Saad et al.LGU (IJECI) 2022 LGU (IJECI)

ISSN: 2522-3429 (Print)
ISSN: 2616-6003 (Online)
LGU International Journal for

Electronic Crime Investigation

Vol. 6 issue 3 Year 2022

Research Article

Study of the Anti-Debugging Techniques and their
Mitigations

Muhammad Saad and Muhammad Taseer
School of Electrical Engineering and Computer Sciences, NUST, Islamabad, Pakistan
Corresponding author: 12msccsmsuleman@seecs.edu.pk

Abstract:

The major goal of this study is to provide anti-debugging and anti-reversing strategies/techniques
employed by executables, DLLs, and packers/protectors, as well as to examine strategies that can be
utilized to bypass or disable these protections. Anti-debugging techniques are designed to make sure
that a program is not being executed inside a debugger. In most cases, the anti-debugging process
slows down the reverse engineering [1] process but doesn't stop it. This information will allow
malware analysts and researchers to identify the techniques used by the malware. This information
may also be used by security researchers, reverse engineers those want to slow down the process of
reverse engineering in order to add security [2] to their software. It causes some difficulties for a
reverse engineer, but, of course, nothing stops a skilled, knowledgeable, and committed reverse
engineer.

Keywords: malware analysis, anti-debugging, anti-reversing, protectors, packers

1. Introduction malware developers would like to avoid. That
is why they must implement anti-debugging

techniques. Anti-debugging techniques[3] can

Prior to then, malware Development
served as a showcase for malware coders.
Malware analysts have used debuggers to run a
malware program's instructions one by one,
introducing modifications to memory spaces,
settings as well as variable values. Debuggers
are the most commonly used reverse engineer-
ing tools, such as Interactive Disassembler
(IDA), x64dbg, and OllyDBG. If debugging is
successful, it helps to understand malware
behavior and its capabilities. This is something

be used to merely detect the presence of a
debugger, deactivate it, lose control of it, or
even take advantage of a flaw in the debugger.
Disabling or avoiding debugger checks can be
done generally and specifically. However, you
can exploit this vulnerability against specific
debuggers. Furthermore, The Supervisory
Control and Data Acquisition (SCADA)[4]
system has a vulnerability, according to the
Trend Micro report "Unseen Threats, Immi-
nent losses,” which is the part of industrial

LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022) 29

Study of the Anti-Debugging Techniques and their Mitigations

control systems (ICS)[5]. In addition, In many
situations, knowing how to apply anti-debug-
ging techniques to malicious code to prevent it
from being tracked down and evaluated is also
helpful. One of the main tools used by malware
analysts and reverse engineers is the debugger.
What is a debugger? A debugger is software
that is used to evaluate and control the flow of
execution of other executables or software. By
using a debugger, we can execute each instruc-
tion step by step and can note down the chang-
es that can be displayed on the stack, memory
dumps, registers, etc. Most packers use these
techniques to determine whether the system is
running a debugger or if a process is being
debugged. These debugger detection meth-
ods[6] include checks that are relatively basic
all the way up to ones that are applicable to
native Application Programming Interfaces
(APIs) and kernel objects[7].This section
discusses how anti-debugging techniques
work. Each process's user space contains a data
structure called a Process Environment Block
(PEB), which holds information about the
related process. Each process's user space
contains a data structure called a Process
Environment Block (PEB), which holds infor-
mation about the related process. It is intended
to access Windows API (WinAPI)It is intended
to access Windows API (WinAPI) but access is
not restricted by this. Process Environment
Block (PEB) can be accessed directly from
memory. Checking the value of the Process
Environment Block (PEB) structure that has
been debugged is a relatively straightforward
implementation and technique. As we know
that there are so many Applications Program-
mable Interfaces (APIs) which are documented
and undocumented. For example, IsDebugger-
Present, which we will discuss later in this
paper. To enhance, we can also check the APIs

manually. The fs segment register can access
the Process Environment Block (PEB) at fs:
[30]. On an x86 [8] computer, this register
corresponds to a Thread Information Block
(TIB).There is also a flag below the Process
Environment Block (PEB) that indicates
whether the first memory space of the process
was created in debug mode. Provide an offset
of 0x18 in the Process Environment Bloc
(PEB). So, here I break down the anti-debug-
ging techniques into two categories: static
anti-debugging and dynamic anti-debugging
[9], as seen in the Table 1 below.

Table 1. Static Vs Dynamic Techniques

Difference
Static Dynamic
Difficulty Easy, Medium | Hard
Level
. Use System Reverse and exploit
Main Idea Info Debugger
Target Detect Hide its own code
arge Debugger and data
Time Point | When Whil.e debugger is
debugging start | running
Defend API Hook, API hook, Debugger
Method(s) | debugger plugin | Plugin
Breakpoints (INT3),
Example(s) | PEB, TEB, TLS TimingCheck

In our research we will discuss we will discuss
some of the main anti-debugging techniques
and how a reverse engineer can be able to
identify them easily for example in this paper
we will discuss about the IsDebuggerPresent,
TimeChecks, NtQueryInformationProcess,
NtSetInformationThread, SwitchDesktops,
SeDebugPrivilege, ParentProcess, Debugger-
Window, DeviceDrivers etc.

Anti-Debugging Techniques Mechanism:
Anti-debugