64dbg", "IDA", "OllyDBG",
etc. to reverse engineer the debugger. to imple-
ment. After getting the debugger. The malware
will stop his execution and silently exit or
terminates the process.

Solution:
Another solution is to check the main process,
including patching the kernel 32 patch!
Process32NextW() always fails and prevents
the developer from enumerating the process.

10. Device Drivers

An old technique is to verify that the debugger
is running in a Kernel Mode in the system and
try to, access device drivers. This technique is
very simple and consists of simply making a
call to the against well-known device names

byte value 0xCC (INT3 / Breakpoint
Interrupt)[17]. Finding the byte 0xCC in the
API code and protector code will help you
locate software breakpoints as seen by the
example of assembly code in Figure 13.

Figure 13 Assembly Code of Software
Breakpoint Detection

C/C++ Code:
As we can C/C++ code in the Figure 14.

Figure 14. C/C++ code of Software Break-
point Detection

Solution:
Hardware breakpoints can be reverse
engineered if software breakpoints are identi-
fied. If you need to set a breakpoint in the API
code, and when the packer tries to find a break-
point in the API code, reverse engineering the
UNICODE API version allows for the setting
of breakpoints. That eventually calls the ANSI
version, such as LoadLibraryExW LoadLibrar-

used by kernel-mode debuggers, such as
SoftICE, using Kernel32!CreateFile().Some
versions of Soft-ICE also add numbers to the
device name, making it to check. The reversing
forum's suggested technique is to brute force
the corresponding digits until the right device
name is discovered[14].The new packer also
uses device driver detection techniques to
detect system monitors such as “Process Moni-
tor” etc.

Solution:
Establishing a breakpoint in kernel32 is the
simple fix. When the breakpoint is reached,
CreateFileFileW() should either handle the
FileName parameter or alter its return value to
INVALID HANDLE VALUE (0xFFFFFFFF).

Process Memory:
A process can check or interact with its own
memory for the presence of a debugger. This
section includes anti-hitch methods[15] such
as process memory and thread context check-
ing, breakpoint DETECTION, PATCHING function
and debugging functions.

11. Breakpoint and Patching
Detection:

To verify if our code has any software break-
points, we may still inspect the process
memory, and we can also check the CPU
debug registers to see if any hardware break-
points have been set.

12. Software Breakpoints
Detection:

Software breakpoints are defined as break-
points that are created by altering the code at
the target location and replacing it with the

Of course, as with all malware analysis, the
best way to learn how to stop it by using
debugging techniques by continuously testing
malware. Malware developers are constantly
coming up with new techniques to evade
debuggers and keep security researchers like
you on their toes.

17. References:

[1] V. Bhardwaj, V. Kukreja, C. Sharma, I.
Kansal, and R. Popali, “Reverse
Engineering-A Method for Analyzing
Malicious Code Behavior,” in 2021
International Conference on Advances
in Computing, Communication, and
Control (ICAC3), Dec. 2021, pp. 1–5.
doi: 10.1109/ICAC353642.2021.
9697150.

[2] M. N. Gagnon, S. Taylor, and A. K.
Ghosh, “Software Protection through
Anti-Debugging,” IEEE Security &
Privacy Magazine, vol. 5, no. 3, pp.
82–84, May 2007, doi: 10.1109/M-
SP.2007.71.

[3] J.-W. Kim, J. Bang, Y.-S. Moon, and
M.-J. Choi, “Disabling Anti-Debugging
Techniques for Unpacking System in
User-level Debugger,” in 2019 Interna-
tional Conference on Information and
Communication Technology Conver-
gence (ICTC), Oct. 2019, pp. 954–959.
doi: 10.1109/ICTC46691.2019.
8939719.

[4] T. Akhtar, B. B. Gupta, and S. Yamagu-
chi, “Malware propagation effects on
SCADA system and smart power grid,”
in 2018 IEEE International Conference
on Consumer Electronics (ICCE), Jan.

looking for breakpoints in the process memory,
we can check to see if kernel32IsDebuggerPre-
sent() has been altered[20].The first few bytes
of this function can be read and compared to
the same function's bytes from other processes.
Windows libraries are loaded at the same base
address throughout the process, even if the
Address Space Layout Randomization (ASLR)
feature is enabled. The base address only
changes across reboots but remains the same
for the duration of the session.

Mitigations:
• During Debugging: Enter the function

that conducts the Step-Over check and
run it till the end(Ctrl + F9).

• Finding the specific check and either
path it with NOPs or setting the return to
a value that permits the application to
keep running are the best ways to
mitigate all "memory" techniques,
including anti-step over.

Conclusion:
To defend itself against reverse engineering
analysis, the malware employs anti-debugging
techniques. Debug analysis can be avoided by
anti-debugging techniques. Reverse engineers
need advanced debuggers and knowledge to
analyze malware using anti-debugging
techniques. By applying common sense and
slowly debugging the process, it is possible to
identify the majority of anti-debugging
techniques. For example, if you see that the
code is terminating too rapidly in a conditional
jump, which could mean preventing debugging
technical. The most widely used anti-debug-
ging methods involve fs access: [30h] by using
a Windows API or performing a time check.

ison of Machine Learning Models in Malware
Packing Detection,” in 2020 21st
Asia-Pacific Network Operations and
Management Symposium (APNOMS),
Sep. 2020, pp. 377–380. doi:
10 .23919 /APNOMS50412 .2020 .
9237007.

[16] R. R. Branco and G. N. Barbosa,
“Distributed malware analysis schedul-
ing,” in 2011 6th International Confer-
ence on Malicious and Unwanted
Software, Oct. 2011, pp. 34–41. doi:
10.1109/MALWARE.2011.6112324.

[17] K. Coogan, S. Debray, T. Kaochar, and
G. Townsend, “Automatic Static
Unpacking of Malware Binaries,” in
2009 16th Working Conference on
Reverse Engineering, 2009, pp.
167–176. doi: 10.1109/WCRE.2009.24.

[18] G. Jeong, E. Choo, J. Lee, M.
Bat-Erdene, and H. Lee, “Generic
unpacking using entropy analysis,” in
2010 5th International Conference on
Malicious and Unwanted Software, Oct.
2010, pp. 98–105. doi: 10.1109/MAL-
WARE.2010.5665789.

[19] C. R. Hill, “A real-time microprocessor
debugging technique,” ACM SIGPLAN
Notices, vol. 18, no. 8, pp. 145–148,
Aug. 1983, doi: 10.1145/1006142.
1006179.

[20] R. Sihwail, K. Omar, K. Zainol Ariffin,
and S. al Afghani, “Malware Detection
Approach Based on Artifacts in Memory
Image and Dynamic Analysis,” Applied
Sciences, vol. 9, no. 18, p. 3680, Sep.
2019, doi: 10.3390/app9183680.

yA or the native API corresponding to Load-
DLL to replace.

13. Hardware Breakpoints:

DR0, DR1, DR2, and DR3 are debug registers
that can be obtained from the thread context.
Debug registers 0-3 are used to store virtual
address of the so-called hardware breakpoints.
C/C++ Code:

As we can see C/C++ code in the figure 15.

Figure 15 C/C++ code of Hardware
Breakpoints

14. Memory Checks:

This section includes methods for directly
inspecting or modifying a process's virtual
memory in order to spot and stop debug-
ging[18].

15. Nt Query Virtual Memory ():

The memory page of the process in which the
code is located is shared by all processes prior
to the page being written. Then the OS creates
a replica of this page and allocates it to the
process's virtual memory[19], so the page is no
longer "shared". Now we can see how to
declare NTDLL, as we can see in figure 16.

NTDLL declarations:

Figure 16 NTDLL Deceleration of
NtQueryVirtualMemory()

C/C++ Code:
As we can see the C/C++ code in the Figure
17.

Figure 17 C/C++ Code for Hardware
Breakpoints

16. Detecting A function Patch:

Calling kernel32 is a common approach to find
a debugger. IsDebuggerPresent(). By altering
the outcome in the EAX register or hacking the
kernel32, you may easily get around this
check! IsDebuggerPresent(). Instead of

2018, pp. 1–6. doi: 10.1109/ICCE.2018.
8326281.

[5] G. Wang, L. Zhuang, T. Liu, S. Li, S.
Yang, and J. Lan, “Formal analysis and
verification of industrial control system
security via timed automata,” in 2020
International Conference on Internet of
Things and Intelligent Applications
(ITIA), Nov. 2020, pp. 1–5. doi:
10.1109/ITIA50152.2020.9312289.

[6] A. J. Smith, R. F. Mills, A. R. Bryant, G.
L. Peterson, and M. R. Grimaila,
“REDIR: Automated static detection of
obfuscated anti-debugging techniques,”
in 2014 International Conference on
Collaboration Technologies and
Systems (CTS), May 2014, pp. 173–180.
doi: 10.1109/CTS.2014.6867561.

[7] J. Raber, “Stealthy Profiling and Debug-
ging of Malware Trampolining from
User to Kernel Space,” in 2011 18th
Working Conference on Reverse
Engineering, Oct. 2011, pp. 431–432.
doi: 10.1109/WCRE.2011.62.

[8] J. G. Alcalde, G. Chua, I. M. Demabildo,
M. A. Ong, and R. L. Uy, “CALVIS32:
Customizable assembly language
visualizer and simulator for intel x86-32
architecture,” in 2016 IEEE Region 10
Conference (TENCON), Nov. 2016, pp.
214–217. doi: 10.1109/TEN-
CON.2016.7847992.

[9] Chan Lee Yee, Lee Ling Chuan, M.
Ismail, and N. Zainal, “A static and
dynamic visual debugger for malware
analysis,” in 2012 18th Asia-Pacific
Conference on Communications

(APCC), Oct. 2012, pp. 765–769. doi:
10.1109/APCC.2012.6388211.

[10] Xu Chen, J. Andersen, Z. M. Mao, M.
Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and
anti-debugging behavior in modern
malware,” in 2008 IEEE International
Conference on Dependable Systems and
Networks With FTCS and DCC (DSN),
2008, pp. 177–186. doi: 10.1109/
DSN.2008.4630086.

[11] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[12] P. Xie, X. Lu, Y. Wang, J. Su, and M. Li,
“An Automatic Approach to Detect
Anti-debugging in Malware Analysis,”
2013, pp. 436–442. doi: 10.1007/
978-3-642-35795-4_55.

[13] A. Mylonas and D. Gritzalis, “Practical
Malware Analysis: The Hands-On
Guide to Dissecting Malicious
Software,” Comput Secur, vol. 31, no. 6,
pp. 802–803, Sep. 2012, doi: 10.1016/j.-
cose.2012.05.004.

[14] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[15] J.-W. Kim, J. Namgung, Y.-S. Moon,
and M.-J. Choi, “Experimental Compar-

one or more techniques in computer code that
make it difficult to reverse engineer or debug
the target process. These techniques are ways
for a program to detect whether it is running
under the control of a debugger[11]. If a
debugger is detected, the malware will execute
arbitrary code, usually code to terminate. The
anti-debugging process slows down the
reverse engineering process but doesn't stop it.

2. Is Debugger Present:

The easiest debugger detection technique is to
check the BeingDebugged flag in the Process
Environment Block (PEB). The kernel32IsDe-
buggerPresent() function was introduced in
Windows 95, and the Application Programma-
ble Interface (API) checks the value of this flag
to identify the process whether it is in the
user-mode debugger. This code (same 32-bit or
64-bit Windows environment) can be used for
verification to check the 32-bit or 64-bit
Windows environment. As we can see the
assembly code of the IsDebuggerPresent() in
Figure 1.

Figure 1. Assembly code of IsDebuggerPre-
sent()

C/C++ Code:
As we can see in the example if IsDebugger-
Present() in Figure 2.

Figure 2. C/C++ code of IsDebuggerPre-
sent()

Solution:
This technique can be easily bypassed by
manually patching the Process Environment
Block (PEB). BeingDebugged flag with the
value 0x00 in the bytes.

3. Nt Query Information Process
() / Check Remote Debugger
Present ()

CheckRemoteDebuggerPresent() is another a
debugger should be attached to a process? Use
this Check Remote DebuggerPresent() to
decide. The API calls ntdll!ProcessDebugPort
inside the kernel A value that is not zero in the
DebugPort field tells that the process is being
debugged in user mode by the debugger. If so,
ProcessInformation will be set to
0xFFFFFFFF, otherwise the value of
ProcessInformation will be 0x0.The Check-
RemoteDebuggerPresent()[12] function in
Kernel32 is functional.On either the 32-bit or
64-bit version of Windows, the check can be
made by using this 32-bit code to look at the
32-bit window environment. The Function The
function CheckRemoteDebuggerPresent()
takes 2 parameters; the first parameter is the
(PID), and the A pointer to a Boolean variable
serves as the second parameter. That will hold
TRUE if the process is being debugged. As we
can see from the C/C++ code in Figure 3.

Figure 3 C/C++ Code for CheckRemoteDe-
bugger

Ntdll! NtQueryInformationProcess() has 5
parameters. To detect the debugger, the

to hide threads from the debugger. It can also be
done with the help of a non-documented value,
which is not documented but can be used.
THREAD_INFORMATION_CLASS::Threa-
dHideFromDebugger (0x11). When a thread is
hidden in the debugger, it will not be informed
of anything pertaining to that thread not be
informed of anything pertaining to that thread.
The thread is also capable of anti-debugging
methods, such as examining debug flags, code
checksums, etc. If there are hidden breakpoints
in the thread, If we try to keep the main thread
hidden from the debugger, either the process
will crash or the debugger will gets stuck. An
example of calling the NtSetInformation-
Thread would be like this, as we can see in
Figure 7.

Figure 7. Assembly code of NtSetInforma-
tionThread()

C/C++ Code:
As we can see, C/C++ code in Figure 8.

Figure 8. C/C++ code of NtSetInformation-
Thread()

Solution:
The breakpoint is set to ntdll!NtSetInforma-
tionThread(), and when the breakpoint is hit,
reverse engineers can modify the EIP, to
prevent the API calls from reaching the kernel
and being called from other functions.

ProcessInformation class is set to as
ProcessDebugPort as we can see C/C++ code
in the Figure 4.

Figure 4. C/C++ Code for NtQueryInfor-
mationProcess()

This example shows how the call to the Check-
RemoteDebuggerPresent() and To see whether
the current process is being debugged, utilize
the NtQueryInformationProcess function. as
we can see in Figure 5 and Figure 6.

Figure 5 Assembly code of CheckRemot-
eDebuggerPresent()

Figure 6. Assembly code of NtQueryInfor-
mationProcess()

Solution:
One solution is to set NtQueryInformationPro-
cess(return)'s value is a breakpoint. ProcessIn-
formation is patched to a DWORD value of 0
when the breakpoint is reached of 0.

4. Nt SetInformation Thread:

NtSetInformationThread()[13] is usually used
to set the priority of a thread. It can also be used

5. SwitchDesktop()

Platforms based on Windows NT allow for
multiple desktop sessions. The windows of the
previous active desktop can be hidden by
choosing a different active desktop, but there is
no visible way to return to the previous
desktop. the mouse and keyboard events won't
be sent to the debugger from the debugger's
desktop.[13] , they no longer divulge their
source, either. Debugging could become
impossible as a result. Both the 32-bit and
64-bit versions of Windows can be used to
make this call. Here is an example of a 32-bit
version of Windows as we can see in Figure 9.

Figure 9. Assembly code of SwitchDesk-
top()

C/C++ Code:
As we can see the C/C++ code in the Figure 10.

Figure 10 C/C++ code of SwitchDesktop()

6. Execution Time / Timing
Checks

When a reverse engineer tries to debug a

process and uses a single step in code, there is
a significant delay between the execution of
the individual’s instructions[13]. The process
is running under a debugger if the amount of
time required is excessive compared to a
typical execution. Here is a list of some
instructions that can be used to increase the
execution time of the instruction.

a. RDTSC (Read Time-Stamp Counter)

b. RDPMC (Read Performance-Monitor-
ing Counters)

c. GetLocalTime

d. GetSystemTime

e. GetTickCount

Now we will take an example of a timing
check.

As we can see in Figure 11.

Figure 11 Assembly Code of GetTick-
Count()

We check the synchronization using the
kernel32 GetTickCount() API or manually
verify that the SharedUserData structure's
TickCountLow and TickCountMultiplier
entries are always set to 0xc.Identifying these
timing techniques can be challenging,
especially when RDTSC is used as spam, when
other obscure techniques are used to mask
them.

situations. They are an essential part of the
silent weapon that kills people stealthily and
invisibly. The subject of the current research is
forensic chemistry and toxicology, which is
fully concerned with the introduction, classifi-
cation, effects, and influencing factors of
poisons, as well as their detection and testing.
The purpose of this article is to investigate how
they act and function after they enter the
human body.

5. References

1. Ibrahim, M. S., & Abdullah, M. (2010).
Forensic Accounting in Malaysia: Some
Insights from Practitioners. Asian
Journal of Accounting Perspectives,
3(1), 14-21.

2. Kloosterman, A., Mapes, A., Geradts,
Z., van Eijk, E., Koper, C., van den Berg,
J., ... & van Asten, A. (2015). The
interface between forensic science and
technology: how technology could cause
a paradigm shift in the role of forensic
institutes in the criminal justice system.
Philosophical Transactions of the Royal
Society B: Biological Sciences,
370(1674), 20140264.

3. Yaman, F. (2021). Examining students’
quality and perceptions of argumenta-
tive and summary writing within a
knowledge generation approach to
learning in an analytical chemistry
course. Chemistry Education Research
and Practice, 22(4), 985-1002.

4. Hibbert, D. B. (2007). Quality assurance
in the analytical chemistry laboratory.
Oxford University Press.

may be divided into three groups: homicidal,
suicidal, and accidental [16].

Homicidal Poisoning
The victim is frequently subjected to attempts
to "nurse" them back to health by poisoners
[17]. Serial poisoners typically enjoy the rush
of having control over the victim's life and
suffering, and poisoners frequently take
delight in seeing their victims suffer. Homicide
by poisoning perpetrators frequently work in
the healthcare or medical industries. The
substances that are most appealing to offenders
are those that are deadly in little doses. The
ideal poison for a homicide has no taste, is
undetectable, has no odour, and exhibits symp-
toms that are comparable to those of illnesses
that are found in nature [18]. Since current
scientific techniques and advancements have
made poison detection simpler, it has becom-
ing more and more challenging to find a poison
having all of these characteristics [19].

Sucidal Poisoning:
Self-poisoning, the non-violent way of suicide,
most frequently involves the use of medicine,
either over-the-counter (paracetamol) or
prescribed (such as antidepressants and
prescription analgesics), chemicals (pesti-
cides), or illegal narcotics [20].

Accidental poisoning
Accidental poisoning, which includes acciden-
tal drug overdose, occurs when a person
inadvertently poisons themself. Alcohol,
opioids (such as heroin or methadone),
sedatives, psychiatric pharmaceuticals (such as
antidepressants), antiepileptic, and anti-in-
flammatory medications are some of the
substances from which poisoning may result
[21].

Classification of poisons
Poisons are divided into two categories based
on how they affect the body and depending on
their chemical and physical characteristics.

Classification based upon the effect of
poison on the body:
A) Corrosive: When poisons come into
contact with tissues or organs, they become
corrosive, for example: a. Strong acids like
H2SO4,HCl, HNO3, etc. and strong alkalis
include NH4, Na/K hydroxides, etc [22].

B) Neurotoxins: Toxins known as neurotoxins
cause damage to nerve tissue. Exogenous
chemicals known as neurotoxins are a broad
category of neurological insults that can
negatively impact the function of both growing
and mature brain tissue.Lead, , glutamate,
ethanol (drinking alcohol), botulinum toxin
(e.g., Botox), tetanus toxin, nitric oxide and
tetrodotoxin are typical examples of neurotox-
ins [23].

C) Irritants poisons: They mostly cause
inflammation at the point of contact, particu-
larly in the skin, gastrointestinal system, and
respiratory tract [24]. A poison is categorized
as one that affects a system the most when it
causes death as a result of a systemic impact,
such as a heart poison, brain poison, or spinal
poison. The inorganic toxin arsenic is a hefty
metallic irritation. Due to its insoluble nature
in water and inability to be absorbed by the
digestive system, metallic arsenic is not harm-
ful. Arsenic trioxide, often known as sankhyal
or somalkar, is toxic. Arsenobetaine and arsen-
ocholine are two organic arsenic non-toxic
forms that are typically present in food that
humans frequently ingest [25]. Cod, haddock,
and shellfish contain them.

nervous system, particularly the brain, can be
proved by the use of proper and sensitive
procedures, even if many substances have
obvious effects elsewhere. The circulatory
system, the blood and hematopoietic system,
visceral organs such the liver, kidney, and lung,
and the skin follow in order of frequency of
involvement in systemic toxicity. The least
often targeted tissues for systemic effects
include muscle and bone. The frequency of
tissue reactions when drugs have a localized
effect primarily depends on the portal of
entrance (skin, gastrointestinal tract, respirato-
ry tract) [36].

Reversible versus Irreversible Toxic
Effects
Chemical toxicity can have both reversible and
irreversible consequences. The tissue's capaci-
ty to regenerate will play a significant role in
determining whether a chemical insult to a
tissue results in reversible or irreversible
damage. Therefore, whereas most injuries to
the central nervous system are mostly irrevers-
ible due to the differentiated cells of the central
nervous system being unable to divide and be
replaced, most injuries to a tissue like the liver,
which has a high capacity for regeneration, are
reversible. Chemicals can cause cancer and
permanent harmful consequences [37].

4. Conclusion

By analyzing the medical and legal elements of
a drug's harmful effects on organisms, forensic
toxicology uses chemical and analytical tools
to help establish the facts in forensic investiga-
tions. In situations of fatal poisoning and those
that may be related to criminal conduct, foren-
sic practise is essential. Poisons are typically
found in murder, suicide, or accident

5. Robertson, B., Vignaux, G. A., &
Berger, C. E. (2016). Interpreting
evidence: evaluating forensic science in
the courtroom. John Wiley & Sons.

6. Koehler, J. J. (2017). Forensics or
fauxrensics? Ascertaining accuracy in
the forensic sciences. Ariz. St. LJ, 49,
1369.

7. Klaassen, C. D., Hardman, J. G.,
Limbird, L. E., Molinoff, P. B., Ruddon,
R. W., & Gilman, A. G. (2006). Princi-
ples of toxicology and treatment of
poisoning. Goodman and GilmanÕs The
Pharmacological Basis of Therapeutics,
Eleventh Edition., McGraw Hill,
Columbus, OH, USA, 1739-1752.

8. Shorter, E. (2008). Before Prozac: The
troubled history of mood disorders in
psychiatry. Oxford University Press.

9. Yuan, H., Ma, Q., Ye, L., & Piao, G.
(2016). The traditional medicine and
modern medicine from natural products.
Molecules, 21(5), 559.

10. Li, L., Liu, T., Fu, C., Tan, L., Meng, X.,
& Liu, H. (2015). Biodistribution, excre-
tion, and toxicity of mesoporous silica
nanoparticles after oral administration
depend on their shape. Nanomedicine:
Nanotechnology, Biology and Medicine,
11(8), 1915-1924.

11. Newton, D. E. (2007). Forensic chemis-
try. Infobase Publishing.

12. Sharma, A. K., Tjell, J. C., Sloth, J. J., &
Holm, P. E. (2014). Review of arsenic
contamination, exposure through water

and food and low cost mitigation options
for rural areas. Applied Geochemistry,
41, 11-33.

13. Spitz, W. U., & Diaz, F. J. (2020). Spitz
and Fisher's medicolegal investigation
of death: guidelines for the application
of pathology to crime investigation.
Charles C Thomas Publisher.

14. Pétillon, J. M., & Ducasse, S. (2012).
From flakes to grooves: A technical shift
in antlerworking during the last glacial
maximum in southwest France. Journal
of Human Evolution, 62(4), 435-465.

15. Sharma, M., Jabin, S., & Sharma, M.
PHARMACEUTICAL POLLUTION: A
GRAVE CONCERN!!.

16. Sikary, A. K. (2019). Homicidal poison-
ing in India: A short review. Journal of
forensic and legal medicine, 61, 13-16.

17. Van Landeghem, A. A., De Letter, E. A.,
Lambert, W. E., Van Peteghem, C. H., &
Piette, M. H. (2007). Aconitine involve-
ment in an unusual homicide case.
International journal of legal medicine,
121(3), 214-219.

18. Gunn, A. (2019). Essential forensic
biology. John Wiley & Sons.

19. Trestrail, J. H. (2007). Types of Poisons.
Criminal Poisoning: Investigational
Guide for Law Enforcement, Toxicolo-
gists, Forensic Scientists, and Attorneys,
29-46.

20. Bonvoisin, T., Utyasheva, L., Knipe, D.,
Gunnell, D., & Eddleston, M. (2020).

Suicide by pesticide poisoning in India:
a review of pesticide regulations and
their impact on suicide trends. BMC
public health, 20(1), 1-16.

21. Manzar, N., Saad, S. M. A., Manzar, B.,
& Fatima, S. S. (2010). The study of
etiological and demographic character-
istics of acute household accidental
poisoning in children-a consecutive case
series study from Pakistan. BMC pediat-
rics, 10(1), 1-6.

22. Chibishev, A., Pereska, Z., Chibisheva,
V., & Simonovska, N. (2012). Corrosive
poisonings in adults. Materia
socio-medica.

23. Hu, Y., Chen, J., Fan, H., Xie, P., & He,
J. (2016). A review of neurotoxicity of
microcystins. Environmental science
and pollution research, 23(8),
7211-7219.

24. Waserman, S., & Watson, W. (2011).
Food allergy. Allergy, Asthma & Clini-
cal Immunology, 7(1), 1-7.

25. Borak, J., & Hosgood, H. D. (2007).
Seafood arsenic: implications for human
risk assessment. Regulatory Toxicology
and Pharmacology, 47(2), 204-212.

26. Pandey, G., & Madhuri, S. (2014).
Heavy metals causing toxicity in
animals and fishes. Research Journal of
Animal, Veterinary and Fishery Scienc-
es, 2(2), 17-23.

27. Stejskal, V., Vendl, T., Aulicky, R., &
Athanassiou, C. (2021). Synthetic and

natural insecticides: Gas, liquid, gel and
solid formulations for stored-product
and food-industry pest control. Insects,
12(7), 590.

28. Francois, M. R., & Stephen, F. (2015).
Phosphorus Compounds. In Hamilton &
Hardy's Industrial Toxicology (pp.
383-390). Hoboken, New Jersey: John
Wiley & Sons, Inc..

29. Kaushik, R. D. (2021). Methyl bromide:
Risk assessment, environmental, and
health hazard. In Hazardous Gases (pp.
239-250). Academic Press.

30. Thompson, J. P., & Marrs, T. C. (2012).
Hydroxocobalamin in cyanide poison-
ing. Clinical Toxicology, 50(10),
875-885.

31. Dash, R. R., Gaur, A., & Balomajumder,
C. (2009). Cyanide in industrial waste-
waters and its removal: a review on
biotreatment. Journal of hazardous
materials, 163(1), 1-11.

32. Mishra, A. (2020). Forensic Chemistry
and Toxicology. In Medical Toxicology.
IntechOpen.

33. Donovan, M. D. (2009). Effect of route
of administration and distribution on
drug action. In Modern Pharmaceutics
Volume 1 (pp. 173-198). CRC Press.

34. Boey, A., & Ho, H. K. (2020). All roads
lead to the liver: metal nanoparticles and
their implications for liver health. Small,
16(21), 2000153.

35. Jett, D. A., Sibrizzi, C. A., Blain, R. B.,

C) Cyanides
The majority of cases of severe or deadly
cyanide poisoning involve the suicide intake of
cyanide salts. A very poisonous volatile liquid,
hydrogen cyanide. When cyanide salts react
with acids or are formed in the stomach after
oral consumption, hydrogen cyanide fumes are
released [30]. Although HCN has a distinctive
almond-like odour, up to 50% of people cannot
detect it. Even while this might have been
connected to air flow ventilation systems in
post-mortem rooms, it was surprising that it
was not a distinguishing feature during autopsy
of a significant number of cyanide suicide
fatalities. The industrial applications of potas-
sium and sodium cyanide as soluble salts of
cyanide include electroplating, metal process-
ing, and laboratory reagents [31].

B. Organic poisons

a)Ethanol: A much of ethanol is toxic, so
avoid using it.

b. Other alcohols: Poisonous alcohols include
methyl and isopropyl.

Methanol, a substance used in the chemical
and polish industries as well as clandestine
alcoholic beverages, may be fatal when
consumed.

c. Phenol: Carboxylic acid or phenol may be
toxic. The main purpose of it is as a disinfect-
ant .

d. Other substances: Poisonous industrial
chemicals include benzene, chloral hydrate,
chlorinated hydrocarbons, and others. Chloral
hydrate might be present in illegal alcoholic

beverages in a number of poisoning instances
[32].

Route & Site of Exposure
When administered intravenously, toxic
substances often have the most impact and the
fastest reaction. For alternative routes, inhala-
tion, intraperitoneal, sucutaneous, intramuscu-
lar, intradermal, oral, and topical would rough-
ly be listed in decreasing order of efficacy [33].
Additionally, the method of delivery might
affect an agent's toxicity. For instance, it would
be reasonable to anticipate that a substance that
is detoxified in the liver would be less hazard-
ous when administered orally through the
portal circulation than systemically (inhala-
tion) [34].

Duration & Frequency of Exposure
The toxic effects brought on by a single expo-
sure to multiple substances differ significantly
from those brought on by repeated exposure.
For instance, benzene's major acute toxic
symptom is central nervous system depression,
but prolonged exposure can cause leukaemia.
Acute exposure to quickly absorbed substances
is likely to result in immediate toxicity, but it is
also possible for acute exposure to result in
delayed toxicity that may or may not be
comparable to the toxic consequences of
chronic exposure. In contrast, repeated admin-
istration of a hazardous agent may result in
certain short-term (acute) side effects in
addition to the agent's long-term, low-level, or
chronic effects [35].

Local versus Systemic Toxicity
The central nervous system is the target organ
of toxicity that is most commonly engaged in
systemic toxicity. Damage to the central

Hartman, P. A., Lein, P. J., Taylor, K. W.,
& Rooney, A. A. (2020). A national
toxicology program systematic review
of the evidence for long-term effects
after acute exposure to sarin nerve agent.
Critical reviews in toxicology, 50(6),
474-490.

36. El-Boghdadly, K., Pawa, A., & Chin, K.
J. (2018). Local anesthetic systemic
toxicity: current perspectives. Local and
regional anesthesia, 11, 35.

37. Grandin, E. W., Ky, B., Cornell, R. F.,
Carver, J., & Lenihan, D. J. (2015).
Patterns of cardiac toxicity associated
with irreversible proteasome inhibition
in the treatment of multiple myeloma.
Journal of cardiac failure, 21(2),
138-144.

Poisons are also Categorized According
to their Characteristics:

A) Inorganic Poisons
i) Metallic Poisoning
After exposure, microscopic metal molecules
build up in your body and cause heavy metal

poisoning. Without treatment, heavy metals
can produce symptoms that are potentially
fatal because they adhere to your cells and stop
them from functioning.Your body can become
poisonous to a variety of metals [26]. The most
prevalent poisonous metals are:

Ii) Non Metallic Poisons

A) Phosphine and phosphides
A variety of industrial operations employ
phosphonate, a highly poisonous colourless
gas with a pungent garlic or fishy odour. It is
also produced when phosphides are exposed to
moisture.[27] In underdeveloped nations,
aluminium phosphide is widely utilized as a
cheap and efficient grain fumigant and rodenti-
cide [28].

B) Bromide
The colourless gas methyl bromide has histori-
cally been employed as a refrigerant and in fire
extinguishers, but it is most frequently utilized
as an insecticidal fumigant for grain storage

and soil. Methyl bromide is a metabolite that
produces the bromide ion and is linked to
unintentional poisoning, especially in work
environments [29]. By passive diffusion, the
bromide ion is quickly absorbed from the
stomach and proximal small intestines.
Bromide ions are mostly found in extracellular
fluid, where they have similar properties to
chloride ions. The kidney is the most signifi-
cant organ for elimination. Their half-life of
elimination is relatively lengthy, lasting around
10 days after an acute dose or many weeks
after stopping a long-term consumption,
especially in situations of bromide intoxica-
tion.

Forensic Analysis
The use of scientific knowledge that is based
on legal issues is known as forensic science
[5]. In order to determine what happened,
when it happened, and who was responsible,
forensic science primarily examines biological
and physical evidence. To attain accuracy and
precision, forensic scientific proficiency is
crucial [6].

2. Forensic Toxicology

The study of poisons' and drugs' detrimental
effects on living things is known as toxicology
[7]. It include the investigation of the signs,
causes, effects, and methods of handling
certain toxins and medications. If the use of
medications and poisons results in death in
dubious circumstances, it becomes rhetorical
pharmacological medicine [8].

The field of medicine may include pharmaco-
logical medicine as a sub-field. The study of
medicine includes all interactions between
drugs and other chemicals on living things [9].
Drug administration, body absorption, activi-
ties and interactions, metabolism, and excre-
tion are all aspects of medicine [10].

Fig: Stages of forensic toxicology

3. History of Forensic Chemistry

Rhetorical chemistry advancements started to
become apparent by the middle of the 19th
century. Blood tests were developed at this

time, the Marsh test for arsenic was created in
1832, and experiments on bullet "fingerprint-
ing" were conducted in the 1980s. Christian
Friedrich Schönbein (1799–1868), a
German–Swiss scientist, developed the first
accurate method for differentiating human
blood in 1863 [11]. For more than a century
and a half, arsenic has been widely used as a
toxin. Its excellence goes back to the seventh
century. During the 16th century, the Arab
philosopher Abu Musa Jabir Ibn Hayyan
(about 721-ca. 815), also known as Geber,
found the process for transforming the grey,
metallic-looking elemental arsenic ,an elemen-
tal chemical compound (As2O3; a material)
into (White, flavourless, and odourless
powder). Arsenic may just be an extra chemi-
cal in person's food or beverage without raising
suspicion [12]. Over the following sixty years,
attempts to employ bullet "fingerprinting" in
criminal investigations were few [13]. But by
the 1890s, a number of events spurred renewed
interest in the method as a means of identifying
possible offenders. Of those aspects, the devel-
opment of the replacement method known as
"grooving" for making gun barrels was
perhaps the most crucial. The process of
grooving involves carving spiral grooves into
the inner surface of tubing. When a bullet
travels through the barrel, the grooves allow it
to spin; this motion prevents the bullet from
tipping over after it exits the tube. Different
grooving techniques have been employed by
numerous gun makers [14].

Poisoning
It is referred to as the harmful consequence of
a poison or harmful chemical agent. It causes
the emergence of negative reactions to danger-
ous substances or chemicals [15]. Basically, it

1. Introduction

 The word "forensic" comes from the
Latin word "forensis," which means "public,"
"to the prospect and discussion"[1]. Legal
concerns can be resolved in a variety of ways
thanks to rhetorical science. Rhetorical
science, which includes a variety of disciplines
such as rhetorical chemistry, rhetorical social
science, rhetorical biology, rhetorical medi-
cine, rhetorical engineering, rhetorical material
sciences, machine rhetorical, and others, is
generally used to settle legal disputes, fairly
enforce criminal and civil laws, and protect the

public. A broad phrase that covers most of the
duties performed by the law laboratory is
forensic chemistry[2]. Trace analysis and
medicine are techniques employed in the field
of rhetorical chemistry. Analytical chemistry
that is applied is forensic chemistry. Rhetorical
chemistry adds comparison study to the assign-
ment whereas analytical chemistry covers both
quantitative and qualitative chemical analysis
[3]. Similarly, spectrometry can quickly deter-
mine whether a sample is made of nylon or
polythene. Therefore, analytical chemistry
offers the quantitative and qualitative data
needed to respond to rhetorical questions [4].

1. Introduction

 Prior to then, malware Development
served as a showcase for malware coders.
Malware analysts have used debuggers to run a
malware program's instructions one by one,
introducing modifications to memory spaces,
settings as well as variable values. Debuggers
are the most commonly used reverse engineer-
ing tools, such as Interactive Disassembler
(IDA), x64dbg, and OllyDBG. If debugging is
successful, it helps to understand malware
behavior and its capabilities. This is something

malware developers would like to avoid. That
is why they must implement anti-debugging
techniques. Anti-debugging techniques[3] can
be used to merely detect the presence of a
debugger, deactivate it, lose control of it, or
even take advantage of a flaw in the debugger.
Disabling or avoiding debugger checks can be
done generally and specifically. However, you
can exploit this vulnerability against specific
debuggers. Furthermore, The Supervisory
Control and Data Acquisition (SCADA)[4]
system has a vulnerability, according to the
Trend Micro report "Unseen Threats, Immi-
nent losses,” which is the part of industrial

manually. The fs segment register can access
the Process Environment Block (PEB) at fs:
[30]. On an x86 [8] computer, this register
corresponds to a Thread Information Block
(TIB).There is also a flag below the Process
Environment Block (PEB) that indicates
whether the first memory space of the process
was created in debug mode. Provide an offset
of 0x18 in the Process Environment Bloc
(PEB). So, here I break down the anti-debug-
ging techniques into two categories: static
anti-debugging and dynamic anti-debugging
[9], as seen in the Table 1 below.

Table 1. Static Vs Dynamic Techniques
Difference

In our research we will discuss we will discuss
some of the main anti-debugging techniques
and how a reverse engineer can be able to
identify them easily for example in this paper
we will discuss about the IsDebuggerPresent,
TimeChecks, NtQueryInformationProcess,
NtSetInformationThread, SwitchDesktops,
SeDebugPrivilege, ParentProcess, Debugger-
Window, DeviceDrivers etc.

Anti-Debugging Techniques Mechanism:
Anti-debugging[10] is the implementation of

control systems (ICS)[5]. In addition, In many
situations, knowing how to apply anti-debug-
ging techniques to malicious code to prevent it
from being tracked down and evaluated is also
helpful. One of the main tools used by malware
analysts and reverse engineers is the debugger.
What is a debugger? A debugger is software
that is used to evaluate and control the flow of
execution of other executables or software. By
using a debugger, we can execute each instruc-
tion step by step and can note down the chang-
es that can be displayed on the stack, memory
dumps, registers, etc. Most packers use these
techniques to determine whether the system is
running a debugger or if a process is being
debugged. These debugger detection meth-
ods[6] include checks that are relatively basic
all the way up to ones that are applicable to
native Application Programming Interfaces
(APIs) and kernel objects[7].This section
discusses how anti-debugging techniques
work. Each process's user space contains a data
structure called a Process Environment Block
(PEB), which holds information about the
related process. Each process's user space
contains a data structure called a Process
Environment Block (PEB), which holds infor-
mation about the related process. It is intended
to access Windows API (WinAPI)It is intended
to access Windows API (WinAPI) but access is
not restricted by this. Process Environment
Block (PEB) can be accessed directly from
memory. Checking the value of the Process
Environment Block (PEB) structure that has
been debugged is a relatively straightforward
implementation and technique. As we know
that there are so many Applications Program-
mable Interfaces (APIs) which are documented
and undocumented. For example, IsDebugger-
Present, which we will discuss later in this
paper. To enhance, we can also check the APIs

If the process can open the CSRSS.EXE
process, then SeDebugPrivilege is active when
the process is accessed.

Token pointing to the process being debugged.
The test is valid for the following reasons: The
Process Security Descriptor CSRSS.EXE
allows the system access to the process.

However, if the process has SeDebugPrivilege
privilege, other processes have independent
access to the Security Descriptor. This permis-
sion is only granted to administrative groups
by default, as we can see in Figure 12.

Figure 12 Assembly Code of SeDebugPrivi-
lege()

This control uses ntdll! The CSRSS.exe
GetProcessId() API gets the Process ID (PID)
 from CSRSS.EXE. You can get it manually by
looking at the Process ID CSRSS.EXE
processes. If OpenProcess() succeeds, SeDe-
bugPrivilege is activated, indicating that the
process is currently running and debugging,
too.

Solution:
The ntdll breakpoint can be hit by setting a
breakpoint as a solution. Returns from
NtOpenProcess(). If PID passed by
CSRSS.exe is CSRSS.exe, set the EX-value to
0xC0000022 (STATUS_ACCESS_DENIED).

Solution:
One of the solutions is to identify where the
time checks are and try to avoid stepping into
them. and the code between these time checks.
Reverse Engineers can place a breakpoint
before that delta and execute instead of steps
until a breakpoint is reached or a breakpoint is
reached. We can also set a breakpoint in
GetTickCount() to specify where to call it or to
change its return value. Mitigations During
Debugging: just fill time checks with NOPs
and set the result of these checks to the appro-
priate value. For anti-debugging solution
development: there is no great need to do
anything with it, as time checks are not very
reliable, but you can still hook timing functions
and accelerate the time between calls.

Mitigations:
• During Debugging, just fill time checks

with NOPs and set the result of these
checks to the appropriate value.

• For anti-debugging solution develop-
ment: there is no great need to do
anything with it, as time checks are not
very reliable, but you can still hook
timing functions and accelerate the time
between calls.

7. SeDebugPrivilege:

By default, the SeDebugPrivilege permission
is disabled for the process access token. When
a debugger like x32dbg, OllyDBG, etc. loads a
process, SeDebugPrivilege permission is
enabled. This is because these debuggers keep
trying . SeDebugPrivilege permissions are
inherited.

Parent Process:
Users launch apps by clicking on the executa-
ble's icon that the shell process displays
(Explorer.exe).By clicking on the executable's
icon that the shell process displays, users can
launch apps (Explorer.exe).Due to this,Explor-
er.exe becomes the parent process of the active
process. This will show that the program was
created by someone else and suggest that you
can debug it.

1. Using Process32First/Next(), it will list
every process and note explorer.exe.
PROCESS32.szExeFile and the PRO-
CESSENTRY32.th32parentProcessID
are the two files that provide the process
ID and the parent process ID of the
current process, respectively.

2. The target is being debugged if the
Process ID (PID) of the parent process
differs from the Process ID (PID) of the
explorer.exe.

Solution:
We need to patch the element of
Kernel32!Process32NextW() that contains the
code that performs a return after setting the
value of EAX to 0.

8. Debugger Window:

The presence of the debug window is a flag
that the debugger is running system[13].
Because the debugger creates windows with
special class names (OllyDBG for OLLYDBG
and WinDbgFrameClass for WinDbg), user32
can easily identify these debug windows!
FindWindow`() or User32! findWindowEx().

Solution:
One solution is to set breakpoints in FindWin-
dow() and FindWindowEx() When the break-
point is hit, modify the value of the
lpClassName string parameter to prevent the
API from functioning. Setting the return value
to NULL is another option.

9. Debugger Process:

List all the processes on the system and see
whether the process name matches the name of
the debugger to find out if it is currently
running (for example, OLLYDBG.EXE, wind-
bg.exe, etc.).Simple to implement; just use
Process32First / Next() after confirming that
the image name corresponds to the name of the
debugger.

Sometimes these methods also use Kernel32
ReadProcessMemory() to read process
memory and then look for debugger-related
strings such as "x64dbg", "IDA", "OllyDBG",
etc. to reverse engineer the debugger. to imple-
ment. After getting the debugger. The malware
will stop his execution and silently exit or
terminates the process.

Solution:
Another solution is to check the main process,
including patching the kernel 32 patch!
Process32NextW() always fails and prevents
the developer from enumerating the process.

10. Device Drivers

An old technique is to verify that the debugger
is running in a Kernel Mode in the system and
try to, access device drivers. This technique is
very simple and consists of simply making a
call to the against well-known device names

Study of the Anti-Debugging Techniques and their Mitigations

35LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

byte value 0xCC (INT3 / Breakpoint
Interrupt)[17]. Finding the byte 0xCC in the
API code and protector code will help you
locate software breakpoints as seen by the
example of assembly code in Figure 13.

Figure 13 Assembly Code of Software
Breakpoint Detection

C/C++ Code:
As we can C/C++ code in the Figure 14.

Figure 14. C/C++ code of Software Break-
point Detection

Solution:
Hardware breakpoints can be reverse
engineered if software breakpoints are identi-
fied. If you need to set a breakpoint in the API
code, and when the packer tries to find a break-
point in the API code, reverse engineering the
UNICODE API version allows for the setting
of breakpoints. That eventually calls the ANSI
version, such as LoadLibraryExW LoadLibrar-

used by kernel-mode debuggers, such as
SoftICE, using Kernel32!CreateFile().Some
versions of Soft-ICE also add numbers to the
device name, making it to check. The reversing
forum's suggested technique is to brute force
the corresponding digits until the right device
name is discovered[14].The new packer also
uses device driver detection techniques to
detect system monitors such as “Process Moni-
tor” etc.

Solution:
Establishing a breakpoint in kernel32 is the
simple fix. When the breakpoint is reached,
CreateFileFileW() should either handle the
FileName parameter or alter its return value to
INVALID HANDLE VALUE (0xFFFFFFFF).

Process Memory:
A process can check or interact with its own
memory for the presence of a debugger. This
section includes anti-hitch methods[15] such
as process memory and thread context check-
ing, breakpoint DETECTION, PATCHING function
and debugging functions.

11. Breakpoint and Patching
Detection:

To verify if our code has any software break-
points, we may still inspect the process
memory, and we can also check the CPU
debug registers to see if any hardware break-
points have been set.

12. Software Breakpoints
Detection:

Software breakpoints are defined as break-
points that are created by altering the code at
the target location and replacing it with the

Of course, as with all malware analysis, the
best way to learn how to stop it by using
debugging techniques by continuously testing
malware. Malware developers are constantly
coming up with new techniques to evade
debuggers and keep security researchers like
you on their toes.

17. References:

[1] V. Bhardwaj, V. Kukreja, C. Sharma, I.
Kansal, and R. Popali, “Reverse
Engineering-A Method for Analyzing
Malicious Code Behavior,” in 2021
International Conference on Advances
in Computing, Communication, and
Control (ICAC3), Dec. 2021, pp. 1–5.
doi: 10.1109/ICAC353642.2021.
9697150.

[2] M. N. Gagnon, S. Taylor, and A. K.
Ghosh, “Software Protection through
Anti-Debugging,” IEEE Security &
Privacy Magazine, vol. 5, no. 3, pp.
82–84, May 2007, doi: 10.1109/M-
SP.2007.71.

[3] J.-W. Kim, J. Bang, Y.-S. Moon, and
M.-J. Choi, “Disabling Anti-Debugging
Techniques for Unpacking System in
User-level Debugger,” in 2019 Interna-
tional Conference on Information and
Communication Technology Conver-
gence (ICTC), Oct. 2019, pp. 954–959.
doi: 10.1109/ICTC46691.2019.
8939719.

[4] T. Akhtar, B. B. Gupta, and S. Yamagu-
chi, “Malware propagation effects on
SCADA system and smart power grid,”
in 2018 IEEE International Conference
on Consumer Electronics (ICCE), Jan.

looking for breakpoints in the process memory,
we can check to see if kernel32IsDebuggerPre-
sent() has been altered[20].The first few bytes
of this function can be read and compared to
the same function's bytes from other processes.
Windows libraries are loaded at the same base
address throughout the process, even if the
Address Space Layout Randomization (ASLR)
feature is enabled. The base address only
changes across reboots but remains the same
for the duration of the session.

Mitigations:
• During Debugging: Enter the function

that conducts the Step-Over check and
run it till the end(Ctrl + F9).

• Finding the specific check and either
path it with NOPs or setting the return to
a value that permits the application to
keep running are the best ways to
mitigate all "memory" techniques,
including anti-step over.

Conclusion:
To defend itself against reverse engineering
analysis, the malware employs anti-debugging
techniques. Debug analysis can be avoided by
anti-debugging techniques. Reverse engineers
need advanced debuggers and knowledge to
analyze malware using anti-debugging
techniques. By applying common sense and
slowly debugging the process, it is possible to
identify the majority of anti-debugging
techniques. For example, if you see that the
code is terminating too rapidly in a conditional
jump, which could mean preventing debugging
technical. The most widely used anti-debug-
ging methods involve fs access: [30h] by using
a Windows API or performing a time check.

ison of Machine Learning Models in Malware
Packing Detection,” in 2020 21st
Asia-Pacific Network Operations and
Management Symposium (APNOMS),
Sep. 2020, pp. 377–380. doi:
10 .23919 /APNOMS50412 .2020 .
9237007.

[16] R. R. Branco and G. N. Barbosa,
“Distributed malware analysis schedul-
ing,” in 2011 6th International Confer-
ence on Malicious and Unwanted
Software, Oct. 2011, pp. 34–41. doi:
10.1109/MALWARE.2011.6112324.

[17] K. Coogan, S. Debray, T. Kaochar, and
G. Townsend, “Automatic Static
Unpacking of Malware Binaries,” in
2009 16th Working Conference on
Reverse Engineering, 2009, pp.
167–176. doi: 10.1109/WCRE.2009.24.

[18] G. Jeong, E. Choo, J. Lee, M.
Bat-Erdene, and H. Lee, “Generic
unpacking using entropy analysis,” in
2010 5th International Conference on
Malicious and Unwanted Software, Oct.
2010, pp. 98–105. doi: 10.1109/MAL-
WARE.2010.5665789.

[19] C. R. Hill, “A real-time microprocessor
debugging technique,” ACM SIGPLAN
Notices, vol. 18, no. 8, pp. 145–148,
Aug. 1983, doi: 10.1145/1006142.
1006179.

[20] R. Sihwail, K. Omar, K. Zainol Ariffin,
and S. al Afghani, “Malware Detection
Approach Based on Artifacts in Memory
Image and Dynamic Analysis,” Applied
Sciences, vol. 9, no. 18, p. 3680, Sep.
2019, doi: 10.3390/app9183680.

yA or the native API corresponding to Load-
DLL to replace.

13. Hardware Breakpoints:

DR0, DR1, DR2, and DR3 are debug registers
that can be obtained from the thread context.
Debug registers 0-3 are used to store virtual
address of the so-called hardware breakpoints.
C/C++ Code:

As we can see C/C++ code in the figure 15.

Figure 15 C/C++ code of Hardware
Breakpoints

14. Memory Checks:

This section includes methods for directly
inspecting or modifying a process's virtual
memory in order to spot and stop debug-
ging[18].

15. Nt Query Virtual Memory ():

The memory page of the process in which the
code is located is shared by all processes prior
to the page being written. Then the OS creates
a replica of this page and allocates it to the
process's virtual memory[19], so the page is no
longer "shared". Now we can see how to
declare NTDLL, as we can see in figure 16.

NTDLL declarations:

Figure 16 NTDLL Deceleration of
NtQueryVirtualMemory()

C/C++ Code:
As we can see the C/C++ code in the Figure
17.

Figure 17 C/C++ Code for Hardware
Breakpoints

16. Detecting A function Patch:

Calling kernel32 is a common approach to find
a debugger. IsDebuggerPresent(). By altering
the outcome in the EAX register or hacking the
kernel32, you may easily get around this
check! IsDebuggerPresent(). Instead of

2018, pp. 1–6. doi: 10.1109/ICCE.2018.
8326281.

[5] G. Wang, L. Zhuang, T. Liu, S. Li, S.
Yang, and J. Lan, “Formal analysis and
verification of industrial control system
security via timed automata,” in 2020
International Conference on Internet of
Things and Intelligent Applications
(ITIA), Nov. 2020, pp. 1–5. doi:
10.1109/ITIA50152.2020.9312289.

[6] A. J. Smith, R. F. Mills, A. R. Bryant, G.
L. Peterson, and M. R. Grimaila,
“REDIR: Automated static detection of
obfuscated anti-debugging techniques,”
in 2014 International Conference on
Collaboration Technologies and
Systems (CTS), May 2014, pp. 173–180.
doi: 10.1109/CTS.2014.6867561.

[7] J. Raber, “Stealthy Profiling and Debug-
ging of Malware Trampolining from
User to Kernel Space,” in 2011 18th
Working Conference on Reverse
Engineering, Oct. 2011, pp. 431–432.
doi: 10.1109/WCRE.2011.62.

[8] J. G. Alcalde, G. Chua, I. M. Demabildo,
M. A. Ong, and R. L. Uy, “CALVIS32:
Customizable assembly language
visualizer and simulator for intel x86-32
architecture,” in 2016 IEEE Region 10
Conference (TENCON), Nov. 2016, pp.
214–217. doi: 10.1109/TEN-
CON.2016.7847992.

[9] Chan Lee Yee, Lee Ling Chuan, M.
Ismail, and N. Zainal, “A static and
dynamic visual debugger for malware
analysis,” in 2012 18th Asia-Pacific
Conference on Communications

(APCC), Oct. 2012, pp. 765–769. doi:
10.1109/APCC.2012.6388211.

[10] Xu Chen, J. Andersen, Z. M. Mao, M.
Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and
anti-debugging behavior in modern
malware,” in 2008 IEEE International
Conference on Dependable Systems and
Networks With FTCS and DCC (DSN),
2008, pp. 177–186. doi: 10.1109/
DSN.2008.4630086.

[11] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[12] P. Xie, X. Lu, Y. Wang, J. Su, and M. Li,
“An Automatic Approach to Detect
Anti-debugging in Malware Analysis,”
2013, pp. 436–442. doi: 10.1007/
978-3-642-35795-4_55.

[13] A. Mylonas and D. Gritzalis, “Practical
Malware Analysis: The Hands-On
Guide to Dissecting Malicious
Software,” Comput Secur, vol. 31, no. 6,
pp. 802–803, Sep. 2012, doi: 10.1016/j.-
cose.2012.05.004.

[14] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[15] J.-W. Kim, J. Namgung, Y.-S. Moon,
and M.-J. Choi, “Experimental Compar-

one or more techniques in computer code that
make it difficult to reverse engineer or debug
the target process. These techniques are ways
for a program to detect whether it is running
under the control of a debugger[11]. If a
debugger is detected, the malware will execute
arbitrary code, usually code to terminate. The
anti-debugging process slows down the
reverse engineering process but doesn't stop it.

2. Is Debugger Present:

The easiest debugger detection technique is to
check the BeingDebugged flag in the Process
Environment Block (PEB). The kernel32IsDe-
buggerPresent() function was introduced in
Windows 95, and the Application Programma-
ble Interface (API) checks the value of this flag
to identify the process whether it is in the
user-mode debugger. This code (same 32-bit or
64-bit Windows environment) can be used for
verification to check the 32-bit or 64-bit
Windows environment. As we can see the
assembly code of the IsDebuggerPresent() in
Figure 1.

Figure 1. Assembly code of IsDebuggerPre-
sent()

C/C++ Code:
As we can see in the example if IsDebugger-
Present() in Figure 2.

Figure 2. C/C++ code of IsDebuggerPre-
sent()

Solution:
This technique can be easily bypassed by
manually patching the Process Environment
Block (PEB). BeingDebugged flag with the
value 0x00 in the bytes.

3. Nt Query Information Process
() / Check Remote Debugger
Present ()

CheckRemoteDebuggerPresent() is another a
debugger should be attached to a process? Use
this Check Remote DebuggerPresent() to
decide. The API calls ntdll!ProcessDebugPort
inside the kernel A value that is not zero in the
DebugPort field tells that the process is being
debugged in user mode by the debugger. If so,
ProcessInformation will be set to
0xFFFFFFFF, otherwise the value of
ProcessInformation will be 0x0.The Check-
RemoteDebuggerPresent()[12] function in
Kernel32 is functional.On either the 32-bit or
64-bit version of Windows, the check can be
made by using this 32-bit code to look at the
32-bit window environment. The Function The
function CheckRemoteDebuggerPresent()
takes 2 parameters; the first parameter is the
(PID), and the A pointer to a Boolean variable
serves as the second parameter. That will hold
TRUE if the process is being debugged. As we
can see from the C/C++ code in Figure 3.

Figure 3 C/C++ Code for CheckRemoteDe-
bugger

Ntdll! NtQueryInformationProcess() has 5
parameters. To detect the debugger, the

to hide threads from the debugger. It can also be
done with the help of a non-documented value,
which is not documented but can be used.
THREAD_INFORMATION_CLASS::Threa-
dHideFromDebugger (0x11). When a thread is
hidden in the debugger, it will not be informed
of anything pertaining to that thread not be
informed of anything pertaining to that thread.
The thread is also capable of anti-debugging
methods, such as examining debug flags, code
checksums, etc. If there are hidden breakpoints
in the thread, If we try to keep the main thread
hidden from the debugger, either the process
will crash or the debugger will gets stuck. An
example of calling the NtSetInformation-
Thread would be like this, as we can see in
Figure 7.

Figure 7. Assembly code of NtSetInforma-
tionThread()

C/C++ Code:
As we can see, C/C++ code in Figure 8.

Figure 8. C/C++ code of NtSetInformation-
Thread()

Solution:
The breakpoint is set to ntdll!NtSetInforma-
tionThread(), and when the breakpoint is hit,
reverse engineers can modify the EIP, to
prevent the API calls from reaching the kernel
and being called from other functions.

ProcessInformation class is set to as
ProcessDebugPort as we can see C/C++ code
in the Figure 4.

Figure 4. C/C++ Code for NtQueryInfor-
mationProcess()

This example shows how the call to the Check-
RemoteDebuggerPresent() and To see whether
the current process is being debugged, utilize
the NtQueryInformationProcess function. as
we can see in Figure 5 and Figure 6.

Figure 5 Assembly code of CheckRemot-
eDebuggerPresent()

Figure 6. Assembly code of NtQueryInfor-
mationProcess()

Solution:
One solution is to set NtQueryInformationPro-
cess(return)'s value is a breakpoint. ProcessIn-
formation is patched to a DWORD value of 0
when the breakpoint is reached of 0.

4. Nt SetInformation Thread:

NtSetInformationThread()[13] is usually used
to set the priority of a thread. It can also be used

5. SwitchDesktop()

Platforms based on Windows NT allow for
multiple desktop sessions. The windows of the
previous active desktop can be hidden by
choosing a different active desktop, but there is
no visible way to return to the previous
desktop. the mouse and keyboard events won't
be sent to the debugger from the debugger's
desktop.[13] , they no longer divulge their
source, either. Debugging could become
impossible as a result. Both the 32-bit and
64-bit versions of Windows can be used to
make this call. Here is an example of a 32-bit
version of Windows as we can see in Figure 9.

Figure 9. Assembly code of SwitchDesk-
top()

C/C++ Code:
As we can see the C/C++ code in the Figure 10.

Figure 10 C/C++ code of SwitchDesktop()

6. Execution Time / Timing
Checks

When a reverse engineer tries to debug a

process and uses a single step in code, there is
a significant delay between the execution of
the individual’s instructions[13]. The process
is running under a debugger if the amount of
time required is excessive compared to a
typical execution. Here is a list of some
instructions that can be used to increase the
execution time of the instruction.

a. RDTSC (Read Time-Stamp Counter)

b. RDPMC (Read Performance-Monitor-
ing Counters)

c. GetLocalTime

d. GetSystemTime

e. GetTickCount

Now we will take an example of a timing
check.

As we can see in Figure 11.

Figure 11 Assembly Code of GetTick-
Count()

We check the synchronization using the
kernel32 GetTickCount() API or manually
verify that the SharedUserData structure's
TickCountLow and TickCountMultiplier
entries are always set to 0xc.Identifying these
timing techniques can be challenging,
especially when RDTSC is used as spam, when
other obscure techniques are used to mask
them.

situations. They are an essential part of the
silent weapon that kills people stealthily and
invisibly. The subject of the current research is
forensic chemistry and toxicology, which is
fully concerned with the introduction, classifi-
cation, effects, and influencing factors of
poisons, as well as their detection and testing.
The purpose of this article is to investigate how
they act and function after they enter the
human body.

5. References

1. Ibrahim, M. S., & Abdullah, M. (2010).
Forensic Accounting in Malaysia: Some
Insights from Practitioners. Asian
Journal of Accounting Perspectives,
3(1), 14-21.

2. Kloosterman, A., Mapes, A., Geradts,
Z., van Eijk, E., Koper, C., van den Berg,
J., ... & van Asten, A. (2015). The
interface between forensic science and
technology: how technology could cause
a paradigm shift in the role of forensic
institutes in the criminal justice system.
Philosophical Transactions of the Royal
Society B: Biological Sciences,
370(1674), 20140264.

3. Yaman, F. (2021). Examining students’
quality and perceptions of argumenta-
tive and summary writing within a
knowledge generation approach to
learning in an analytical chemistry
course. Chemistry Education Research
and Practice, 22(4), 985-1002.

4. Hibbert, D. B. (2007). Quality assurance
in the analytical chemistry laboratory.
Oxford University Press.

may be divided into three groups: homicidal,
suicidal, and accidental [16].

Homicidal Poisoning
The victim is frequently subjected to attempts
to "nurse" them back to health by poisoners
[17]. Serial poisoners typically enjoy the rush
of having control over the victim's life and
suffering, and poisoners frequently take
delight in seeing their victims suffer. Homicide
by poisoning perpetrators frequently work in
the healthcare or medical industries. The
substances that are most appealing to offenders
are those that are deadly in little doses. The
ideal poison for a homicide has no taste, is
undetectable, has no odour, and exhibits symp-
toms that are comparable to those of illnesses
that are found in nature [18]. Since current
scientific techniques and advancements have
made poison detection simpler, it has becom-
ing more and more challenging to find a poison
having all of these characteristics [19].

Sucidal Poisoning:
Self-poisoning, the non-violent way of suicide,
most frequently involves the use of medicine,
either over-the-counter (paracetamol) or
prescribed (such as antidepressants and
prescription analgesics), chemicals (pesti-
cides), or illegal narcotics [20].

Accidental poisoning
Accidental poisoning, which includes acciden-
tal drug overdose, occurs when a person
inadvertently poisons themself. Alcohol,
opioids (such as heroin or methadone),
sedatives, psychiatric pharmaceuticals (such as
antidepressants), antiepileptic, and anti-in-
flammatory medications are some of the
substances from which poisoning may result
[21].

Classification of poisons
Poisons are divided into two categories based
on how they affect the body and depending on
their chemical and physical characteristics.

Classification based upon the effect of
poison on the body:
A) Corrosive: When poisons come into
contact with tissues or organs, they become
corrosive, for example: a. Strong acids like
H2SO4,HCl, HNO3, etc. and strong alkalis
include NH4, Na/K hydroxides, etc [22].

B) Neurotoxins: Toxins known as neurotoxins
cause damage to nerve tissue. Exogenous
chemicals known as neurotoxins are a broad
category of neurological insults that can
negatively impact the function of both growing
and mature brain tissue.Lead, , glutamate,
ethanol (drinking alcohol), botulinum toxin
(e.g., Botox), tetanus toxin, nitric oxide and
tetrodotoxin are typical examples of neurotox-
ins [23].

C) Irritants poisons: They mostly cause
inflammation at the point of contact, particu-
larly in the skin, gastrointestinal system, and
respiratory tract [24]. A poison is categorized
as one that affects a system the most when it
causes death as a result of a systemic impact,
such as a heart poison, brain poison, or spinal
poison. The inorganic toxin arsenic is a hefty
metallic irritation. Due to its insoluble nature
in water and inability to be absorbed by the
digestive system, metallic arsenic is not harm-
ful. Arsenic trioxide, often known as sankhyal
or somalkar, is toxic. Arsenobetaine and arsen-
ocholine are two organic arsenic non-toxic
forms that are typically present in food that
humans frequently ingest [25]. Cod, haddock,
and shellfish contain them.

nervous system, particularly the brain, can be
proved by the use of proper and sensitive
procedures, even if many substances have
obvious effects elsewhere. The circulatory
system, the blood and hematopoietic system,
visceral organs such the liver, kidney, and lung,
and the skin follow in order of frequency of
involvement in systemic toxicity. The least
often targeted tissues for systemic effects
include muscle and bone. The frequency of
tissue reactions when drugs have a localized
effect primarily depends on the portal of
entrance (skin, gastrointestinal tract, respirato-
ry tract) [36].

Reversible versus Irreversible Toxic
Effects
Chemical toxicity can have both reversible and
irreversible consequences. The tissue's capaci-
ty to regenerate will play a significant role in
determining whether a chemical insult to a
tissue results in reversible or irreversible
damage. Therefore, whereas most injuries to
the central nervous system are mostly irrevers-
ible due to the differentiated cells of the central
nervous system being unable to divide and be
replaced, most injuries to a tissue like the liver,
which has a high capacity for regeneration, are
reversible. Chemicals can cause cancer and
permanent harmful consequences [37].

4. Conclusion

By analyzing the medical and legal elements of
a drug's harmful effects on organisms, forensic
toxicology uses chemical and analytical tools
to help establish the facts in forensic investiga-
tions. In situations of fatal poisoning and those
that may be related to criminal conduct, foren-
sic practise is essential. Poisons are typically
found in murder, suicide, or accident

5. Robertson, B., Vignaux, G. A., &
Berger, C. E. (2016). Interpreting
evidence: evaluating forensic science in
the courtroom. John Wiley & Sons.

6. Koehler, J. J. (2017). Forensics or
fauxrensics? Ascertaining accuracy in
the forensic sciences. Ariz. St. LJ, 49,
1369.

7. Klaassen, C. D., Hardman, J. G.,
Limbird, L. E., Molinoff, P. B., Ruddon,
R. W., & Gilman, A. G. (2006). Princi-
ples of toxicology and treatment of
poisoning. Goodman and GilmanÕs The
Pharmacological Basis of Therapeutics,
Eleventh Edition., McGraw Hill,
Columbus, OH, USA, 1739-1752.

8. Shorter, E. (2008). Before Prozac: The
troubled history of mood disorders in
psychiatry. Oxford University Press.

9. Yuan, H., Ma, Q., Ye, L., & Piao, G.
(2016). The traditional medicine and
modern medicine from natural products.
Molecules, 21(5), 559.

10. Li, L., Liu, T., Fu, C., Tan, L., Meng, X.,
& Liu, H. (2015). Biodistribution, excre-
tion, and toxicity of mesoporous silica
nanoparticles after oral administration
depend on their shape. Nanomedicine:
Nanotechnology, Biology and Medicine,
11(8), 1915-1924.

11. Newton, D. E. (2007). Forensic chemis-
try. Infobase Publishing.

12. Sharma, A. K., Tjell, J. C., Sloth, J. J., &
Holm, P. E. (2014). Review of arsenic
contamination, exposure through water

and food and low cost mitigation options
for rural areas. Applied Geochemistry,
41, 11-33.

13. Spitz, W. U., & Diaz, F. J. (2020). Spitz
and Fisher's medicolegal investigation
of death: guidelines for the application
of pathology to crime investigation.
Charles C Thomas Publisher.

14. Pétillon, J. M., & Ducasse, S. (2012).
From flakes to grooves: A technical shift
in antlerworking during the last glacial
maximum in southwest France. Journal
of Human Evolution, 62(4), 435-465.

15. Sharma, M., Jabin, S., & Sharma, M.
PHARMACEUTICAL POLLUTION: A
GRAVE CONCERN!!.

16. Sikary, A. K. (2019). Homicidal poison-
ing in India: A short review. Journal of
forensic and legal medicine, 61, 13-16.

17. Van Landeghem, A. A., De Letter, E. A.,
Lambert, W. E., Van Peteghem, C. H., &
Piette, M. H. (2007). Aconitine involve-
ment in an unusual homicide case.
International journal of legal medicine,
121(3), 214-219.

18. Gunn, A. (2019). Essential forensic
biology. John Wiley & Sons.

19. Trestrail, J. H. (2007). Types of Poisons.
Criminal Poisoning: Investigational
Guide for Law Enforcement, Toxicolo-
gists, Forensic Scientists, and Attorneys,
29-46.

20. Bonvoisin, T., Utyasheva, L., Knipe, D.,
Gunnell, D., & Eddleston, M. (2020).

Suicide by pesticide poisoning in India:
a review of pesticide regulations and
their impact on suicide trends. BMC
public health, 20(1), 1-16.

21. Manzar, N., Saad, S. M. A., Manzar, B.,
& Fatima, S. S. (2010). The study of
etiological and demographic character-
istics of acute household accidental
poisoning in children-a consecutive case
series study from Pakistan. BMC pediat-
rics, 10(1), 1-6.

22. Chibishev, A., Pereska, Z., Chibisheva,
V., & Simonovska, N. (2012). Corrosive
poisonings in adults. Materia
socio-medica.

23. Hu, Y., Chen, J., Fan, H., Xie, P., & He,
J. (2016). A review of neurotoxicity of
microcystins. Environmental science
and pollution research, 23(8),
7211-7219.

24. Waserman, S., & Watson, W. (2011).
Food allergy. Allergy, Asthma & Clini-
cal Immunology, 7(1), 1-7.

25. Borak, J., & Hosgood, H. D. (2007).
Seafood arsenic: implications for human
risk assessment. Regulatory Toxicology
and Pharmacology, 47(2), 204-212.

26. Pandey, G., & Madhuri, S. (2014).
Heavy metals causing toxicity in
animals and fishes. Research Journal of
Animal, Veterinary and Fishery Scienc-
es, 2(2), 17-23.

27. Stejskal, V., Vendl, T., Aulicky, R., &
Athanassiou, C. (2021). Synthetic and

natural insecticides: Gas, liquid, gel and
solid formulations for stored-product
and food-industry pest control. Insects,
12(7), 590.

28. Francois, M. R., & Stephen, F. (2015).
Phosphorus Compounds. In Hamilton &
Hardy's Industrial Toxicology (pp.
383-390). Hoboken, New Jersey: John
Wiley & Sons, Inc..

29. Kaushik, R. D. (2021). Methyl bromide:
Risk assessment, environmental, and
health hazard. In Hazardous Gases (pp.
239-250). Academic Press.

30. Thompson, J. P., & Marrs, T. C. (2012).
Hydroxocobalamin in cyanide poison-
ing. Clinical Toxicology, 50(10),
875-885.

31. Dash, R. R., Gaur, A., & Balomajumder,
C. (2009). Cyanide in industrial waste-
waters and its removal: a review on
biotreatment. Journal of hazardous
materials, 163(1), 1-11.

32. Mishra, A. (2020). Forensic Chemistry
and Toxicology. In Medical Toxicology.
IntechOpen.

33. Donovan, M. D. (2009). Effect of route
of administration and distribution on
drug action. In Modern Pharmaceutics
Volume 1 (pp. 173-198). CRC Press.

34. Boey, A., & Ho, H. K. (2020). All roads
lead to the liver: metal nanoparticles and
their implications for liver health. Small,
16(21), 2000153.

35. Jett, D. A., Sibrizzi, C. A., Blain, R. B.,

C) Cyanides
The majority of cases of severe or deadly
cyanide poisoning involve the suicide intake of
cyanide salts. A very poisonous volatile liquid,
hydrogen cyanide. When cyanide salts react
with acids or are formed in the stomach after
oral consumption, hydrogen cyanide fumes are
released [30]. Although HCN has a distinctive
almond-like odour, up to 50% of people cannot
detect it. Even while this might have been
connected to air flow ventilation systems in
post-mortem rooms, it was surprising that it
was not a distinguishing feature during autopsy
of a significant number of cyanide suicide
fatalities. The industrial applications of potas-
sium and sodium cyanide as soluble salts of
cyanide include electroplating, metal process-
ing, and laboratory reagents [31].

B. Organic poisons

a)Ethanol: A much of ethanol is toxic, so
avoid using it.

b. Other alcohols: Poisonous alcohols include
methyl and isopropyl.

Methanol, a substance used in the chemical
and polish industries as well as clandestine
alcoholic beverages, may be fatal when
consumed.

c. Phenol: Carboxylic acid or phenol may be
toxic. The main purpose of it is as a disinfect-
ant .

d. Other substances: Poisonous industrial
chemicals include benzene, chloral hydrate,
chlorinated hydrocarbons, and others. Chloral
hydrate might be present in illegal alcoholic

beverages in a number of poisoning instances
[32].

Route & Site of Exposure
When administered intravenously, toxic
substances often have the most impact and the
fastest reaction. For alternative routes, inhala-
tion, intraperitoneal, sucutaneous, intramuscu-
lar, intradermal, oral, and topical would rough-
ly be listed in decreasing order of efficacy [33].
Additionally, the method of delivery might
affect an agent's toxicity. For instance, it would
be reasonable to anticipate that a substance that
is detoxified in the liver would be less hazard-
ous when administered orally through the
portal circulation than systemically (inhala-
tion) [34].

Duration & Frequency of Exposure
The toxic effects brought on by a single expo-
sure to multiple substances differ significantly
from those brought on by repeated exposure.
For instance, benzene's major acute toxic
symptom is central nervous system depression,
but prolonged exposure can cause leukaemia.
Acute exposure to quickly absorbed substances
is likely to result in immediate toxicity, but it is
also possible for acute exposure to result in
delayed toxicity that may or may not be
comparable to the toxic consequences of
chronic exposure. In contrast, repeated admin-
istration of a hazardous agent may result in
certain short-term (acute) side effects in
addition to the agent's long-term, low-level, or
chronic effects [35].

Local versus Systemic Toxicity
The central nervous system is the target organ
of toxicity that is most commonly engaged in
systemic toxicity. Damage to the central

Hartman, P. A., Lein, P. J., Taylor, K. W.,
& Rooney, A. A. (2020). A national
toxicology program systematic review
of the evidence for long-term effects
after acute exposure to sarin nerve agent.
Critical reviews in toxicology, 50(6),
474-490.

36. El-Boghdadly, K., Pawa, A., & Chin, K.
J. (2018). Local anesthetic systemic
toxicity: current perspectives. Local and
regional anesthesia, 11, 35.

37. Grandin, E. W., Ky, B., Cornell, R. F.,
Carver, J., & Lenihan, D. J. (2015).
Patterns of cardiac toxicity associated
with irreversible proteasome inhibition
in the treatment of multiple myeloma.
Journal of cardiac failure, 21(2),
138-144.

Poisons are also Categorized According
to their Characteristics:

A) Inorganic Poisons
i) Metallic Poisoning
After exposure, microscopic metal molecules
build up in your body and cause heavy metal

poisoning. Without treatment, heavy metals
can produce symptoms that are potentially
fatal because they adhere to your cells and stop
them from functioning.Your body can become
poisonous to a variety of metals [26]. The most
prevalent poisonous metals are:

Ii) Non Metallic Poisons

A) Phosphine and phosphides
A variety of industrial operations employ
phosphonate, a highly poisonous colourless
gas with a pungent garlic or fishy odour. It is
also produced when phosphides are exposed to
moisture.[27] In underdeveloped nations,
aluminium phosphide is widely utilized as a
cheap and efficient grain fumigant and rodenti-
cide [28].

B) Bromide
The colourless gas methyl bromide has histori-
cally been employed as a refrigerant and in fire
extinguishers, but it is most frequently utilized
as an insecticidal fumigant for grain storage

and soil. Methyl bromide is a metabolite that
produces the bromide ion and is linked to
unintentional poisoning, especially in work
environments [29]. By passive diffusion, the
bromide ion is quickly absorbed from the
stomach and proximal small intestines.
Bromide ions are mostly found in extracellular
fluid, where they have similar properties to
chloride ions. The kidney is the most signifi-
cant organ for elimination. Their half-life of
elimination is relatively lengthy, lasting around
10 days after an acute dose or many weeks
after stopping a long-term consumption,
especially in situations of bromide intoxica-
tion.

Forensic Analysis
The use of scientific knowledge that is based
on legal issues is known as forensic science
[5]. In order to determine what happened,
when it happened, and who was responsible,
forensic science primarily examines biological
and physical evidence. To attain accuracy and
precision, forensic scientific proficiency is
crucial [6].

2. Forensic Toxicology

The study of poisons' and drugs' detrimental
effects on living things is known as toxicology
[7]. It include the investigation of the signs,
causes, effects, and methods of handling
certain toxins and medications. If the use of
medications and poisons results in death in
dubious circumstances, it becomes rhetorical
pharmacological medicine [8].

The field of medicine may include pharmaco-
logical medicine as a sub-field. The study of
medicine includes all interactions between
drugs and other chemicals on living things [9].
Drug administration, body absorption, activi-
ties and interactions, metabolism, and excre-
tion are all aspects of medicine [10].

Fig: Stages of forensic toxicology

3. History of Forensic Chemistry

Rhetorical chemistry advancements started to
become apparent by the middle of the 19th
century. Blood tests were developed at this

time, the Marsh test for arsenic was created in
1832, and experiments on bullet "fingerprint-
ing" were conducted in the 1980s. Christian
Friedrich Schönbein (1799–1868), a
German–Swiss scientist, developed the first
accurate method for differentiating human
blood in 1863 [11]. For more than a century
and a half, arsenic has been widely used as a
toxin. Its excellence goes back to the seventh
century. During the 16th century, the Arab
philosopher Abu Musa Jabir Ibn Hayyan
(about 721-ca. 815), also known as Geber,
found the process for transforming the grey,
metallic-looking elemental arsenic ,an elemen-
tal chemical compound (As2O3; a material)
into (White, flavourless, and odourless
powder). Arsenic may just be an extra chemi-
cal in person's food or beverage without raising
suspicion [12]. Over the following sixty years,
attempts to employ bullet "fingerprinting" in
criminal investigations were few [13]. But by
the 1890s, a number of events spurred renewed
interest in the method as a means of identifying
possible offenders. Of those aspects, the devel-
opment of the replacement method known as
"grooving" for making gun barrels was
perhaps the most crucial. The process of
grooving involves carving spiral grooves into
the inner surface of tubing. When a bullet
travels through the barrel, the grooves allow it
to spin; this motion prevents the bullet from
tipping over after it exits the tube. Different
grooving techniques have been employed by
numerous gun makers [14].

Poisoning
It is referred to as the harmful consequence of
a poison or harmful chemical agent. It causes
the emergence of negative reactions to danger-
ous substances or chemicals [15]. Basically, it

1. Introduction

 The word "forensic" comes from the
Latin word "forensis," which means "public,"
"to the prospect and discussion"[1]. Legal
concerns can be resolved in a variety of ways
thanks to rhetorical science. Rhetorical
science, which includes a variety of disciplines
such as rhetorical chemistry, rhetorical social
science, rhetorical biology, rhetorical medi-
cine, rhetorical engineering, rhetorical material
sciences, machine rhetorical, and others, is
generally used to settle legal disputes, fairly
enforce criminal and civil laws, and protect the

public. A broad phrase that covers most of the
duties performed by the law laboratory is
forensic chemistry[2]. Trace analysis and
medicine are techniques employed in the field
of rhetorical chemistry. Analytical chemistry
that is applied is forensic chemistry. Rhetorical
chemistry adds comparison study to the assign-
ment whereas analytical chemistry covers both
quantitative and qualitative chemical analysis
[3]. Similarly, spectrometry can quickly deter-
mine whether a sample is made of nylon or
polythene. Therefore, analytical chemistry
offers the quantitative and qualitative data
needed to respond to rhetorical questions [4].

1. Introduction

 Prior to then, malware Development
served as a showcase for malware coders.
Malware analysts have used debuggers to run a
malware program's instructions one by one,
introducing modifications to memory spaces,
settings as well as variable values. Debuggers
are the most commonly used reverse engineer-
ing tools, such as Interactive Disassembler
(IDA), x64dbg, and OllyDBG. If debugging is
successful, it helps to understand malware
behavior and its capabilities. This is something

malware developers would like to avoid. That
is why they must implement anti-debugging
techniques. Anti-debugging techniques[3] can
be used to merely detect the presence of a
debugger, deactivate it, lose control of it, or
even take advantage of a flaw in the debugger.
Disabling or avoiding debugger checks can be
done generally and specifically. However, you
can exploit this vulnerability against specific
debuggers. Furthermore, The Supervisory
Control and Data Acquisition (SCADA)[4]
system has a vulnerability, according to the
Trend Micro report "Unseen Threats, Immi-
nent losses,” which is the part of industrial

manually. The fs segment register can access
the Process Environment Block (PEB) at fs:
[30]. On an x86 [8] computer, this register
corresponds to a Thread Information Block
(TIB).There is also a flag below the Process
Environment Block (PEB) that indicates
whether the first memory space of the process
was created in debug mode. Provide an offset
of 0x18 in the Process Environment Bloc
(PEB). So, here I break down the anti-debug-
ging techniques into two categories: static
anti-debugging and dynamic anti-debugging
[9], as seen in the Table 1 below.

Table 1. Static Vs Dynamic Techniques
Difference

In our research we will discuss we will discuss
some of the main anti-debugging techniques
and how a reverse engineer can be able to
identify them easily for example in this paper
we will discuss about the IsDebuggerPresent,
TimeChecks, NtQueryInformationProcess,
NtSetInformationThread, SwitchDesktops,
SeDebugPrivilege, ParentProcess, Debugger-
Window, DeviceDrivers etc.

Anti-Debugging Techniques Mechanism:
Anti-debugging[10] is the implementation of

control systems (ICS)[5]. In addition, In many
situations, knowing how to apply anti-debug-
ging techniques to malicious code to prevent it
from being tracked down and evaluated is also
helpful. One of the main tools used by malware
analysts and reverse engineers is the debugger.
What is a debugger? A debugger is software
that is used to evaluate and control the flow of
execution of other executables or software. By
using a debugger, we can execute each instruc-
tion step by step and can note down the chang-
es that can be displayed on the stack, memory
dumps, registers, etc. Most packers use these
techniques to determine whether the system is
running a debugger or if a process is being
debugged. These debugger detection meth-
ods[6] include checks that are relatively basic
all the way up to ones that are applicable to
native Application Programming Interfaces
(APIs) and kernel objects[7].This section
discusses how anti-debugging techniques
work. Each process's user space contains a data
structure called a Process Environment Block
(PEB), which holds information about the
related process. Each process's user space
contains a data structure called a Process
Environment Block (PEB), which holds infor-
mation about the related process. It is intended
to access Windows API (WinAPI)It is intended
to access Windows API (WinAPI) but access is
not restricted by this. Process Environment
Block (PEB) can be accessed directly from
memory. Checking the value of the Process
Environment Block (PEB) structure that has
been debugged is a relatively straightforward
implementation and technique. As we know
that there are so many Applications Program-
mable Interfaces (APIs) which are documented
and undocumented. For example, IsDebugger-
Present, which we will discuss later in this
paper. To enhance, we can also check the APIs

If the process can open the CSRSS.EXE
process, then SeDebugPrivilege is active when
the process is accessed.

Token pointing to the process being debugged.
The test is valid for the following reasons: The
Process Security Descriptor CSRSS.EXE
allows the system access to the process.

However, if the process has SeDebugPrivilege
privilege, other processes have independent
access to the Security Descriptor. This permis-
sion is only granted to administrative groups
by default, as we can see in Figure 12.

Figure 12 Assembly Code of SeDebugPrivi-
lege()

This control uses ntdll! The CSRSS.exe
GetProcessId() API gets the Process ID (PID)
 from CSRSS.EXE. You can get it manually by
looking at the Process ID CSRSS.EXE
processes. If OpenProcess() succeeds, SeDe-
bugPrivilege is activated, indicating that the
process is currently running and debugging,
too.

Solution:
The ntdll breakpoint can be hit by setting a
breakpoint as a solution. Returns from
NtOpenProcess(). If PID passed by
CSRSS.exe is CSRSS.exe, set the EX-value to
0xC0000022 (STATUS_ACCESS_DENIED).

Solution:
One of the solutions is to identify where the
time checks are and try to avoid stepping into
them. and the code between these time checks.
Reverse Engineers can place a breakpoint
before that delta and execute instead of steps
until a breakpoint is reached or a breakpoint is
reached. We can also set a breakpoint in
GetTickCount() to specify where to call it or to
change its return value. Mitigations During
Debugging: just fill time checks with NOPs
and set the result of these checks to the appro-
priate value. For anti-debugging solution
development: there is no great need to do
anything with it, as time checks are not very
reliable, but you can still hook timing functions
and accelerate the time between calls.

Mitigations:
• During Debugging, just fill time checks

with NOPs and set the result of these
checks to the appropriate value.

• For anti-debugging solution develop-
ment: there is no great need to do
anything with it, as time checks are not
very reliable, but you can still hook
timing functions and accelerate the time
between calls.

7. SeDebugPrivilege:

By default, the SeDebugPrivilege permission
is disabled for the process access token. When
a debugger like x32dbg, OllyDBG, etc. loads a
process, SeDebugPrivilege permission is
enabled. This is because these debuggers keep
trying . SeDebugPrivilege permissions are
inherited.

Parent Process:
Users launch apps by clicking on the executa-
ble's icon that the shell process displays
(Explorer.exe).By clicking on the executable's
icon that the shell process displays, users can
launch apps (Explorer.exe).Due to this,Explor-
er.exe becomes the parent process of the active
process. This will show that the program was
created by someone else and suggest that you
can debug it.

1. Using Process32First/Next(), it will list
every process and note explorer.exe.
PROCESS32.szExeFile and the PRO-
CESSENTRY32.th32parentProcessID
are the two files that provide the process
ID and the parent process ID of the
current process, respectively.

2. The target is being debugged if the
Process ID (PID) of the parent process
differs from the Process ID (PID) of the
explorer.exe.

Solution:
We need to patch the element of
Kernel32!Process32NextW() that contains the
code that performs a return after setting the
value of EAX to 0.

8. Debugger Window:

The presence of the debug window is a flag
that the debugger is running system[13].
Because the debugger creates windows with
special class names (OllyDBG for OLLYDBG
and WinDbgFrameClass for WinDbg), user32
can easily identify these debug windows!
FindWindow`() or User32! findWindowEx().

Solution:
One solution is to set breakpoints in FindWin-
dow() and FindWindowEx() When the break-
point is hit, modify the value of the
lpClassName string parameter to prevent the
API from functioning. Setting the return value
to NULL is another option.

9. Debugger Process:

List all the processes on the system and see
whether the process name matches the name of
the debugger to find out if it is currently
running (for example, OLLYDBG.EXE, wind-
bg.exe, etc.).Simple to implement; just use
Process32First / Next() after confirming that
the image name corresponds to the name of the
debugger.

Sometimes these methods also use Kernel32
ReadProcessMemory() to read process
memory and then look for debugger-related
strings such as "x64dbg", "IDA", "OllyDBG",
etc. to reverse engineer the debugger. to imple-
ment. After getting the debugger. The malware
will stop his execution and silently exit or
terminates the process.

Solution:
Another solution is to check the main process,
including patching the kernel 32 patch!
Process32NextW() always fails and prevents
the developer from enumerating the process.

10. Device Drivers

An old technique is to verify that the debugger
is running in a Kernel Mode in the system and
try to, access device drivers. This technique is
very simple and consists of simply making a
call to the against well-known device names

byte value 0xCC (INT3 / Breakpoint
Interrupt)[17]. Finding the byte 0xCC in the
API code and protector code will help you
locate software breakpoints as seen by the
example of assembly code in Figure 13.

Figure 13 Assembly Code of Software
Breakpoint Detection

C/C++ Code:
As we can C/C++ code in the Figure 14.

Figure 14. C/C++ code of Software Break-
point Detection

Solution:
Hardware breakpoints can be reverse
engineered if software breakpoints are identi-
fied. If you need to set a breakpoint in the API
code, and when the packer tries to find a break-
point in the API code, reverse engineering the
UNICODE API version allows for the setting
of breakpoints. That eventually calls the ANSI
version, such as LoadLibraryExW LoadLibrar-

used by kernel-mode debuggers, such as
SoftICE, using Kernel32!CreateFile().Some
versions of Soft-ICE also add numbers to the
device name, making it to check. The reversing
forum's suggested technique is to brute force
the corresponding digits until the right device
name is discovered[14].The new packer also
uses device driver detection techniques to
detect system monitors such as “Process Moni-
tor” etc.

Solution:
Establishing a breakpoint in kernel32 is the
simple fix. When the breakpoint is reached,
CreateFileFileW() should either handle the
FileName parameter or alter its return value to
INVALID HANDLE VALUE (0xFFFFFFFF).

Process Memory:
A process can check or interact with its own
memory for the presence of a debugger. This
section includes anti-hitch methods[15] such
as process memory and thread context check-
ing, breakpoint DETECTION, PATCHING function
and debugging functions.

11. Breakpoint and Patching
Detection:

To verify if our code has any software break-
points, we may still inspect the process
memory, and we can also check the CPU
debug registers to see if any hardware break-
points have been set.

12. Software Breakpoints
Detection:

Software breakpoints are defined as break-
points that are created by altering the code at
the target location and replacing it with the

Study of the Anti-Debugging Techniques and their Mitigations

36 LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

Of course, as with all malware analysis, the
best way to learn how to stop it by using
debugging techniques by continuously testing
malware. Malware developers are constantly
coming up with new techniques to evade
debuggers and keep security researchers like
you on their toes.

17. References:

[1] V. Bhardwaj, V. Kukreja, C. Sharma, I.
Kansal, and R. Popali, “Reverse
Engineering-A Method for Analyzing
Malicious Code Behavior,” in 2021
International Conference on Advances
in Computing, Communication, and
Control (ICAC3), Dec. 2021, pp. 1–5.
doi: 10.1109/ICAC353642.2021.
9697150.

[2] M. N. Gagnon, S. Taylor, and A. K.
Ghosh, “Software Protection through
Anti-Debugging,” IEEE Security &
Privacy Magazine, vol. 5, no. 3, pp.
82–84, May 2007, doi: 10.1109/M-
SP.2007.71.

[3] J.-W. Kim, J. Bang, Y.-S. Moon, and
M.-J. Choi, “Disabling Anti-Debugging
Techniques for Unpacking System in
User-level Debugger,” in 2019 Interna-
tional Conference on Information and
Communication Technology Conver-
gence (ICTC), Oct. 2019, pp. 954–959.
doi: 10.1109/ICTC46691.2019.
8939719.

[4] T. Akhtar, B. B. Gupta, and S. Yamagu-
chi, “Malware propagation effects on
SCADA system and smart power grid,”
in 2018 IEEE International Conference
on Consumer Electronics (ICCE), Jan.

looking for breakpoints in the process memory,
we can check to see if kernel32IsDebuggerPre-
sent() has been altered[20].The first few bytes
of this function can be read and compared to
the same function's bytes from other processes.
Windows libraries are loaded at the same base
address throughout the process, even if the
Address Space Layout Randomization (ASLR)
feature is enabled. The base address only
changes across reboots but remains the same
for the duration of the session.

Mitigations:
• During Debugging: Enter the function

that conducts the Step-Over check and
run it till the end(Ctrl + F9).

• Finding the specific check and either
path it with NOPs or setting the return to
a value that permits the application to
keep running are the best ways to
mitigate all "memory" techniques,
including anti-step over.

Conclusion:
To defend itself against reverse engineering
analysis, the malware employs anti-debugging
techniques. Debug analysis can be avoided by
anti-debugging techniques. Reverse engineers
need advanced debuggers and knowledge to
analyze malware using anti-debugging
techniques. By applying common sense and
slowly debugging the process, it is possible to
identify the majority of anti-debugging
techniques. For example, if you see that the
code is terminating too rapidly in a conditional
jump, which could mean preventing debugging
technical. The most widely used anti-debug-
ging methods involve fs access: [30h] by using
a Windows API or performing a time check.

ison of Machine Learning Models in Malware
Packing Detection,” in 2020 21st
Asia-Pacific Network Operations and
Management Symposium (APNOMS),
Sep. 2020, pp. 377–380. doi:
10 .23919 /APNOMS50412 .2020 .
9237007.

[16] R. R. Branco and G. N. Barbosa,
“Distributed malware analysis schedul-
ing,” in 2011 6th International Confer-
ence on Malicious and Unwanted
Software, Oct. 2011, pp. 34–41. doi:
10.1109/MALWARE.2011.6112324.

[17] K. Coogan, S. Debray, T. Kaochar, and
G. Townsend, “Automatic Static
Unpacking of Malware Binaries,” in
2009 16th Working Conference on
Reverse Engineering, 2009, pp.
167–176. doi: 10.1109/WCRE.2009.24.

[18] G. Jeong, E. Choo, J. Lee, M.
Bat-Erdene, and H. Lee, “Generic
unpacking using entropy analysis,” in
2010 5th International Conference on
Malicious and Unwanted Software, Oct.
2010, pp. 98–105. doi: 10.1109/MAL-
WARE.2010.5665789.

[19] C. R. Hill, “A real-time microprocessor
debugging technique,” ACM SIGPLAN
Notices, vol. 18, no. 8, pp. 145–148,
Aug. 1983, doi: 10.1145/1006142.
1006179.

[20] R. Sihwail, K. Omar, K. Zainol Ariffin,
and S. al Afghani, “Malware Detection
Approach Based on Artifacts in Memory
Image and Dynamic Analysis,” Applied
Sciences, vol. 9, no. 18, p. 3680, Sep.
2019, doi: 10.3390/app9183680.

yA or the native API corresponding to Load-
DLL to replace.

13. Hardware Breakpoints:

DR0, DR1, DR2, and DR3 are debug registers
that can be obtained from the thread context.
Debug registers 0-3 are used to store virtual
address of the so-called hardware breakpoints.
C/C++ Code:

As we can see C/C++ code in the figure 15.

Figure 15 C/C++ code of Hardware
Breakpoints

14. Memory Checks:

This section includes methods for directly
inspecting or modifying a process's virtual
memory in order to spot and stop debug-
ging[18].

15. Nt Query Virtual Memory ():

The memory page of the process in which the
code is located is shared by all processes prior
to the page being written. Then the OS creates
a replica of this page and allocates it to the
process's virtual memory[19], so the page is no
longer "shared". Now we can see how to
declare NTDLL, as we can see in figure 16.

NTDLL declarations:

Figure 16 NTDLL Deceleration of
NtQueryVirtualMemory()

C/C++ Code:
As we can see the C/C++ code in the Figure
17.

Figure 17 C/C++ Code for Hardware
Breakpoints

16. Detecting A function Patch:

Calling kernel32 is a common approach to find
a debugger. IsDebuggerPresent(). By altering
the outcome in the EAX register or hacking the
kernel32, you may easily get around this
check! IsDebuggerPresent(). Instead of

2018, pp. 1–6. doi: 10.1109/ICCE.2018.
8326281.

[5] G. Wang, L. Zhuang, T. Liu, S. Li, S.
Yang, and J. Lan, “Formal analysis and
verification of industrial control system
security via timed automata,” in 2020
International Conference on Internet of
Things and Intelligent Applications
(ITIA), Nov. 2020, pp. 1–5. doi:
10.1109/ITIA50152.2020.9312289.

[6] A. J. Smith, R. F. Mills, A. R. Bryant, G.
L. Peterson, and M. R. Grimaila,
“REDIR: Automated static detection of
obfuscated anti-debugging techniques,”
in 2014 International Conference on
Collaboration Technologies and
Systems (CTS), May 2014, pp. 173–180.
doi: 10.1109/CTS.2014.6867561.

[7] J. Raber, “Stealthy Profiling and Debug-
ging of Malware Trampolining from
User to Kernel Space,” in 2011 18th
Working Conference on Reverse
Engineering, Oct. 2011, pp. 431–432.
doi: 10.1109/WCRE.2011.62.

[8] J. G. Alcalde, G. Chua, I. M. Demabildo,
M. A. Ong, and R. L. Uy, “CALVIS32:
Customizable assembly language
visualizer and simulator for intel x86-32
architecture,” in 2016 IEEE Region 10
Conference (TENCON), Nov. 2016, pp.
214–217. doi: 10.1109/TEN-
CON.2016.7847992.

[9] Chan Lee Yee, Lee Ling Chuan, M.
Ismail, and N. Zainal, “A static and
dynamic visual debugger for malware
analysis,” in 2012 18th Asia-Pacific
Conference on Communications

(APCC), Oct. 2012, pp. 765–769. doi:
10.1109/APCC.2012.6388211.

[10] Xu Chen, J. Andersen, Z. M. Mao, M.
Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and
anti-debugging behavior in modern
malware,” in 2008 IEEE International
Conference on Dependable Systems and
Networks With FTCS and DCC (DSN),
2008, pp. 177–186. doi: 10.1109/
DSN.2008.4630086.

[11] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[12] P. Xie, X. Lu, Y. Wang, J. Su, and M. Li,
“An Automatic Approach to Detect
Anti-debugging in Malware Analysis,”
2013, pp. 436–442. doi: 10.1007/
978-3-642-35795-4_55.

[13] A. Mylonas and D. Gritzalis, “Practical
Malware Analysis: The Hands-On
Guide to Dissecting Malicious
Software,” Comput Secur, vol. 31, no. 6,
pp. 802–803, Sep. 2012, doi: 10.1016/j.-
cose.2012.05.004.

[14] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[15] J.-W. Kim, J. Namgung, Y.-S. Moon,
and M.-J. Choi, “Experimental Compar-

one or more techniques in computer code that
make it difficult to reverse engineer or debug
the target process. These techniques are ways
for a program to detect whether it is running
under the control of a debugger[11]. If a
debugger is detected, the malware will execute
arbitrary code, usually code to terminate. The
anti-debugging process slows down the
reverse engineering process but doesn't stop it.

2. Is Debugger Present:

The easiest debugger detection technique is to
check the BeingDebugged flag in the Process
Environment Block (PEB). The kernel32IsDe-
buggerPresent() function was introduced in
Windows 95, and the Application Programma-
ble Interface (API) checks the value of this flag
to identify the process whether it is in the
user-mode debugger. This code (same 32-bit or
64-bit Windows environment) can be used for
verification to check the 32-bit or 64-bit
Windows environment. As we can see the
assembly code of the IsDebuggerPresent() in
Figure 1.

Figure 1. Assembly code of IsDebuggerPre-
sent()

C/C++ Code:
As we can see in the example if IsDebugger-
Present() in Figure 2.

Figure 2. C/C++ code of IsDebuggerPre-
sent()

Solution:
This technique can be easily bypassed by
manually patching the Process Environment
Block (PEB). BeingDebugged flag with the
value 0x00 in the bytes.

3. Nt Query Information Process
() / Check Remote Debugger
Present ()

CheckRemoteDebuggerPresent() is another a
debugger should be attached to a process? Use
this Check Remote DebuggerPresent() to
decide. The API calls ntdll!ProcessDebugPort
inside the kernel A value that is not zero in the
DebugPort field tells that the process is being
debugged in user mode by the debugger. If so,
ProcessInformation will be set to
0xFFFFFFFF, otherwise the value of
ProcessInformation will be 0x0.The Check-
RemoteDebuggerPresent()[12] function in
Kernel32 is functional.On either the 32-bit or
64-bit version of Windows, the check can be
made by using this 32-bit code to look at the
32-bit window environment. The Function The
function CheckRemoteDebuggerPresent()
takes 2 parameters; the first parameter is the
(PID), and the A pointer to a Boolean variable
serves as the second parameter. That will hold
TRUE if the process is being debugged. As we
can see from the C/C++ code in Figure 3.

Figure 3 C/C++ Code for CheckRemoteDe-
bugger

Ntdll! NtQueryInformationProcess() has 5
parameters. To detect the debugger, the

to hide threads from the debugger. It can also be
done with the help of a non-documented value,
which is not documented but can be used.
THREAD_INFORMATION_CLASS::Threa-
dHideFromDebugger (0x11). When a thread is
hidden in the debugger, it will not be informed
of anything pertaining to that thread not be
informed of anything pertaining to that thread.
The thread is also capable of anti-debugging
methods, such as examining debug flags, code
checksums, etc. If there are hidden breakpoints
in the thread, If we try to keep the main thread
hidden from the debugger, either the process
will crash or the debugger will gets stuck. An
example of calling the NtSetInformation-
Thread would be like this, as we can see in
Figure 7.

Figure 7. Assembly code of NtSetInforma-
tionThread()

C/C++ Code:
As we can see, C/C++ code in Figure 8.

Figure 8. C/C++ code of NtSetInformation-
Thread()

Solution:
The breakpoint is set to ntdll!NtSetInforma-
tionThread(), and when the breakpoint is hit,
reverse engineers can modify the EIP, to
prevent the API calls from reaching the kernel
and being called from other functions.

ProcessInformation class is set to as
ProcessDebugPort as we can see C/C++ code
in the Figure 4.

Figure 4. C/C++ Code for NtQueryInfor-
mationProcess()

This example shows how the call to the Check-
RemoteDebuggerPresent() and To see whether
the current process is being debugged, utilize
the NtQueryInformationProcess function. as
we can see in Figure 5 and Figure 6.

Figure 5 Assembly code of CheckRemot-
eDebuggerPresent()

Figure 6. Assembly code of NtQueryInfor-
mationProcess()

Solution:
One solution is to set NtQueryInformationPro-
cess(return)'s value is a breakpoint. ProcessIn-
formation is patched to a DWORD value of 0
when the breakpoint is reached of 0.

4. Nt SetInformation Thread:

NtSetInformationThread()[13] is usually used
to set the priority of a thread. It can also be used

5. SwitchDesktop()

Platforms based on Windows NT allow for
multiple desktop sessions. The windows of the
previous active desktop can be hidden by
choosing a different active desktop, but there is
no visible way to return to the previous
desktop. the mouse and keyboard events won't
be sent to the debugger from the debugger's
desktop.[13] , they no longer divulge their
source, either. Debugging could become
impossible as a result. Both the 32-bit and
64-bit versions of Windows can be used to
make this call. Here is an example of a 32-bit
version of Windows as we can see in Figure 9.

Figure 9. Assembly code of SwitchDesk-
top()

C/C++ Code:
As we can see the C/C++ code in the Figure 10.

Figure 10 C/C++ code of SwitchDesktop()

6. Execution Time / Timing
Checks

When a reverse engineer tries to debug a

process and uses a single step in code, there is
a significant delay between the execution of
the individual’s instructions[13]. The process
is running under a debugger if the amount of
time required is excessive compared to a
typical execution. Here is a list of some
instructions that can be used to increase the
execution time of the instruction.

a. RDTSC (Read Time-Stamp Counter)

b. RDPMC (Read Performance-Monitor-
ing Counters)

c. GetLocalTime

d. GetSystemTime

e. GetTickCount

Now we will take an example of a timing
check.

As we can see in Figure 11.

Figure 11 Assembly Code of GetTick-
Count()

We check the synchronization using the
kernel32 GetTickCount() API or manually
verify that the SharedUserData structure's
TickCountLow and TickCountMultiplier
entries are always set to 0xc.Identifying these
timing techniques can be challenging,
especially when RDTSC is used as spam, when
other obscure techniques are used to mask
them.

1. Introduction

 Prior to then, malware Development
served as a showcase for malware coders.
Malware analysts have used debuggers to run a
malware program's instructions one by one,
introducing modifications to memory spaces,
settings as well as variable values. Debuggers
are the most commonly used reverse engineer-
ing tools, such as Interactive Disassembler
(IDA), x64dbg, and OllyDBG. If debugging is
successful, it helps to understand malware
behavior and its capabilities. This is something

malware developers would like to avoid. That
is why they must implement anti-debugging
techniques. Anti-debugging techniques[3] can
be used to merely detect the presence of a
debugger, deactivate it, lose control of it, or
even take advantage of a flaw in the debugger.
Disabling or avoiding debugger checks can be
done generally and specifically. However, you
can exploit this vulnerability against specific
debuggers. Furthermore, The Supervisory
Control and Data Acquisition (SCADA)[4]
system has a vulnerability, according to the
Trend Micro report "Unseen Threats, Immi-
nent losses,” which is the part of industrial

manually. The fs segment register can access
the Process Environment Block (PEB) at fs:
[30]. On an x86 [8] computer, this register
corresponds to a Thread Information Block
(TIB).There is also a flag below the Process
Environment Block (PEB) that indicates
whether the first memory space of the process
was created in debug mode. Provide an offset
of 0x18 in the Process Environment Bloc
(PEB). So, here I break down the anti-debug-
ging techniques into two categories: static
anti-debugging and dynamic anti-debugging
[9], as seen in the Table 1 below.

Table 1. Static Vs Dynamic Techniques
Difference

In our research we will discuss we will discuss
some of the main anti-debugging techniques
and how a reverse engineer can be able to
identify them easily for example in this paper
we will discuss about the IsDebuggerPresent,
TimeChecks, NtQueryInformationProcess,
NtSetInformationThread, SwitchDesktops,
SeDebugPrivilege, ParentProcess, Debugger-
Window, DeviceDrivers etc.

Anti-Debugging Techniques Mechanism:
Anti-debugging[10] is the implementation of

control systems (ICS)[5]. In addition, In many
situations, knowing how to apply anti-debug-
ging techniques to malicious code to prevent it
from being tracked down and evaluated is also
helpful. One of the main tools used by malware
analysts and reverse engineers is the debugger.
What is a debugger? A debugger is software
that is used to evaluate and control the flow of
execution of other executables or software. By
using a debugger, we can execute each instruc-
tion step by step and can note down the chang-
es that can be displayed on the stack, memory
dumps, registers, etc. Most packers use these
techniques to determine whether the system is
running a debugger or if a process is being
debugged. These debugger detection meth-
ods[6] include checks that are relatively basic
all the way up to ones that are applicable to
native Application Programming Interfaces
(APIs) and kernel objects[7].This section
discusses how anti-debugging techniques
work. Each process's user space contains a data
structure called a Process Environment Block
(PEB), which holds information about the
related process. Each process's user space
contains a data structure called a Process
Environment Block (PEB), which holds infor-
mation about the related process. It is intended
to access Windows API (WinAPI)It is intended
to access Windows API (WinAPI) but access is
not restricted by this. Process Environment
Block (PEB) can be accessed directly from
memory. Checking the value of the Process
Environment Block (PEB) structure that has
been debugged is a relatively straightforward
implementation and technique. As we know
that there are so many Applications Program-
mable Interfaces (APIs) which are documented
and undocumented. For example, IsDebugger-
Present, which we will discuss later in this
paper. To enhance, we can also check the APIs

If the process can open the CSRSS.EXE
process, then SeDebugPrivilege is active when
the process is accessed.

Token pointing to the process being debugged.
The test is valid for the following reasons: The
Process Security Descriptor CSRSS.EXE
allows the system access to the process.

However, if the process has SeDebugPrivilege
privilege, other processes have independent
access to the Security Descriptor. This permis-
sion is only granted to administrative groups
by default, as we can see in Figure 12.

Figure 12 Assembly Code of SeDebugPrivi-
lege()

This control uses ntdll! The CSRSS.exe
GetProcessId() API gets the Process ID (PID)
 from CSRSS.EXE. You can get it manually by
looking at the Process ID CSRSS.EXE
processes. If OpenProcess() succeeds, SeDe-
bugPrivilege is activated, indicating that the
process is currently running and debugging,
too.

Solution:
The ntdll breakpoint can be hit by setting a
breakpoint as a solution. Returns from
NtOpenProcess(). If PID passed by
CSRSS.exe is CSRSS.exe, set the EX-value to
0xC0000022 (STATUS_ACCESS_DENIED).

Solution:
One of the solutions is to identify where the
time checks are and try to avoid stepping into
them. and the code between these time checks.
Reverse Engineers can place a breakpoint
before that delta and execute instead of steps
until a breakpoint is reached or a breakpoint is
reached. We can also set a breakpoint in
GetTickCount() to specify where to call it or to
change its return value. Mitigations During
Debugging: just fill time checks with NOPs
and set the result of these checks to the appro-
priate value. For anti-debugging solution
development: there is no great need to do
anything with it, as time checks are not very
reliable, but you can still hook timing functions
and accelerate the time between calls.

Mitigations:
• During Debugging, just fill time checks

with NOPs and set the result of these
checks to the appropriate value.

• For anti-debugging solution develop-
ment: there is no great need to do
anything with it, as time checks are not
very reliable, but you can still hook
timing functions and accelerate the time
between calls.

7. SeDebugPrivilege:

By default, the SeDebugPrivilege permission
is disabled for the process access token. When
a debugger like x32dbg, OllyDBG, etc. loads a
process, SeDebugPrivilege permission is
enabled. This is because these debuggers keep
trying . SeDebugPrivilege permissions are
inherited.

Parent Process:
Users launch apps by clicking on the executa-
ble's icon that the shell process displays
(Explorer.exe).By clicking on the executable's
icon that the shell process displays, users can
launch apps (Explorer.exe).Due to this,Explor-
er.exe becomes the parent process of the active
process. This will show that the program was
created by someone else and suggest that you
can debug it.

1. Using Process32First/Next(), it will list
every process and note explorer.exe.
PROCESS32.szExeFile and the PRO-
CESSENTRY32.th32parentProcessID
are the two files that provide the process
ID and the parent process ID of the
current process, respectively.

2. The target is being debugged if the
Process ID (PID) of the parent process
differs from the Process ID (PID) of the
explorer.exe.

Solution:
We need to patch the element of
Kernel32!Process32NextW() that contains the
code that performs a return after setting the
value of EAX to 0.

8. Debugger Window:

The presence of the debug window is a flag
that the debugger is running system[13].
Because the debugger creates windows with
special class names (OllyDBG for OLLYDBG
and WinDbgFrameClass for WinDbg), user32
can easily identify these debug windows!
FindWindow`() or User32! findWindowEx().

Solution:
One solution is to set breakpoints in FindWin-
dow() and FindWindowEx() When the break-
point is hit, modify the value of the
lpClassName string parameter to prevent the
API from functioning. Setting the return value
to NULL is another option.

9. Debugger Process:

List all the processes on the system and see
whether the process name matches the name of
the debugger to find out if it is currently
running (for example, OLLYDBG.EXE, wind-
bg.exe, etc.).Simple to implement; just use
Process32First / Next() after confirming that
the image name corresponds to the name of the
debugger.

Sometimes these methods also use Kernel32
ReadProcessMemory() to read process
memory and then look for debugger-related
strings such as "x64dbg", "IDA", "OllyDBG",
etc. to reverse engineer the debugger. to imple-
ment. After getting the debugger. The malware
will stop his execution and silently exit or
terminates the process.

Solution:
Another solution is to check the main process,
including patching the kernel 32 patch!
Process32NextW() always fails and prevents
the developer from enumerating the process.

10. Device Drivers

An old technique is to verify that the debugger
is running in a Kernel Mode in the system and
try to, access device drivers. This technique is
very simple and consists of simply making a
call to the against well-known device names

byte value 0xCC (INT3 / Breakpoint
Interrupt)[17]. Finding the byte 0xCC in the
API code and protector code will help you
locate software breakpoints as seen by the
example of assembly code in Figure 13.

Figure 13 Assembly Code of Software
Breakpoint Detection

C/C++ Code:
As we can C/C++ code in the Figure 14.

Figure 14. C/C++ code of Software Break-
point Detection

Solution:
Hardware breakpoints can be reverse
engineered if software breakpoints are identi-
fied. If you need to set a breakpoint in the API
code, and when the packer tries to find a break-
point in the API code, reverse engineering the
UNICODE API version allows for the setting
of breakpoints. That eventually calls the ANSI
version, such as LoadLibraryExW LoadLibrar-

used by kernel-mode debuggers, such as
SoftICE, using Kernel32!CreateFile().Some
versions of Soft-ICE also add numbers to the
device name, making it to check. The reversing
forum's suggested technique is to brute force
the corresponding digits until the right device
name is discovered[14].The new packer also
uses device driver detection techniques to
detect system monitors such as “Process Moni-
tor” etc.

Solution:
Establishing a breakpoint in kernel32 is the
simple fix. When the breakpoint is reached,
CreateFileFileW() should either handle the
FileName parameter or alter its return value to
INVALID HANDLE VALUE (0xFFFFFFFF).

Process Memory:
A process can check or interact with its own
memory for the presence of a debugger. This
section includes anti-hitch methods[15] such
as process memory and thread context check-
ing, breakpoint DETECTION, PATCHING function
and debugging functions.

11. Breakpoint and Patching
Detection:

To verify if our code has any software break-
points, we may still inspect the process
memory, and we can also check the CPU
debug registers to see if any hardware break-
points have been set.

12. Software Breakpoints
Detection:

Software breakpoints are defined as break-
points that are created by altering the code at
the target location and replacing it with the

Of course, as with all malware analysis, the
best way to learn how to stop it by using
debugging techniques by continuously testing
malware. Malware developers are constantly
coming up with new techniques to evade
debuggers and keep security researchers like
you on their toes.

17. References:

[1] V. Bhardwaj, V. Kukreja, C. Sharma, I.
Kansal, and R. Popali, “Reverse
Engineering-A Method for Analyzing
Malicious Code Behavior,” in 2021
International Conference on Advances
in Computing, Communication, and
Control (ICAC3), Dec. 2021, pp. 1–5.
doi: 10.1109/ICAC353642.2021.
9697150.

[2] M. N. Gagnon, S. Taylor, and A. K.
Ghosh, “Software Protection through
Anti-Debugging,” IEEE Security &
Privacy Magazine, vol. 5, no. 3, pp.
82–84, May 2007, doi: 10.1109/M-
SP.2007.71.

[3] J.-W. Kim, J. Bang, Y.-S. Moon, and
M.-J. Choi, “Disabling Anti-Debugging
Techniques for Unpacking System in
User-level Debugger,” in 2019 Interna-
tional Conference on Information and
Communication Technology Conver-
gence (ICTC), Oct. 2019, pp. 954–959.
doi: 10.1109/ICTC46691.2019.
8939719.

[4] T. Akhtar, B. B. Gupta, and S. Yamagu-
chi, “Malware propagation effects on
SCADA system and smart power grid,”
in 2018 IEEE International Conference
on Consumer Electronics (ICCE), Jan.

looking for breakpoints in the process memory,
we can check to see if kernel32IsDebuggerPre-
sent() has been altered[20].The first few bytes
of this function can be read and compared to
the same function's bytes from other processes.
Windows libraries are loaded at the same base
address throughout the process, even if the
Address Space Layout Randomization (ASLR)
feature is enabled. The base address only
changes across reboots but remains the same
for the duration of the session.

Mitigations:
• During Debugging: Enter the function

that conducts the Step-Over check and
run it till the end(Ctrl + F9).

• Finding the specific check and either
path it with NOPs or setting the return to
a value that permits the application to
keep running are the best ways to
mitigate all "memory" techniques,
including anti-step over.

Conclusion:
To defend itself against reverse engineering
analysis, the malware employs anti-debugging
techniques. Debug analysis can be avoided by
anti-debugging techniques. Reverse engineers
need advanced debuggers and knowledge to
analyze malware using anti-debugging
techniques. By applying common sense and
slowly debugging the process, it is possible to
identify the majority of anti-debugging
techniques. For example, if you see that the
code is terminating too rapidly in a conditional
jump, which could mean preventing debugging
technical. The most widely used anti-debug-
ging methods involve fs access: [30h] by using
a Windows API or performing a time check.

ison of Machine Learning Models in Malware
Packing Detection,” in 2020 21st
Asia-Pacific Network Operations and
Management Symposium (APNOMS),
Sep. 2020, pp. 377–380. doi:
10 .23919 /APNOMS50412 .2020 .
9237007.

[16] R. R. Branco and G. N. Barbosa,
“Distributed malware analysis schedul-
ing,” in 2011 6th International Confer-
ence on Malicious and Unwanted
Software, Oct. 2011, pp. 34–41. doi:
10.1109/MALWARE.2011.6112324.

[17] K. Coogan, S. Debray, T. Kaochar, and
G. Townsend, “Automatic Static
Unpacking of Malware Binaries,” in
2009 16th Working Conference on
Reverse Engineering, 2009, pp.
167–176. doi: 10.1109/WCRE.2009.24.

[18] G. Jeong, E. Choo, J. Lee, M.
Bat-Erdene, and H. Lee, “Generic
unpacking using entropy analysis,” in
2010 5th International Conference on
Malicious and Unwanted Software, Oct.
2010, pp. 98–105. doi: 10.1109/MAL-
WARE.2010.5665789.

[19] C. R. Hill, “A real-time microprocessor
debugging technique,” ACM SIGPLAN
Notices, vol. 18, no. 8, pp. 145–148,
Aug. 1983, doi: 10.1145/1006142.
1006179.

[20] R. Sihwail, K. Omar, K. Zainol Ariffin,
and S. al Afghani, “Malware Detection
Approach Based on Artifacts in Memory
Image and Dynamic Analysis,” Applied
Sciences, vol. 9, no. 18, p. 3680, Sep.
2019, doi: 10.3390/app9183680.

yA or the native API corresponding to Load-
DLL to replace.

13. Hardware Breakpoints:

DR0, DR1, DR2, and DR3 are debug registers
that can be obtained from the thread context.
Debug registers 0-3 are used to store virtual
address of the so-called hardware breakpoints.
C/C++ Code:

As we can see C/C++ code in the figure 15.

Figure 15 C/C++ code of Hardware
Breakpoints

14. Memory Checks:

This section includes methods for directly
inspecting or modifying a process's virtual
memory in order to spot and stop debug-
ging[18].

15. Nt Query Virtual Memory ():

The memory page of the process in which the
code is located is shared by all processes prior
to the page being written. Then the OS creates
a replica of this page and allocates it to the
process's virtual memory[19], so the page is no
longer "shared". Now we can see how to
declare NTDLL, as we can see in figure 16.

NTDLL declarations:

Figure 16 NTDLL Deceleration of
NtQueryVirtualMemory()

C/C++ Code:
As we can see the C/C++ code in the Figure
17.

Figure 17 C/C++ Code for Hardware
Breakpoints

16. Detecting A function Patch:

Calling kernel32 is a common approach to find
a debugger. IsDebuggerPresent(). By altering
the outcome in the EAX register or hacking the
kernel32, you may easily get around this
check! IsDebuggerPresent(). Instead of

Study of the Anti-Debugging Techniques and their Mitigations

37LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

2018, pp. 1–6. doi: 10.1109/ICCE.2018.
8326281.

[5] G. Wang, L. Zhuang, T. Liu, S. Li, S.
Yang, and J. Lan, “Formal analysis and
verification of industrial control system
security via timed automata,” in 2020
International Conference on Internet of
Things and Intelligent Applications
(ITIA), Nov. 2020, pp. 1–5. doi:
10.1109/ITIA50152.2020.9312289.

[6] A. J. Smith, R. F. Mills, A. R. Bryant, G.
L. Peterson, and M. R. Grimaila,
“REDIR: Automated static detection of
obfuscated anti-debugging techniques,”
in 2014 International Conference on
Collaboration Technologies and
Systems (CTS), May 2014, pp. 173–180.
doi: 10.1109/CTS.2014.6867561.

[7] J. Raber, “Stealthy Profiling and Debug-
ging of Malware Trampolining from
User to Kernel Space,” in 2011 18th
Working Conference on Reverse
Engineering, Oct. 2011, pp. 431–432.
doi: 10.1109/WCRE.2011.62.

[8] J. G. Alcalde, G. Chua, I. M. Demabildo,
M. A. Ong, and R. L. Uy, “CALVIS32:
Customizable assembly language
visualizer and simulator for intel x86-32
architecture,” in 2016 IEEE Region 10
Conference (TENCON), Nov. 2016, pp.
214–217. doi: 10.1109/TEN-
CON.2016.7847992.

[9] Chan Lee Yee, Lee Ling Chuan, M.
Ismail, and N. Zainal, “A static and
dynamic visual debugger for malware
analysis,” in 2012 18th Asia-Pacific
Conference on Communications

(APCC), Oct. 2012, pp. 765–769. doi:
10.1109/APCC.2012.6388211.

[10] Xu Chen, J. Andersen, Z. M. Mao, M.
Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and
anti-debugging behavior in modern
malware,” in 2008 IEEE International
Conference on Dependable Systems and
Networks With FTCS and DCC (DSN),
2008, pp. 177–186. doi: 10.1109/
DSN.2008.4630086.

[11] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[12] P. Xie, X. Lu, Y. Wang, J. Su, and M. Li,
“An Automatic Approach to Detect
Anti-debugging in Malware Analysis,”
2013, pp. 436–442. doi: 10.1007/
978-3-642-35795-4_55.

[13] A. Mylonas and D. Gritzalis, “Practical
Malware Analysis: The Hands-On
Guide to Dissecting Malicious
Software,” Comput Secur, vol. 31, no. 6,
pp. 802–803, Sep. 2012, doi: 10.1016/j.-
cose.2012.05.004.

[14] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[15] J.-W. Kim, J. Namgung, Y.-S. Moon,
and M.-J. Choi, “Experimental Compar-

one or more techniques in computer code that
make it difficult to reverse engineer or debug
the target process. These techniques are ways
for a program to detect whether it is running
under the control of a debugger[11]. If a
debugger is detected, the malware will execute
arbitrary code, usually code to terminate. The
anti-debugging process slows down the
reverse engineering process but doesn't stop it.

2. Is Debugger Present:

The easiest debugger detection technique is to
check the BeingDebugged flag in the Process
Environment Block (PEB). The kernel32IsDe-
buggerPresent() function was introduced in
Windows 95, and the Application Programma-
ble Interface (API) checks the value of this flag
to identify the process whether it is in the
user-mode debugger. This code (same 32-bit or
64-bit Windows environment) can be used for
verification to check the 32-bit or 64-bit
Windows environment. As we can see the
assembly code of the IsDebuggerPresent() in
Figure 1.

Figure 1. Assembly code of IsDebuggerPre-
sent()

C/C++ Code:
As we can see in the example if IsDebugger-
Present() in Figure 2.

Figure 2. C/C++ code of IsDebuggerPre-
sent()

Solution:
This technique can be easily bypassed by
manually patching the Process Environment
Block (PEB). BeingDebugged flag with the
value 0x00 in the bytes.

3. Nt Query Information Process
() / Check Remote Debugger
Present ()

CheckRemoteDebuggerPresent() is another a
debugger should be attached to a process? Use
this Check Remote DebuggerPresent() to
decide. The API calls ntdll!ProcessDebugPort
inside the kernel A value that is not zero in the
DebugPort field tells that the process is being
debugged in user mode by the debugger. If so,
ProcessInformation will be set to
0xFFFFFFFF, otherwise the value of
ProcessInformation will be 0x0.The Check-
RemoteDebuggerPresent()[12] function in
Kernel32 is functional.On either the 32-bit or
64-bit version of Windows, the check can be
made by using this 32-bit code to look at the
32-bit window environment. The Function The
function CheckRemoteDebuggerPresent()
takes 2 parameters; the first parameter is the
(PID), and the A pointer to a Boolean variable
serves as the second parameter. That will hold
TRUE if the process is being debugged. As we
can see from the C/C++ code in Figure 3.

Figure 3 C/C++ Code for CheckRemoteDe-
bugger

Ntdll! NtQueryInformationProcess() has 5
parameters. To detect the debugger, the

to hide threads from the debugger. It can also be
done with the help of a non-documented value,
which is not documented but can be used.
THREAD_INFORMATION_CLASS::Threa-
dHideFromDebugger (0x11). When a thread is
hidden in the debugger, it will not be informed
of anything pertaining to that thread not be
informed of anything pertaining to that thread.
The thread is also capable of anti-debugging
methods, such as examining debug flags, code
checksums, etc. If there are hidden breakpoints
in the thread, If we try to keep the main thread
hidden from the debugger, either the process
will crash or the debugger will gets stuck. An
example of calling the NtSetInformation-
Thread would be like this, as we can see in
Figure 7.

Figure 7. Assembly code of NtSetInforma-
tionThread()

C/C++ Code:
As we can see, C/C++ code in Figure 8.

Figure 8. C/C++ code of NtSetInformation-
Thread()

Solution:
The breakpoint is set to ntdll!NtSetInforma-
tionThread(), and when the breakpoint is hit,
reverse engineers can modify the EIP, to
prevent the API calls from reaching the kernel
and being called from other functions.

ProcessInformation class is set to as
ProcessDebugPort as we can see C/C++ code
in the Figure 4.

Figure 4. C/C++ Code for NtQueryInfor-
mationProcess()

This example shows how the call to the Check-
RemoteDebuggerPresent() and To see whether
the current process is being debugged, utilize
the NtQueryInformationProcess function. as
we can see in Figure 5 and Figure 6.

Figure 5 Assembly code of CheckRemot-
eDebuggerPresent()

Figure 6. Assembly code of NtQueryInfor-
mationProcess()

Solution:
One solution is to set NtQueryInformationPro-
cess(return)'s value is a breakpoint. ProcessIn-
formation is patched to a DWORD value of 0
when the breakpoint is reached of 0.

4. Nt SetInformation Thread:

NtSetInformationThread()[13] is usually used
to set the priority of a thread. It can also be used

5. SwitchDesktop()

Platforms based on Windows NT allow for
multiple desktop sessions. The windows of the
previous active desktop can be hidden by
choosing a different active desktop, but there is
no visible way to return to the previous
desktop. the mouse and keyboard events won't
be sent to the debugger from the debugger's
desktop.[13] , they no longer divulge their
source, either. Debugging could become
impossible as a result. Both the 32-bit and
64-bit versions of Windows can be used to
make this call. Here is an example of a 32-bit
version of Windows as we can see in Figure 9.

Figure 9. Assembly code of SwitchDesk-
top()

C/C++ Code:
As we can see the C/C++ code in the Figure 10.

Figure 10 C/C++ code of SwitchDesktop()

6. Execution Time / Timing
Checks

When a reverse engineer tries to debug a

process and uses a single step in code, there is
a significant delay between the execution of
the individual’s instructions[13]. The process
is running under a debugger if the amount of
time required is excessive compared to a
typical execution. Here is a list of some
instructions that can be used to increase the
execution time of the instruction.

a. RDTSC (Read Time-Stamp Counter)

b. RDPMC (Read Performance-Monitor-
ing Counters)

c. GetLocalTime

d. GetSystemTime

e. GetTickCount

Now we will take an example of a timing
check.

As we can see in Figure 11.

Figure 11 Assembly Code of GetTick-
Count()

We check the synchronization using the
kernel32 GetTickCount() API or manually
verify that the SharedUserData structure's
TickCountLow and TickCountMultiplier
entries are always set to 0xc.Identifying these
timing techniques can be challenging,
especially when RDTSC is used as spam, when
other obscure techniques are used to mask
them.

1. Introduction

 Prior to then, malware Development
served as a showcase for malware coders.
Malware analysts have used debuggers to run a
malware program's instructions one by one,
introducing modifications to memory spaces,
settings as well as variable values. Debuggers
are the most commonly used reverse engineer-
ing tools, such as Interactive Disassembler
(IDA), x64dbg, and OllyDBG. If debugging is
successful, it helps to understand malware
behavior and its capabilities. This is something

malware developers would like to avoid. That
is why they must implement anti-debugging
techniques. Anti-debugging techniques[3] can
be used to merely detect the presence of a
debugger, deactivate it, lose control of it, or
even take advantage of a flaw in the debugger.
Disabling or avoiding debugger checks can be
done generally and specifically. However, you
can exploit this vulnerability against specific
debuggers. Furthermore, The Supervisory
Control and Data Acquisition (SCADA)[4]
system has a vulnerability, according to the
Trend Micro report "Unseen Threats, Immi-
nent losses,” which is the part of industrial

manually. The fs segment register can access
the Process Environment Block (PEB) at fs:
[30]. On an x86 [8] computer, this register
corresponds to a Thread Information Block
(TIB).There is also a flag below the Process
Environment Block (PEB) that indicates
whether the first memory space of the process
was created in debug mode. Provide an offset
of 0x18 in the Process Environment Bloc
(PEB). So, here I break down the anti-debug-
ging techniques into two categories: static
anti-debugging and dynamic anti-debugging
[9], as seen in the Table 1 below.

Table 1. Static Vs Dynamic Techniques
Difference

In our research we will discuss we will discuss
some of the main anti-debugging techniques
and how a reverse engineer can be able to
identify them easily for example in this paper
we will discuss about the IsDebuggerPresent,
TimeChecks, NtQueryInformationProcess,
NtSetInformationThread, SwitchDesktops,
SeDebugPrivilege, ParentProcess, Debugger-
Window, DeviceDrivers etc.

Anti-Debugging Techniques Mechanism:
Anti-debugging[10] is the implementation of

control systems (ICS)[5]. In addition, In many
situations, knowing how to apply anti-debug-
ging techniques to malicious code to prevent it
from being tracked down and evaluated is also
helpful. One of the main tools used by malware
analysts and reverse engineers is the debugger.
What is a debugger? A debugger is software
that is used to evaluate and control the flow of
execution of other executables or software. By
using a debugger, we can execute each instruc-
tion step by step and can note down the chang-
es that can be displayed on the stack, memory
dumps, registers, etc. Most packers use these
techniques to determine whether the system is
running a debugger or if a process is being
debugged. These debugger detection meth-
ods[6] include checks that are relatively basic
all the way up to ones that are applicable to
native Application Programming Interfaces
(APIs) and kernel objects[7].This section
discusses how anti-debugging techniques
work. Each process's user space contains a data
structure called a Process Environment Block
(PEB), which holds information about the
related process. Each process's user space
contains a data structure called a Process
Environment Block (PEB), which holds infor-
mation about the related process. It is intended
to access Windows API (WinAPI)It is intended
to access Windows API (WinAPI) but access is
not restricted by this. Process Environment
Block (PEB) can be accessed directly from
memory. Checking the value of the Process
Environment Block (PEB) structure that has
been debugged is a relatively straightforward
implementation and technique. As we know
that there are so many Applications Program-
mable Interfaces (APIs) which are documented
and undocumented. For example, IsDebugger-
Present, which we will discuss later in this
paper. To enhance, we can also check the APIs

If the process can open the CSRSS.EXE
process, then SeDebugPrivilege is active when
the process is accessed.

Token pointing to the process being debugged.
The test is valid for the following reasons: The
Process Security Descriptor CSRSS.EXE
allows the system access to the process.

However, if the process has SeDebugPrivilege
privilege, other processes have independent
access to the Security Descriptor. This permis-
sion is only granted to administrative groups
by default, as we can see in Figure 12.

Figure 12 Assembly Code of SeDebugPrivi-
lege()

This control uses ntdll! The CSRSS.exe
GetProcessId() API gets the Process ID (PID)
 from CSRSS.EXE. You can get it manually by
looking at the Process ID CSRSS.EXE
processes. If OpenProcess() succeeds, SeDe-
bugPrivilege is activated, indicating that the
process is currently running and debugging,
too.

Solution:
The ntdll breakpoint can be hit by setting a
breakpoint as a solution. Returns from
NtOpenProcess(). If PID passed by
CSRSS.exe is CSRSS.exe, set the EX-value to
0xC0000022 (STATUS_ACCESS_DENIED).

Solution:
One of the solutions is to identify where the
time checks are and try to avoid stepping into
them. and the code between these time checks.
Reverse Engineers can place a breakpoint
before that delta and execute instead of steps
until a breakpoint is reached or a breakpoint is
reached. We can also set a breakpoint in
GetTickCount() to specify where to call it or to
change its return value. Mitigations During
Debugging: just fill time checks with NOPs
and set the result of these checks to the appro-
priate value. For anti-debugging solution
development: there is no great need to do
anything with it, as time checks are not very
reliable, but you can still hook timing functions
and accelerate the time between calls.

Mitigations:
• During Debugging, just fill time checks

with NOPs and set the result of these
checks to the appropriate value.

• For anti-debugging solution develop-
ment: there is no great need to do
anything with it, as time checks are not
very reliable, but you can still hook
timing functions and accelerate the time
between calls.

7. SeDebugPrivilege:

By default, the SeDebugPrivilege permission
is disabled for the process access token. When
a debugger like x32dbg, OllyDBG, etc. loads a
process, SeDebugPrivilege permission is
enabled. This is because these debuggers keep
trying . SeDebugPrivilege permissions are
inherited.

Parent Process:
Users launch apps by clicking on the executa-
ble's icon that the shell process displays
(Explorer.exe).By clicking on the executable's
icon that the shell process displays, users can
launch apps (Explorer.exe).Due to this,Explor-
er.exe becomes the parent process of the active
process. This will show that the program was
created by someone else and suggest that you
can debug it.

1. Using Process32First/Next(), it will list
every process and note explorer.exe.
PROCESS32.szExeFile and the PRO-
CESSENTRY32.th32parentProcessID
are the two files that provide the process
ID and the parent process ID of the
current process, respectively.

2. The target is being debugged if the
Process ID (PID) of the parent process
differs from the Process ID (PID) of the
explorer.exe.

Solution:
We need to patch the element of
Kernel32!Process32NextW() that contains the
code that performs a return after setting the
value of EAX to 0.

8. Debugger Window:

The presence of the debug window is a flag
that the debugger is running system[13].
Because the debugger creates windows with
special class names (OllyDBG for OLLYDBG
and WinDbgFrameClass for WinDbg), user32
can easily identify these debug windows!
FindWindow`() or User32! findWindowEx().

Solution:
One solution is to set breakpoints in FindWin-
dow() and FindWindowEx() When the break-
point is hit, modify the value of the
lpClassName string parameter to prevent the
API from functioning. Setting the return value
to NULL is another option.

9. Debugger Process:

List all the processes on the system and see
whether the process name matches the name of
the debugger to find out if it is currently
running (for example, OLLYDBG.EXE, wind-
bg.exe, etc.).Simple to implement; just use
Process32First / Next() after confirming that
the image name corresponds to the name of the
debugger.

Sometimes these methods also use Kernel32
ReadProcessMemory() to read process
memory and then look for debugger-related
strings such as "x64dbg", "IDA", "OllyDBG",
etc. to reverse engineer the debugger. to imple-
ment. After getting the debugger. The malware
will stop his execution and silently exit or
terminates the process.

Solution:
Another solution is to check the main process,
including patching the kernel 32 patch!
Process32NextW() always fails and prevents
the developer from enumerating the process.

10. Device Drivers

An old technique is to verify that the debugger
is running in a Kernel Mode in the system and
try to, access device drivers. This technique is
very simple and consists of simply making a
call to the against well-known device names

byte value 0xCC (INT3 / Breakpoint
Interrupt)[17]. Finding the byte 0xCC in the
API code and protector code will help you
locate software breakpoints as seen by the
example of assembly code in Figure 13.

Figure 13 Assembly Code of Software
Breakpoint Detection

C/C++ Code:
As we can C/C++ code in the Figure 14.

Figure 14. C/C++ code of Software Break-
point Detection

Solution:
Hardware breakpoints can be reverse
engineered if software breakpoints are identi-
fied. If you need to set a breakpoint in the API
code, and when the packer tries to find a break-
point in the API code, reverse engineering the
UNICODE API version allows for the setting
of breakpoints. That eventually calls the ANSI
version, such as LoadLibraryExW LoadLibrar-

used by kernel-mode debuggers, such as
SoftICE, using Kernel32!CreateFile().Some
versions of Soft-ICE also add numbers to the
device name, making it to check. The reversing
forum's suggested technique is to brute force
the corresponding digits until the right device
name is discovered[14].The new packer also
uses device driver detection techniques to
detect system monitors such as “Process Moni-
tor” etc.

Solution:
Establishing a breakpoint in kernel32 is the
simple fix. When the breakpoint is reached,
CreateFileFileW() should either handle the
FileName parameter or alter its return value to
INVALID HANDLE VALUE (0xFFFFFFFF).

Process Memory:
A process can check or interact with its own
memory for the presence of a debugger. This
section includes anti-hitch methods[15] such
as process memory and thread context check-
ing, breakpoint DETECTION, PATCHING function
and debugging functions.

11. Breakpoint and Patching
Detection:

To verify if our code has any software break-
points, we may still inspect the process
memory, and we can also check the CPU
debug registers to see if any hardware break-
points have been set.

12. Software Breakpoints
Detection:

Software breakpoints are defined as break-
points that are created by altering the code at
the target location and replacing it with the

Of course, as with all malware analysis, the
best way to learn how to stop it by using
debugging techniques by continuously testing
malware. Malware developers are constantly
coming up with new techniques to evade
debuggers and keep security researchers like
you on their toes.

17. References:

[1] V. Bhardwaj, V. Kukreja, C. Sharma, I.
Kansal, and R. Popali, “Reverse
Engineering-A Method for Analyzing
Malicious Code Behavior,” in 2021
International Conference on Advances
in Computing, Communication, and
Control (ICAC3), Dec. 2021, pp. 1–5.
doi: 10.1109/ICAC353642.2021.
9697150.

[2] M. N. Gagnon, S. Taylor, and A. K.
Ghosh, “Software Protection through
Anti-Debugging,” IEEE Security &
Privacy Magazine, vol. 5, no. 3, pp.
82–84, May 2007, doi: 10.1109/M-
SP.2007.71.

[3] J.-W. Kim, J. Bang, Y.-S. Moon, and
M.-J. Choi, “Disabling Anti-Debugging
Techniques for Unpacking System in
User-level Debugger,” in 2019 Interna-
tional Conference on Information and
Communication Technology Conver-
gence (ICTC), Oct. 2019, pp. 954–959.
doi: 10.1109/ICTC46691.2019.
8939719.

[4] T. Akhtar, B. B. Gupta, and S. Yamagu-
chi, “Malware propagation effects on
SCADA system and smart power grid,”
in 2018 IEEE International Conference
on Consumer Electronics (ICCE), Jan.

looking for breakpoints in the process memory,
we can check to see if kernel32IsDebuggerPre-
sent() has been altered[20].The first few bytes
of this function can be read and compared to
the same function's bytes from other processes.
Windows libraries are loaded at the same base
address throughout the process, even if the
Address Space Layout Randomization (ASLR)
feature is enabled. The base address only
changes across reboots but remains the same
for the duration of the session.

Mitigations:
• During Debugging: Enter the function

that conducts the Step-Over check and
run it till the end(Ctrl + F9).

• Finding the specific check and either
path it with NOPs or setting the return to
a value that permits the application to
keep running are the best ways to
mitigate all "memory" techniques,
including anti-step over.

Conclusion:
To defend itself against reverse engineering
analysis, the malware employs anti-debugging
techniques. Debug analysis can be avoided by
anti-debugging techniques. Reverse engineers
need advanced debuggers and knowledge to
analyze malware using anti-debugging
techniques. By applying common sense and
slowly debugging the process, it is possible to
identify the majority of anti-debugging
techniques. For example, if you see that the
code is terminating too rapidly in a conditional
jump, which could mean preventing debugging
technical. The most widely used anti-debug-
ging methods involve fs access: [30h] by using
a Windows API or performing a time check.

Study of the Anti-Debugging Techniques and their Mitigations

38 LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

ison of Machine Learning Models in Malware
Packing Detection,” in 2020 21st
Asia-Pacific Network Operations and
Management Symposium (APNOMS),
Sep. 2020, pp. 377–380. doi:
10 .23919 /APNOMS50412 .2020 .
9237007.

[16] R. R. Branco and G. N. Barbosa,
“Distributed malware analysis schedul-
ing,” in 2011 6th International Confer-
ence on Malicious and Unwanted
Software, Oct. 2011, pp. 34–41. doi:
10.1109/MALWARE.2011.6112324.

[17] K. Coogan, S. Debray, T. Kaochar, and
G. Townsend, “Automatic Static
Unpacking of Malware Binaries,” in
2009 16th Working Conference on
Reverse Engineering, 2009, pp.
167–176. doi: 10.1109/WCRE.2009.24.

[18] G. Jeong, E. Choo, J. Lee, M.
Bat-Erdene, and H. Lee, “Generic
unpacking using entropy analysis,” in
2010 5th International Conference on
Malicious and Unwanted Software, Oct.
2010, pp. 98–105. doi: 10.1109/MAL-
WARE.2010.5665789.

[19] C. R. Hill, “A real-time microprocessor
debugging technique,” ACM SIGPLAN
Notices, vol. 18, no. 8, pp. 145–148,
Aug. 1983, doi: 10.1145/1006142.
1006179.

[20] R. Sihwail, K. Omar, K. Zainol Ariffin,
and S. al Afghani, “Malware Detection
Approach Based on Artifacts in Memory
Image and Dynamic Analysis,” Applied
Sciences, vol. 9, no. 18, p. 3680, Sep.
2019, doi: 10.3390/app9183680.

yA or the native API corresponding to Load-
DLL to replace.

13. Hardware Breakpoints:

DR0, DR1, DR2, and DR3 are debug registers
that can be obtained from the thread context.
Debug registers 0-3 are used to store virtual
address of the so-called hardware breakpoints.
C/C++ Code:

As we can see C/C++ code in the figure 15.

Figure 15 C/C++ code of Hardware
Breakpoints

14. Memory Checks:

This section includes methods for directly
inspecting or modifying a process's virtual
memory in order to spot and stop debug-
ging[18].

15. Nt Query Virtual Memory ():

The memory page of the process in which the
code is located is shared by all processes prior
to the page being written. Then the OS creates
a replica of this page and allocates it to the
process's virtual memory[19], so the page is no
longer "shared". Now we can see how to
declare NTDLL, as we can see in figure 16.

NTDLL declarations:

Figure 16 NTDLL Deceleration of
NtQueryVirtualMemory()

C/C++ Code:
As we can see the C/C++ code in the Figure
17.

Figure 17 C/C++ Code for Hardware
Breakpoints

16. Detecting A function Patch:

Calling kernel32 is a common approach to find
a debugger. IsDebuggerPresent(). By altering
the outcome in the EAX register or hacking the
kernel32, you may easily get around this
check! IsDebuggerPresent(). Instead of

2018, pp. 1–6. doi: 10.1109/ICCE.2018.
8326281.

[5] G. Wang, L. Zhuang, T. Liu, S. Li, S.
Yang, and J. Lan, “Formal analysis and
verification of industrial control system
security via timed automata,” in 2020
International Conference on Internet of
Things and Intelligent Applications
(ITIA), Nov. 2020, pp. 1–5. doi:
10.1109/ITIA50152.2020.9312289.

[6] A. J. Smith, R. F. Mills, A. R. Bryant, G.
L. Peterson, and M. R. Grimaila,
“REDIR: Automated static detection of
obfuscated anti-debugging techniques,”
in 2014 International Conference on
Collaboration Technologies and
Systems (CTS), May 2014, pp. 173–180.
doi: 10.1109/CTS.2014.6867561.

[7] J. Raber, “Stealthy Profiling and Debug-
ging of Malware Trampolining from
User to Kernel Space,” in 2011 18th
Working Conference on Reverse
Engineering, Oct. 2011, pp. 431–432.
doi: 10.1109/WCRE.2011.62.

[8] J. G. Alcalde, G. Chua, I. M. Demabildo,
M. A. Ong, and R. L. Uy, “CALVIS32:
Customizable assembly language
visualizer and simulator for intel x86-32
architecture,” in 2016 IEEE Region 10
Conference (TENCON), Nov. 2016, pp.
214–217. doi: 10.1109/TEN-
CON.2016.7847992.

[9] Chan Lee Yee, Lee Ling Chuan, M.
Ismail, and N. Zainal, “A static and
dynamic visual debugger for malware
analysis,” in 2012 18th Asia-Pacific
Conference on Communications

(APCC), Oct. 2012, pp. 765–769. doi:
10.1109/APCC.2012.6388211.

[10] Xu Chen, J. Andersen, Z. M. Mao, M.
Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and
anti-debugging behavior in modern
malware,” in 2008 IEEE International
Conference on Dependable Systems and
Networks With FTCS and DCC (DSN),
2008, pp. 177–186. doi: 10.1109/
DSN.2008.4630086.

[11] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[12] P. Xie, X. Lu, Y. Wang, J. Su, and M. Li,
“An Automatic Approach to Detect
Anti-debugging in Malware Analysis,”
2013, pp. 436–442. doi: 10.1007/
978-3-642-35795-4_55.

[13] A. Mylonas and D. Gritzalis, “Practical
Malware Analysis: The Hands-On
Guide to Dissecting Malicious
Software,” Comput Secur, vol. 31, no. 6,
pp. 802–803, Sep. 2012, doi: 10.1016/j.-
cose.2012.05.004.

[14] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[15] J.-W. Kim, J. Namgung, Y.-S. Moon,
and M.-J. Choi, “Experimental Compar-

one or more techniques in computer code that
make it difficult to reverse engineer or debug
the target process. These techniques are ways
for a program to detect whether it is running
under the control of a debugger[11]. If a
debugger is detected, the malware will execute
arbitrary code, usually code to terminate. The
anti-debugging process slows down the
reverse engineering process but doesn't stop it.

2. Is Debugger Present:

The easiest debugger detection technique is to
check the BeingDebugged flag in the Process
Environment Block (PEB). The kernel32IsDe-
buggerPresent() function was introduced in
Windows 95, and the Application Programma-
ble Interface (API) checks the value of this flag
to identify the process whether it is in the
user-mode debugger. This code (same 32-bit or
64-bit Windows environment) can be used for
verification to check the 32-bit or 64-bit
Windows environment. As we can see the
assembly code of the IsDebuggerPresent() in
Figure 1.

Figure 1. Assembly code of IsDebuggerPre-
sent()

C/C++ Code:
As we can see in the example if IsDebugger-
Present() in Figure 2.

Figure 2. C/C++ code of IsDebuggerPre-
sent()

Solution:
This technique can be easily bypassed by
manually patching the Process Environment
Block (PEB). BeingDebugged flag with the
value 0x00 in the bytes.

3. Nt Query Information Process
() / Check Remote Debugger
Present ()

CheckRemoteDebuggerPresent() is another a
debugger should be attached to a process? Use
this Check Remote DebuggerPresent() to
decide. The API calls ntdll!ProcessDebugPort
inside the kernel A value that is not zero in the
DebugPort field tells that the process is being
debugged in user mode by the debugger. If so,
ProcessInformation will be set to
0xFFFFFFFF, otherwise the value of
ProcessInformation will be 0x0.The Check-
RemoteDebuggerPresent()[12] function in
Kernel32 is functional.On either the 32-bit or
64-bit version of Windows, the check can be
made by using this 32-bit code to look at the
32-bit window environment. The Function The
function CheckRemoteDebuggerPresent()
takes 2 parameters; the first parameter is the
(PID), and the A pointer to a Boolean variable
serves as the second parameter. That will hold
TRUE if the process is being debugged. As we
can see from the C/C++ code in Figure 3.

Figure 3 C/C++ Code for CheckRemoteDe-
bugger

Ntdll! NtQueryInformationProcess() has 5
parameters. To detect the debugger, the

to hide threads from the debugger. It can also be
done with the help of a non-documented value,
which is not documented but can be used.
THREAD_INFORMATION_CLASS::Threa-
dHideFromDebugger (0x11). When a thread is
hidden in the debugger, it will not be informed
of anything pertaining to that thread not be
informed of anything pertaining to that thread.
The thread is also capable of anti-debugging
methods, such as examining debug flags, code
checksums, etc. If there are hidden breakpoints
in the thread, If we try to keep the main thread
hidden from the debugger, either the process
will crash or the debugger will gets stuck. An
example of calling the NtSetInformation-
Thread would be like this, as we can see in
Figure 7.

Figure 7. Assembly code of NtSetInforma-
tionThread()

C/C++ Code:
As we can see, C/C++ code in Figure 8.

Figure 8. C/C++ code of NtSetInformation-
Thread()

Solution:
The breakpoint is set to ntdll!NtSetInforma-
tionThread(), and when the breakpoint is hit,
reverse engineers can modify the EIP, to
prevent the API calls from reaching the kernel
and being called from other functions.

ProcessInformation class is set to as
ProcessDebugPort as we can see C/C++ code
in the Figure 4.

Figure 4. C/C++ Code for NtQueryInfor-
mationProcess()

This example shows how the call to the Check-
RemoteDebuggerPresent() and To see whether
the current process is being debugged, utilize
the NtQueryInformationProcess function. as
we can see in Figure 5 and Figure 6.

Figure 5 Assembly code of CheckRemot-
eDebuggerPresent()

Figure 6. Assembly code of NtQueryInfor-
mationProcess()

Solution:
One solution is to set NtQueryInformationPro-
cess(return)'s value is a breakpoint. ProcessIn-
formation is patched to a DWORD value of 0
when the breakpoint is reached of 0.

4. Nt SetInformation Thread:

NtSetInformationThread()[13] is usually used
to set the priority of a thread. It can also be used

5. SwitchDesktop()

Platforms based on Windows NT allow for
multiple desktop sessions. The windows of the
previous active desktop can be hidden by
choosing a different active desktop, but there is
no visible way to return to the previous
desktop. the mouse and keyboard events won't
be sent to the debugger from the debugger's
desktop.[13] , they no longer divulge their
source, either. Debugging could become
impossible as a result. Both the 32-bit and
64-bit versions of Windows can be used to
make this call. Here is an example of a 32-bit
version of Windows as we can see in Figure 9.

Figure 9. Assembly code of SwitchDesk-
top()

C/C++ Code:
As we can see the C/C++ code in the Figure 10.

Figure 10 C/C++ code of SwitchDesktop()

6. Execution Time / Timing
Checks

When a reverse engineer tries to debug a

process and uses a single step in code, there is
a significant delay between the execution of
the individual’s instructions[13]. The process
is running under a debugger if the amount of
time required is excessive compared to a
typical execution. Here is a list of some
instructions that can be used to increase the
execution time of the instruction.

a. RDTSC (Read Time-Stamp Counter)

b. RDPMC (Read Performance-Monitor-
ing Counters)

c. GetLocalTime

d. GetSystemTime

e. GetTickCount

Now we will take an example of a timing
check.

As we can see in Figure 11.

Figure 11 Assembly Code of GetTick-
Count()

We check the synchronization using the
kernel32 GetTickCount() API or manually
verify that the SharedUserData structure's
TickCountLow and TickCountMultiplier
entries are always set to 0xc.Identifying these
timing techniques can be challenging,
especially when RDTSC is used as spam, when
other obscure techniques are used to mask
them.

1. Introduction

 Prior to then, malware Development
served as a showcase for malware coders.
Malware analysts have used debuggers to run a
malware program's instructions one by one,
introducing modifications to memory spaces,
settings as well as variable values. Debuggers
are the most commonly used reverse engineer-
ing tools, such as Interactive Disassembler
(IDA), x64dbg, and OllyDBG. If debugging is
successful, it helps to understand malware
behavior and its capabilities. This is something

malware developers would like to avoid. That
is why they must implement anti-debugging
techniques. Anti-debugging techniques[3] can
be used to merely detect the presence of a
debugger, deactivate it, lose control of it, or
even take advantage of a flaw in the debugger.
Disabling or avoiding debugger checks can be
done generally and specifically. However, you
can exploit this vulnerability against specific
debuggers. Furthermore, The Supervisory
Control and Data Acquisition (SCADA)[4]
system has a vulnerability, according to the
Trend Micro report "Unseen Threats, Immi-
nent losses,” which is the part of industrial

manually. The fs segment register can access
the Process Environment Block (PEB) at fs:
[30]. On an x86 [8] computer, this register
corresponds to a Thread Information Block
(TIB).There is also a flag below the Process
Environment Block (PEB) that indicates
whether the first memory space of the process
was created in debug mode. Provide an offset
of 0x18 in the Process Environment Bloc
(PEB). So, here I break down the anti-debug-
ging techniques into two categories: static
anti-debugging and dynamic anti-debugging
[9], as seen in the Table 1 below.

Table 1. Static Vs Dynamic Techniques
Difference

In our research we will discuss we will discuss
some of the main anti-debugging techniques
and how a reverse engineer can be able to
identify them easily for example in this paper
we will discuss about the IsDebuggerPresent,
TimeChecks, NtQueryInformationProcess,
NtSetInformationThread, SwitchDesktops,
SeDebugPrivilege, ParentProcess, Debugger-
Window, DeviceDrivers etc.

Anti-Debugging Techniques Mechanism:
Anti-debugging[10] is the implementation of

control systems (ICS)[5]. In addition, In many
situations, knowing how to apply anti-debug-
ging techniques to malicious code to prevent it
from being tracked down and evaluated is also
helpful. One of the main tools used by malware
analysts and reverse engineers is the debugger.
What is a debugger? A debugger is software
that is used to evaluate and control the flow of
execution of other executables or software. By
using a debugger, we can execute each instruc-
tion step by step and can note down the chang-
es that can be displayed on the stack, memory
dumps, registers, etc. Most packers use these
techniques to determine whether the system is
running a debugger or if a process is being
debugged. These debugger detection meth-
ods[6] include checks that are relatively basic
all the way up to ones that are applicable to
native Application Programming Interfaces
(APIs) and kernel objects[7].This section
discusses how anti-debugging techniques
work. Each process's user space contains a data
structure called a Process Environment Block
(PEB), which holds information about the
related process. Each process's user space
contains a data structure called a Process
Environment Block (PEB), which holds infor-
mation about the related process. It is intended
to access Windows API (WinAPI)It is intended
to access Windows API (WinAPI) but access is
not restricted by this. Process Environment
Block (PEB) can be accessed directly from
memory. Checking the value of the Process
Environment Block (PEB) structure that has
been debugged is a relatively straightforward
implementation and technique. As we know
that there are so many Applications Program-
mable Interfaces (APIs) which are documented
and undocumented. For example, IsDebugger-
Present, which we will discuss later in this
paper. To enhance, we can also check the APIs

If the process can open the CSRSS.EXE
process, then SeDebugPrivilege is active when
the process is accessed.

Token pointing to the process being debugged.
The test is valid for the following reasons: The
Process Security Descriptor CSRSS.EXE
allows the system access to the process.

However, if the process has SeDebugPrivilege
privilege, other processes have independent
access to the Security Descriptor. This permis-
sion is only granted to administrative groups
by default, as we can see in Figure 12.

Figure 12 Assembly Code of SeDebugPrivi-
lege()

This control uses ntdll! The CSRSS.exe
GetProcessId() API gets the Process ID (PID)
 from CSRSS.EXE. You can get it manually by
looking at the Process ID CSRSS.EXE
processes. If OpenProcess() succeeds, SeDe-
bugPrivilege is activated, indicating that the
process is currently running and debugging,
too.

Solution:
The ntdll breakpoint can be hit by setting a
breakpoint as a solution. Returns from
NtOpenProcess(). If PID passed by
CSRSS.exe is CSRSS.exe, set the EX-value to
0xC0000022 (STATUS_ACCESS_DENIED).

Solution:
One of the solutions is to identify where the
time checks are and try to avoid stepping into
them. and the code between these time checks.
Reverse Engineers can place a breakpoint
before that delta and execute instead of steps
until a breakpoint is reached or a breakpoint is
reached. We can also set a breakpoint in
GetTickCount() to specify where to call it or to
change its return value. Mitigations During
Debugging: just fill time checks with NOPs
and set the result of these checks to the appro-
priate value. For anti-debugging solution
development: there is no great need to do
anything with it, as time checks are not very
reliable, but you can still hook timing functions
and accelerate the time between calls.

Mitigations:
• During Debugging, just fill time checks

with NOPs and set the result of these
checks to the appropriate value.

• For anti-debugging solution develop-
ment: there is no great need to do
anything with it, as time checks are not
very reliable, but you can still hook
timing functions and accelerate the time
between calls.

7. SeDebugPrivilege:

By default, the SeDebugPrivilege permission
is disabled for the process access token. When
a debugger like x32dbg, OllyDBG, etc. loads a
process, SeDebugPrivilege permission is
enabled. This is because these debuggers keep
trying . SeDebugPrivilege permissions are
inherited.

Parent Process:
Users launch apps by clicking on the executa-
ble's icon that the shell process displays
(Explorer.exe).By clicking on the executable's
icon that the shell process displays, users can
launch apps (Explorer.exe).Due to this,Explor-
er.exe becomes the parent process of the active
process. This will show that the program was
created by someone else and suggest that you
can debug it.

1. Using Process32First/Next(), it will list
every process and note explorer.exe.
PROCESS32.szExeFile and the PRO-
CESSENTRY32.th32parentProcessID
are the two files that provide the process
ID and the parent process ID of the
current process, respectively.

2. The target is being debugged if the
Process ID (PID) of the parent process
differs from the Process ID (PID) of the
explorer.exe.

Solution:
We need to patch the element of
Kernel32!Process32NextW() that contains the
code that performs a return after setting the
value of EAX to 0.

8. Debugger Window:

The presence of the debug window is a flag
that the debugger is running system[13].
Because the debugger creates windows with
special class names (OllyDBG for OLLYDBG
and WinDbgFrameClass for WinDbg), user32
can easily identify these debug windows!
FindWindow`() or User32! findWindowEx().

Solution:
One solution is to set breakpoints in FindWin-
dow() and FindWindowEx() When the break-
point is hit, modify the value of the
lpClassName string parameter to prevent the
API from functioning. Setting the return value
to NULL is another option.

9. Debugger Process:

List all the processes on the system and see
whether the process name matches the name of
the debugger to find out if it is currently
running (for example, OLLYDBG.EXE, wind-
bg.exe, etc.).Simple to implement; just use
Process32First / Next() after confirming that
the image name corresponds to the name of the
debugger.

Sometimes these methods also use Kernel32
ReadProcessMemory() to read process
memory and then look for debugger-related
strings such as "x64dbg", "IDA", "OllyDBG",
etc. to reverse engineer the debugger. to imple-
ment. After getting the debugger. The malware
will stop his execution and silently exit or
terminates the process.

Solution:
Another solution is to check the main process,
including patching the kernel 32 patch!
Process32NextW() always fails and prevents
the developer from enumerating the process.

10. Device Drivers

An old technique is to verify that the debugger
is running in a Kernel Mode in the system and
try to, access device drivers. This technique is
very simple and consists of simply making a
call to the against well-known device names

byte value 0xCC (INT3 / Breakpoint
Interrupt)[17]. Finding the byte 0xCC in the
API code and protector code will help you
locate software breakpoints as seen by the
example of assembly code in Figure 13.

Figure 13 Assembly Code of Software
Breakpoint Detection

C/C++ Code:
As we can C/C++ code in the Figure 14.

Figure 14. C/C++ code of Software Break-
point Detection

Solution:
Hardware breakpoints can be reverse
engineered if software breakpoints are identi-
fied. If you need to set a breakpoint in the API
code, and when the packer tries to find a break-
point in the API code, reverse engineering the
UNICODE API version allows for the setting
of breakpoints. That eventually calls the ANSI
version, such as LoadLibraryExW LoadLibrar-

used by kernel-mode debuggers, such as
SoftICE, using Kernel32!CreateFile().Some
versions of Soft-ICE also add numbers to the
device name, making it to check. The reversing
forum's suggested technique is to brute force
the corresponding digits until the right device
name is discovered[14].The new packer also
uses device driver detection techniques to
detect system monitors such as “Process Moni-
tor” etc.

Solution:
Establishing a breakpoint in kernel32 is the
simple fix. When the breakpoint is reached,
CreateFileFileW() should either handle the
FileName parameter or alter its return value to
INVALID HANDLE VALUE (0xFFFFFFFF).

Process Memory:
A process can check or interact with its own
memory for the presence of a debugger. This
section includes anti-hitch methods[15] such
as process memory and thread context check-
ing, breakpoint DETECTION, PATCHING function
and debugging functions.

11. Breakpoint and Patching
Detection:

To verify if our code has any software break-
points, we may still inspect the process
memory, and we can also check the CPU
debug registers to see if any hardware break-
points have been set.

12. Software Breakpoints
Detection:

Software breakpoints are defined as break-
points that are created by altering the code at
the target location and replacing it with the

Of course, as with all malware analysis, the
best way to learn how to stop it by using
debugging techniques by continuously testing
malware. Malware developers are constantly
coming up with new techniques to evade
debuggers and keep security researchers like
you on their toes.

17. References:

[1] V. Bhardwaj, V. Kukreja, C. Sharma, I.
Kansal, and R. Popali, “Reverse
Engineering-A Method for Analyzing
Malicious Code Behavior,” in 2021
International Conference on Advances
in Computing, Communication, and
Control (ICAC3), Dec. 2021, pp. 1–5.
doi: 10.1109/ICAC353642.2021.
9697150.

[2] M. N. Gagnon, S. Taylor, and A. K.
Ghosh, “Software Protection through
Anti-Debugging,” IEEE Security &
Privacy Magazine, vol. 5, no. 3, pp.
82–84, May 2007, doi: 10.1109/M-
SP.2007.71.

[3] J.-W. Kim, J. Bang, Y.-S. Moon, and
M.-J. Choi, “Disabling Anti-Debugging
Techniques for Unpacking System in
User-level Debugger,” in 2019 Interna-
tional Conference on Information and
Communication Technology Conver-
gence (ICTC), Oct. 2019, pp. 954–959.
doi: 10.1109/ICTC46691.2019.
8939719.

[4] T. Akhtar, B. B. Gupta, and S. Yamagu-
chi, “Malware propagation effects on
SCADA system and smart power grid,”
in 2018 IEEE International Conference
on Consumer Electronics (ICCE), Jan.

looking for breakpoints in the process memory,
we can check to see if kernel32IsDebuggerPre-
sent() has been altered[20].The first few bytes
of this function can be read and compared to
the same function's bytes from other processes.
Windows libraries are loaded at the same base
address throughout the process, even if the
Address Space Layout Randomization (ASLR)
feature is enabled. The base address only
changes across reboots but remains the same
for the duration of the session.

Mitigations:
• During Debugging: Enter the function

that conducts the Step-Over check and
run it till the end(Ctrl + F9).

• Finding the specific check and either
path it with NOPs or setting the return to
a value that permits the application to
keep running are the best ways to
mitigate all "memory" techniques,
including anti-step over.

Conclusion:
To defend itself against reverse engineering
analysis, the malware employs anti-debugging
techniques. Debug analysis can be avoided by
anti-debugging techniques. Reverse engineers
need advanced debuggers and knowledge to
analyze malware using anti-debugging
techniques. By applying common sense and
slowly debugging the process, it is possible to
identify the majority of anti-debugging
techniques. For example, if you see that the
code is terminating too rapidly in a conditional
jump, which could mean preventing debugging
technical. The most widely used anti-debug-
ging methods involve fs access: [30h] by using
a Windows API or performing a time check.

ison of Machine Learning Models in Malware
Packing Detection,” in 2020 21st
Asia-Pacific Network Operations and
Management Symposium (APNOMS),
Sep. 2020, pp. 377–380. doi:
10 .23919 /APNOMS50412 .2020 .
9237007.

[16] R. R. Branco and G. N. Barbosa,
“Distributed malware analysis schedul-
ing,” in 2011 6th International Confer-
ence on Malicious and Unwanted
Software, Oct. 2011, pp. 34–41. doi:
10.1109/MALWARE.2011.6112324.

[17] K. Coogan, S. Debray, T. Kaochar, and
G. Townsend, “Automatic Static
Unpacking of Malware Binaries,” in
2009 16th Working Conference on
Reverse Engineering, 2009, pp.
167–176. doi: 10.1109/WCRE.2009.24.

[18] G. Jeong, E. Choo, J. Lee, M.
Bat-Erdene, and H. Lee, “Generic
unpacking using entropy analysis,” in
2010 5th International Conference on
Malicious and Unwanted Software, Oct.
2010, pp. 98–105. doi: 10.1109/MAL-
WARE.2010.5665789.

[19] C. R. Hill, “A real-time microprocessor
debugging technique,” ACM SIGPLAN
Notices, vol. 18, no. 8, pp. 145–148,
Aug. 1983, doi: 10.1145/1006142.
1006179.

[20] R. Sihwail, K. Omar, K. Zainol Ariffin,
and S. al Afghani, “Malware Detection
Approach Based on Artifacts in Memory
Image and Dynamic Analysis,” Applied
Sciences, vol. 9, no. 18, p. 3680, Sep.
2019, doi: 10.3390/app9183680.

yA or the native API corresponding to Load-
DLL to replace.

13. Hardware Breakpoints:

DR0, DR1, DR2, and DR3 are debug registers
that can be obtained from the thread context.
Debug registers 0-3 are used to store virtual
address of the so-called hardware breakpoints.
C/C++ Code:

As we can see C/C++ code in the figure 15.

Figure 15 C/C++ code of Hardware
Breakpoints

14. Memory Checks:

This section includes methods for directly
inspecting or modifying a process's virtual
memory in order to spot and stop debug-
ging[18].

15. Nt Query Virtual Memory ():

The memory page of the process in which the
code is located is shared by all processes prior
to the page being written. Then the OS creates
a replica of this page and allocates it to the
process's virtual memory[19], so the page is no
longer "shared". Now we can see how to
declare NTDLL, as we can see in figure 16.

NTDLL declarations:

Figure 16 NTDLL Deceleration of
NtQueryVirtualMemory()

C/C++ Code:
As we can see the C/C++ code in the Figure
17.

Figure 17 C/C++ Code for Hardware
Breakpoints

16. Detecting A function Patch:

Calling kernel32 is a common approach to find
a debugger. IsDebuggerPresent(). By altering
the outcome in the EAX register or hacking the
kernel32, you may easily get around this
check! IsDebuggerPresent(). Instead of

2018, pp. 1–6. doi: 10.1109/ICCE.2018.
8326281.

[5] G. Wang, L. Zhuang, T. Liu, S. Li, S.
Yang, and J. Lan, “Formal analysis and
verification of industrial control system
security via timed automata,” in 2020
International Conference on Internet of
Things and Intelligent Applications
(ITIA), Nov. 2020, pp. 1–5. doi:
10.1109/ITIA50152.2020.9312289.

[6] A. J. Smith, R. F. Mills, A. R. Bryant, G.
L. Peterson, and M. R. Grimaila,
“REDIR: Automated static detection of
obfuscated anti-debugging techniques,”
in 2014 International Conference on
Collaboration Technologies and
Systems (CTS), May 2014, pp. 173–180.
doi: 10.1109/CTS.2014.6867561.

[7] J. Raber, “Stealthy Profiling and Debug-
ging of Malware Trampolining from
User to Kernel Space,” in 2011 18th
Working Conference on Reverse
Engineering, Oct. 2011, pp. 431–432.
doi: 10.1109/WCRE.2011.62.

[8] J. G. Alcalde, G. Chua, I. M. Demabildo,
M. A. Ong, and R. L. Uy, “CALVIS32:
Customizable assembly language
visualizer and simulator for intel x86-32
architecture,” in 2016 IEEE Region 10
Conference (TENCON), Nov. 2016, pp.
214–217. doi: 10.1109/TEN-
CON.2016.7847992.

[9] Chan Lee Yee, Lee Ling Chuan, M.
Ismail, and N. Zainal, “A static and
dynamic visual debugger for malware
analysis,” in 2012 18th Asia-Pacific
Conference on Communications

(APCC), Oct. 2012, pp. 765–769. doi:
10.1109/APCC.2012.6388211.

[10] Xu Chen, J. Andersen, Z. M. Mao, M.
Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and
anti-debugging behavior in modern
malware,” in 2008 IEEE International
Conference on Dependable Systems and
Networks With FTCS and DCC (DSN),
2008, pp. 177–186. doi: 10.1109/
DSN.2008.4630086.

[11] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[12] P. Xie, X. Lu, Y. Wang, J. Su, and M. Li,
“An Automatic Approach to Detect
Anti-debugging in Malware Analysis,”
2013, pp. 436–442. doi: 10.1007/
978-3-642-35795-4_55.

[13] A. Mylonas and D. Gritzalis, “Practical
Malware Analysis: The Hands-On
Guide to Dissecting Malicious
Software,” Comput Secur, vol. 31, no. 6,
pp. 802–803, Sep. 2012, doi: 10.1016/j.-
cose.2012.05.004.

[14] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[15] J.-W. Kim, J. Namgung, Y.-S. Moon,
and M.-J. Choi, “Experimental Compar-

Study of the Anti-Debugging Techniques and their Mitigations

39LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

one or more techniques in computer code that
make it difficult to reverse engineer or debug
the target process. These techniques are ways
for a program to detect whether it is running
under the control of a debugger[11]. If a
debugger is detected, the malware will execute
arbitrary code, usually code to terminate. The
anti-debugging process slows down the
reverse engineering process but doesn't stop it.

2. Is Debugger Present:

The easiest debugger detection technique is to
check the BeingDebugged flag in the Process
Environment Block (PEB). The kernel32IsDe-
buggerPresent() function was introduced in
Windows 95, and the Application Programma-
ble Interface (API) checks the value of this flag
to identify the process whether it is in the
user-mode debugger. This code (same 32-bit or
64-bit Windows environment) can be used for
verification to check the 32-bit or 64-bit
Windows environment. As we can see the
assembly code of the IsDebuggerPresent() in
Figure 1.

Figure 1. Assembly code of IsDebuggerPre-
sent()

C/C++ Code:
As we can see in the example if IsDebugger-
Present() in Figure 2.

Figure 2. C/C++ code of IsDebuggerPre-
sent()

Solution:
This technique can be easily bypassed by
manually patching the Process Environment
Block (PEB). BeingDebugged flag with the
value 0x00 in the bytes.

3. Nt Query Information Process
() / Check Remote Debugger
Present ()

CheckRemoteDebuggerPresent() is another a
debugger should be attached to a process? Use
this Check Remote DebuggerPresent() to
decide. The API calls ntdll!ProcessDebugPort
inside the kernel A value that is not zero in the
DebugPort field tells that the process is being
debugged in user mode by the debugger. If so,
ProcessInformation will be set to
0xFFFFFFFF, otherwise the value of
ProcessInformation will be 0x0.The Check-
RemoteDebuggerPresent()[12] function in
Kernel32 is functional.On either the 32-bit or
64-bit version of Windows, the check can be
made by using this 32-bit code to look at the
32-bit window environment. The Function The
function CheckRemoteDebuggerPresent()
takes 2 parameters; the first parameter is the
(PID), and the A pointer to a Boolean variable
serves as the second parameter. That will hold
TRUE if the process is being debugged. As we
can see from the C/C++ code in Figure 3.

Figure 3 C/C++ Code for CheckRemoteDe-
bugger

Ntdll! NtQueryInformationProcess() has 5
parameters. To detect the debugger, the

to hide threads from the debugger. It can also be
done with the help of a non-documented value,
which is not documented but can be used.
THREAD_INFORMATION_CLASS::Threa-
dHideFromDebugger (0x11). When a thread is
hidden in the debugger, it will not be informed
of anything pertaining to that thread not be
informed of anything pertaining to that thread.
The thread is also capable of anti-debugging
methods, such as examining debug flags, code
checksums, etc. If there are hidden breakpoints
in the thread, If we try to keep the main thread
hidden from the debugger, either the process
will crash or the debugger will gets stuck. An
example of calling the NtSetInformation-
Thread would be like this, as we can see in
Figure 7.

Figure 7. Assembly code of NtSetInforma-
tionThread()

C/C++ Code:
As we can see, C/C++ code in Figure 8.

Figure 8. C/C++ code of NtSetInformation-
Thread()

Solution:
The breakpoint is set to ntdll!NtSetInforma-
tionThread(), and when the breakpoint is hit,
reverse engineers can modify the EIP, to
prevent the API calls from reaching the kernel
and being called from other functions.

ProcessInformation class is set to as
ProcessDebugPort as we can see C/C++ code
in the Figure 4.

Figure 4. C/C++ Code for NtQueryInfor-
mationProcess()

This example shows how the call to the Check-
RemoteDebuggerPresent() and To see whether
the current process is being debugged, utilize
the NtQueryInformationProcess function. as
we can see in Figure 5 and Figure 6.

Figure 5 Assembly code of CheckRemot-
eDebuggerPresent()

Figure 6. Assembly code of NtQueryInfor-
mationProcess()

Solution:
One solution is to set NtQueryInformationPro-
cess(return)'s value is a breakpoint. ProcessIn-
formation is patched to a DWORD value of 0
when the breakpoint is reached of 0.

4. Nt SetInformation Thread:

NtSetInformationThread()[13] is usually used
to set the priority of a thread. It can also be used

5. SwitchDesktop()

Platforms based on Windows NT allow for
multiple desktop sessions. The windows of the
previous active desktop can be hidden by
choosing a different active desktop, but there is
no visible way to return to the previous
desktop. the mouse and keyboard events won't
be sent to the debugger from the debugger's
desktop.[13] , they no longer divulge their
source, either. Debugging could become
impossible as a result. Both the 32-bit and
64-bit versions of Windows can be used to
make this call. Here is an example of a 32-bit
version of Windows as we can see in Figure 9.

Figure 9. Assembly code of SwitchDesk-
top()

C/C++ Code:
As we can see the C/C++ code in the Figure 10.

Figure 10 C/C++ code of SwitchDesktop()

6. Execution Time / Timing
Checks

When a reverse engineer tries to debug a

process and uses a single step in code, there is
a significant delay between the execution of
the individual’s instructions[13]. The process
is running under a debugger if the amount of
time required is excessive compared to a
typical execution. Here is a list of some
instructions that can be used to increase the
execution time of the instruction.

a. RDTSC (Read Time-Stamp Counter)

b. RDPMC (Read Performance-Monitor-
ing Counters)

c. GetLocalTime

d. GetSystemTime

e. GetTickCount

Now we will take an example of a timing
check.

As we can see in Figure 11.

Figure 11 Assembly Code of GetTick-
Count()

We check the synchronization using the
kernel32 GetTickCount() API or manually
verify that the SharedUserData structure's
TickCountLow and TickCountMultiplier
entries are always set to 0xc.Identifying these
timing techniques can be challenging,
especially when RDTSC is used as spam, when
other obscure techniques are used to mask
them.

1. Introduction

 Prior to then, malware Development
served as a showcase for malware coders.
Malware analysts have used debuggers to run a
malware program's instructions one by one,
introducing modifications to memory spaces,
settings as well as variable values. Debuggers
are the most commonly used reverse engineer-
ing tools, such as Interactive Disassembler
(IDA), x64dbg, and OllyDBG. If debugging is
successful, it helps to understand malware
behavior and its capabilities. This is something

malware developers would like to avoid. That
is why they must implement anti-debugging
techniques. Anti-debugging techniques[3] can
be used to merely detect the presence of a
debugger, deactivate it, lose control of it, or
even take advantage of a flaw in the debugger.
Disabling or avoiding debugger checks can be
done generally and specifically. However, you
can exploit this vulnerability against specific
debuggers. Furthermore, The Supervisory
Control and Data Acquisition (SCADA)[4]
system has a vulnerability, according to the
Trend Micro report "Unseen Threats, Immi-
nent losses,” which is the part of industrial

manually. The fs segment register can access
the Process Environment Block (PEB) at fs:
[30]. On an x86 [8] computer, this register
corresponds to a Thread Information Block
(TIB).There is also a flag below the Process
Environment Block (PEB) that indicates
whether the first memory space of the process
was created in debug mode. Provide an offset
of 0x18 in the Process Environment Bloc
(PEB). So, here I break down the anti-debug-
ging techniques into two categories: static
anti-debugging and dynamic anti-debugging
[9], as seen in the Table 1 below.

Table 1. Static Vs Dynamic Techniques
Difference

In our research we will discuss we will discuss
some of the main anti-debugging techniques
and how a reverse engineer can be able to
identify them easily for example in this paper
we will discuss about the IsDebuggerPresent,
TimeChecks, NtQueryInformationProcess,
NtSetInformationThread, SwitchDesktops,
SeDebugPrivilege, ParentProcess, Debugger-
Window, DeviceDrivers etc.

Anti-Debugging Techniques Mechanism:
Anti-debugging[10] is the implementation of

control systems (ICS)[5]. In addition, In many
situations, knowing how to apply anti-debug-
ging techniques to malicious code to prevent it
from being tracked down and evaluated is also
helpful. One of the main tools used by malware
analysts and reverse engineers is the debugger.
What is a debugger? A debugger is software
that is used to evaluate and control the flow of
execution of other executables or software. By
using a debugger, we can execute each instruc-
tion step by step and can note down the chang-
es that can be displayed on the stack, memory
dumps, registers, etc. Most packers use these
techniques to determine whether the system is
running a debugger or if a process is being
debugged. These debugger detection meth-
ods[6] include checks that are relatively basic
all the way up to ones that are applicable to
native Application Programming Interfaces
(APIs) and kernel objects[7].This section
discusses how anti-debugging techniques
work. Each process's user space contains a data
structure called a Process Environment Block
(PEB), which holds information about the
related process. Each process's user space
contains a data structure called a Process
Environment Block (PEB), which holds infor-
mation about the related process. It is intended
to access Windows API (WinAPI)It is intended
to access Windows API (WinAPI) but access is
not restricted by this. Process Environment
Block (PEB) can be accessed directly from
memory. Checking the value of the Process
Environment Block (PEB) structure that has
been debugged is a relatively straightforward
implementation and technique. As we know
that there are so many Applications Program-
mable Interfaces (APIs) which are documented
and undocumented. For example, IsDebugger-
Present, which we will discuss later in this
paper. To enhance, we can also check the APIs

If the process can open the CSRSS.EXE
process, then SeDebugPrivilege is active when
the process is accessed.

Token pointing to the process being debugged.
The test is valid for the following reasons: The
Process Security Descriptor CSRSS.EXE
allows the system access to the process.

However, if the process has SeDebugPrivilege
privilege, other processes have independent
access to the Security Descriptor. This permis-
sion is only granted to administrative groups
by default, as we can see in Figure 12.

Figure 12 Assembly Code of SeDebugPrivi-
lege()

This control uses ntdll! The CSRSS.exe
GetProcessId() API gets the Process ID (PID)
 from CSRSS.EXE. You can get it manually by
looking at the Process ID CSRSS.EXE
processes. If OpenProcess() succeeds, SeDe-
bugPrivilege is activated, indicating that the
process is currently running and debugging,
too.

Solution:
The ntdll breakpoint can be hit by setting a
breakpoint as a solution. Returns from
NtOpenProcess(). If PID passed by
CSRSS.exe is CSRSS.exe, set the EX-value to
0xC0000022 (STATUS_ACCESS_DENIED).

Solution:
One of the solutions is to identify where the
time checks are and try to avoid stepping into
them. and the code between these time checks.
Reverse Engineers can place a breakpoint
before that delta and execute instead of steps
until a breakpoint is reached or a breakpoint is
reached. We can also set a breakpoint in
GetTickCount() to specify where to call it or to
change its return value. Mitigations During
Debugging: just fill time checks with NOPs
and set the result of these checks to the appro-
priate value. For anti-debugging solution
development: there is no great need to do
anything with it, as time checks are not very
reliable, but you can still hook timing functions
and accelerate the time between calls.

Mitigations:
• During Debugging, just fill time checks

with NOPs and set the result of these
checks to the appropriate value.

• For anti-debugging solution develop-
ment: there is no great need to do
anything with it, as time checks are not
very reliable, but you can still hook
timing functions and accelerate the time
between calls.

7. SeDebugPrivilege:

By default, the SeDebugPrivilege permission
is disabled for the process access token. When
a debugger like x32dbg, OllyDBG, etc. loads a
process, SeDebugPrivilege permission is
enabled. This is because these debuggers keep
trying . SeDebugPrivilege permissions are
inherited.

Parent Process:
Users launch apps by clicking on the executa-
ble's icon that the shell process displays
(Explorer.exe).By clicking on the executable's
icon that the shell process displays, users can
launch apps (Explorer.exe).Due to this,Explor-
er.exe becomes the parent process of the active
process. This will show that the program was
created by someone else and suggest that you
can debug it.

1. Using Process32First/Next(), it will list
every process and note explorer.exe.
PROCESS32.szExeFile and the PRO-
CESSENTRY32.th32parentProcessID
are the two files that provide the process
ID and the parent process ID of the
current process, respectively.

2. The target is being debugged if the
Process ID (PID) of the parent process
differs from the Process ID (PID) of the
explorer.exe.

Solution:
We need to patch the element of
Kernel32!Process32NextW() that contains the
code that performs a return after setting the
value of EAX to 0.

8. Debugger Window:

The presence of the debug window is a flag
that the debugger is running system[13].
Because the debugger creates windows with
special class names (OllyDBG for OLLYDBG
and WinDbgFrameClass for WinDbg), user32
can easily identify these debug windows!
FindWindow`() or User32! findWindowEx().

Solution:
One solution is to set breakpoints in FindWin-
dow() and FindWindowEx() When the break-
point is hit, modify the value of the
lpClassName string parameter to prevent the
API from functioning. Setting the return value
to NULL is another option.

9. Debugger Process:

List all the processes on the system and see
whether the process name matches the name of
the debugger to find out if it is currently
running (for example, OLLYDBG.EXE, wind-
bg.exe, etc.).Simple to implement; just use
Process32First / Next() after confirming that
the image name corresponds to the name of the
debugger.

Sometimes these methods also use Kernel32
ReadProcessMemory() to read process
memory and then look for debugger-related
strings such as "x64dbg", "IDA", "OllyDBG",
etc. to reverse engineer the debugger. to imple-
ment. After getting the debugger. The malware
will stop his execution and silently exit or
terminates the process.

Solution:
Another solution is to check the main process,
including patching the kernel 32 patch!
Process32NextW() always fails and prevents
the developer from enumerating the process.

10. Device Drivers

An old technique is to verify that the debugger
is running in a Kernel Mode in the system and
try to, access device drivers. This technique is
very simple and consists of simply making a
call to the against well-known device names

byte value 0xCC (INT3 / Breakpoint
Interrupt)[17]. Finding the byte 0xCC in the
API code and protector code will help you
locate software breakpoints as seen by the
example of assembly code in Figure 13.

Figure 13 Assembly Code of Software
Breakpoint Detection

C/C++ Code:
As we can C/C++ code in the Figure 14.

Figure 14. C/C++ code of Software Break-
point Detection

Solution:
Hardware breakpoints can be reverse
engineered if software breakpoints are identi-
fied. If you need to set a breakpoint in the API
code, and when the packer tries to find a break-
point in the API code, reverse engineering the
UNICODE API version allows for the setting
of breakpoints. That eventually calls the ANSI
version, such as LoadLibraryExW LoadLibrar-

used by kernel-mode debuggers, such as
SoftICE, using Kernel32!CreateFile().Some
versions of Soft-ICE also add numbers to the
device name, making it to check. The reversing
forum's suggested technique is to brute force
the corresponding digits until the right device
name is discovered[14].The new packer also
uses device driver detection techniques to
detect system monitors such as “Process Moni-
tor” etc.

Solution:
Establishing a breakpoint in kernel32 is the
simple fix. When the breakpoint is reached,
CreateFileFileW() should either handle the
FileName parameter or alter its return value to
INVALID HANDLE VALUE (0xFFFFFFFF).

Process Memory:
A process can check or interact with its own
memory for the presence of a debugger. This
section includes anti-hitch methods[15] such
as process memory and thread context check-
ing, breakpoint DETECTION, PATCHING function
and debugging functions.

11. Breakpoint and Patching
Detection:

To verify if our code has any software break-
points, we may still inspect the process
memory, and we can also check the CPU
debug registers to see if any hardware break-
points have been set.

12. Software Breakpoints
Detection:

Software breakpoints are defined as break-
points that are created by altering the code at
the target location and replacing it with the

Of course, as with all malware analysis, the
best way to learn how to stop it by using
debugging techniques by continuously testing
malware. Malware developers are constantly
coming up with new techniques to evade
debuggers and keep security researchers like
you on their toes.

17. References:

[1] V. Bhardwaj, V. Kukreja, C. Sharma, I.
Kansal, and R. Popali, “Reverse
Engineering-A Method for Analyzing
Malicious Code Behavior,” in 2021
International Conference on Advances
in Computing, Communication, and
Control (ICAC3), Dec. 2021, pp. 1–5.
doi: 10.1109/ICAC353642.2021.
9697150.

[2] M. N. Gagnon, S. Taylor, and A. K.
Ghosh, “Software Protection through
Anti-Debugging,” IEEE Security &
Privacy Magazine, vol. 5, no. 3, pp.
82–84, May 2007, doi: 10.1109/M-
SP.2007.71.

[3] J.-W. Kim, J. Bang, Y.-S. Moon, and
M.-J. Choi, “Disabling Anti-Debugging
Techniques for Unpacking System in
User-level Debugger,” in 2019 Interna-
tional Conference on Information and
Communication Technology Conver-
gence (ICTC), Oct. 2019, pp. 954–959.
doi: 10.1109/ICTC46691.2019.
8939719.

[4] T. Akhtar, B. B. Gupta, and S. Yamagu-
chi, “Malware propagation effects on
SCADA system and smart power grid,”
in 2018 IEEE International Conference
on Consumer Electronics (ICCE), Jan.

looking for breakpoints in the process memory,
we can check to see if kernel32IsDebuggerPre-
sent() has been altered[20].The first few bytes
of this function can be read and compared to
the same function's bytes from other processes.
Windows libraries are loaded at the same base
address throughout the process, even if the
Address Space Layout Randomization (ASLR)
feature is enabled. The base address only
changes across reboots but remains the same
for the duration of the session.

Mitigations:
• During Debugging: Enter the function

that conducts the Step-Over check and
run it till the end(Ctrl + F9).

• Finding the specific check and either
path it with NOPs or setting the return to
a value that permits the application to
keep running are the best ways to
mitigate all "memory" techniques,
including anti-step over.

Conclusion:
To defend itself against reverse engineering
analysis, the malware employs anti-debugging
techniques. Debug analysis can be avoided by
anti-debugging techniques. Reverse engineers
need advanced debuggers and knowledge to
analyze malware using anti-debugging
techniques. By applying common sense and
slowly debugging the process, it is possible to
identify the majority of anti-debugging
techniques. For example, if you see that the
code is terminating too rapidly in a conditional
jump, which could mean preventing debugging
technical. The most widely used anti-debug-
ging methods involve fs access: [30h] by using
a Windows API or performing a time check.

ison of Machine Learning Models in Malware
Packing Detection,” in 2020 21st
Asia-Pacific Network Operations and
Management Symposium (APNOMS),
Sep. 2020, pp. 377–380. doi:
10 .23919 /APNOMS50412 .2020 .
9237007.

[16] R. R. Branco and G. N. Barbosa,
“Distributed malware analysis schedul-
ing,” in 2011 6th International Confer-
ence on Malicious and Unwanted
Software, Oct. 2011, pp. 34–41. doi:
10.1109/MALWARE.2011.6112324.

[17] K. Coogan, S. Debray, T. Kaochar, and
G. Townsend, “Automatic Static
Unpacking of Malware Binaries,” in
2009 16th Working Conference on
Reverse Engineering, 2009, pp.
167–176. doi: 10.1109/WCRE.2009.24.

[18] G. Jeong, E. Choo, J. Lee, M.
Bat-Erdene, and H. Lee, “Generic
unpacking using entropy analysis,” in
2010 5th International Conference on
Malicious and Unwanted Software, Oct.
2010, pp. 98–105. doi: 10.1109/MAL-
WARE.2010.5665789.

[19] C. R. Hill, “A real-time microprocessor
debugging technique,” ACM SIGPLAN
Notices, vol. 18, no. 8, pp. 145–148,
Aug. 1983, doi: 10.1145/1006142.
1006179.

[20] R. Sihwail, K. Omar, K. Zainol Ariffin,
and S. al Afghani, “Malware Detection
Approach Based on Artifacts in Memory
Image and Dynamic Analysis,” Applied
Sciences, vol. 9, no. 18, p. 3680, Sep.
2019, doi: 10.3390/app9183680.

Study of the Anti-Debugging Techniques and their Mitigations

40 LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

yA or the native API corresponding to Load-
DLL to replace.

13. Hardware Breakpoints:

DR0, DR1, DR2, and DR3 are debug registers
that can be obtained from the thread context.
Debug registers 0-3 are used to store virtual
address of the so-called hardware breakpoints.
C/C++ Code:

As we can see C/C++ code in the figure 15.

Figure 15 C/C++ code of Hardware
Breakpoints

14. Memory Checks:

This section includes methods for directly
inspecting or modifying a process's virtual
memory in order to spot and stop debug-
ging[18].

15. Nt Query Virtual Memory ():

The memory page of the process in which the
code is located is shared by all processes prior
to the page being written. Then the OS creates
a replica of this page and allocates it to the
process's virtual memory[19], so the page is no
longer "shared". Now we can see how to
declare NTDLL, as we can see in figure 16.

NTDLL declarations:

Figure 16 NTDLL Deceleration of
NtQueryVirtualMemory()

C/C++ Code:
As we can see the C/C++ code in the Figure
17.

Figure 17 C/C++ Code for Hardware
Breakpoints

16. Detecting A function Patch:

Calling kernel32 is a common approach to find
a debugger. IsDebuggerPresent(). By altering
the outcome in the EAX register or hacking the
kernel32, you may easily get around this
check! IsDebuggerPresent(). Instead of

2018, pp. 1–6. doi: 10.1109/ICCE.2018.
8326281.

[5] G. Wang, L. Zhuang, T. Liu, S. Li, S.
Yang, and J. Lan, “Formal analysis and
verification of industrial control system
security via timed automata,” in 2020
International Conference on Internet of
Things and Intelligent Applications
(ITIA), Nov. 2020, pp. 1–5. doi:
10.1109/ITIA50152.2020.9312289.

[6] A. J. Smith, R. F. Mills, A. R. Bryant, G.
L. Peterson, and M. R. Grimaila,
“REDIR: Automated static detection of
obfuscated anti-debugging techniques,”
in 2014 International Conference on
Collaboration Technologies and
Systems (CTS), May 2014, pp. 173–180.
doi: 10.1109/CTS.2014.6867561.

[7] J. Raber, “Stealthy Profiling and Debug-
ging of Malware Trampolining from
User to Kernel Space,” in 2011 18th
Working Conference on Reverse
Engineering, Oct. 2011, pp. 431–432.
doi: 10.1109/WCRE.2011.62.

[8] J. G. Alcalde, G. Chua, I. M. Demabildo,
M. A. Ong, and R. L. Uy, “CALVIS32:
Customizable assembly language
visualizer and simulator for intel x86-32
architecture,” in 2016 IEEE Region 10
Conference (TENCON), Nov. 2016, pp.
214–217. doi: 10.1109/TEN-
CON.2016.7847992.

[9] Chan Lee Yee, Lee Ling Chuan, M.
Ismail, and N. Zainal, “A static and
dynamic visual debugger for malware
analysis,” in 2012 18th Asia-Pacific
Conference on Communications

(APCC), Oct. 2012, pp. 765–769. doi:
10.1109/APCC.2012.6388211.

[10] Xu Chen, J. Andersen, Z. M. Mao, M.
Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and
anti-debugging behavior in modern
malware,” in 2008 IEEE International
Conference on Dependable Systems and
Networks With FTCS and DCC (DSN),
2008, pp. 177–186. doi: 10.1109/
DSN.2008.4630086.

[11] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[12] P. Xie, X. Lu, Y. Wang, J. Su, and M. Li,
“An Automatic Approach to Detect
Anti-debugging in Malware Analysis,”
2013, pp. 436–442. doi: 10.1007/
978-3-642-35795-4_55.

[13] A. Mylonas and D. Gritzalis, “Practical
Malware Analysis: The Hands-On
Guide to Dissecting Malicious
Software,” Comput Secur, vol. 31, no. 6,
pp. 802–803, Sep. 2012, doi: 10.1016/j.-
cose.2012.05.004.

[14] P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323–336.
doi: 10.1007/978-3-319-33630-5_22.

[15] J.-W. Kim, J. Namgung, Y.-S. Moon,
and M.-J. Choi, “Experimental Compar-

one or more techniques in computer code that
make it difficult to reverse engineer or debug
the target process. These techniques are ways
for a program to detect whether it is running
under the control of a debugger[11]. If a
debugger is detected, the malware will execute
arbitrary code, usually code to terminate. The
anti-debugging process slows down the
reverse engineering process but doesn't stop it.

2. Is Debugger Present:

The easiest debugger detection technique is to
check the BeingDebugged flag in the Process
Environment Block (PEB). The kernel32IsDe-
buggerPresent() function was introduced in
Windows 95, and the Application Programma-
ble Interface (API) checks the value of this flag
to identify the process whether it is in the
user-mode debugger. This code (same 32-bit or
64-bit Windows environment) can be used for
verification to check the 32-bit or 64-bit
Windows environment. As we can see the
assembly code of the IsDebuggerPresent() in
Figure 1.

Figure 1. Assembly code of IsDebuggerPre-
sent()

C/C++ Code:
As we can see in the example if IsDebugger-
Present() in Figure 2.

Figure 2. C/C++ code of IsDebuggerPre-
sent()

Solution:
This technique can be easily bypassed by
manually patching the Process Environment
Block (PEB). BeingDebugged flag with the
value 0x00 in the bytes.

3. Nt Query Information Process
() / Check Remote Debugger
Present ()

CheckRemoteDebuggerPresent() is another a
debugger should be attached to a process? Use
this Check Remote DebuggerPresent() to
decide. The API calls ntdll!ProcessDebugPort
inside the kernel A value that is not zero in the
DebugPort field tells that the process is being
debugged in user mode by the debugger. If so,
ProcessInformation will be set to
0xFFFFFFFF, otherwise the value of
ProcessInformation will be 0x0.The Check-
RemoteDebuggerPresent()[12] function in
Kernel32 is functional.On either the 32-bit or
64-bit version of Windows, the check can be
made by using this 32-bit code to look at the
32-bit window environment. The Function The
function CheckRemoteDebuggerPresent()
takes 2 parameters; the first parameter is the
(PID), and the A pointer to a Boolean variable
serves as the second parameter. That will hold
TRUE if the process is being debugged. As we
can see from the C/C++ code in Figure 3.

Figure 3 C/C++ Code for CheckRemoteDe-
bugger

Ntdll! NtQueryInformationProcess() has 5
parameters. To detect the debugger, the

to hide threads from the debugger. It can also be
done with the help of a non-documented value,
which is not documented but can be used.
THREAD_INFORMATION_CLASS::Threa-
dHideFromDebugger (0x11). When a thread is
hidden in the debugger, it will not be informed
of anything pertaining to that thread not be
informed of anything pertaining to that thread.
The thread is also capable of anti-debugging
methods, such as examining debug flags, code
checksums, etc. If there are hidden breakpoints
in the thread, If we try to keep the main thread
hidden from the debugger, either the process
will crash or the debugger will gets stuck. An
example of calling the NtSetInformation-
Thread would be like this, as we can see in
Figure 7.

Figure 7. Assembly code of NtSetInforma-
tionThread()

C/C++ Code:
As we can see, C/C++ code in Figure 8.

Figure 8. C/C++ code of NtSetInformation-
Thread()

Solution:
The breakpoint is set to ntdll!NtSetInforma-
tionThread(), and when the breakpoint is hit,
reverse engineers can modify the EIP, to
prevent the API calls from reaching the kernel
and being called from other functions.

ProcessInformation class is set to as
ProcessDebugPort as we can see C/C++ code
in the Figure 4.

Figure 4. C/C++ Code for NtQueryInfor-
mationProcess()

This example shows how the call to the Check-
RemoteDebuggerPresent() and To see whether
the current process is being debugged, utilize
the NtQueryInformationProcess function. as
we can see in Figure 5 and Figure 6.

Figure 5 Assembly code of CheckRemot-
eDebuggerPresent()

Figure 6. Assembly code of NtQueryInfor-
mationProcess()

Solution:
One solution is to set NtQueryInformationPro-
cess(return)'s value is a breakpoint. ProcessIn-
formation is patched to a DWORD value of 0
when the breakpoint is reached of 0.

4. Nt SetInformation Thread:

NtSetInformationThread()[13] is usually used
to set the priority of a thread. It can also be used

5. SwitchDesktop()

Platforms based on Windows NT allow for
multiple desktop sessions. The windows of the
previous active desktop can be hidden by
choosing a different active desktop, but there is
no visible way to return to the previous
desktop. the mouse and keyboard events won't
be sent to the debugger from the debugger's
desktop.[13] , they no longer divulge their
source, either. Debugging could become
impossible as a result. Both the 32-bit and
64-bit versions of Windows can be used to
make this call. Here is an example of a 32-bit
version of Windows as we can see in Figure 9.

Figure 9. Assembly code of SwitchDesk-
top()

C/C++ Code:
As we can see the C/C++ code in the Figure 10.

Figure 10 C/C++ code of SwitchDesktop()

6. Execution Time / Timing
Checks

When a reverse engineer tries to debug a

process and uses a single step in code, there is
a significant delay between the execution of
the individual’s instructions[13]. The process
is running under a debugger if the amount of
time required is excessive compared to a
typical execution. Here is a list of some
instructions that can be used to increase the
execution time of the instruction.

a. RDTSC (Read Time-Stamp Counter)

b. RDPMC (Read Performance-Monitor-
ing Counters)

c. GetLocalTime

d. GetSystemTime

e. GetTickCount

Now we will take an example of a timing
check.

As we can see in Figure 11.

Figure 11 Assembly Code of GetTick-
Count()

We check the synchronization using the
kernel32 GetTickCount() API or manually
verify that the SharedUserData structure's
TickCountLow and TickCountMultiplier
entries are always set to 0xc.Identifying these
timing techniques can be challenging,
especially when RDTSC is used as spam, when
other obscure techniques are used to mask
them.

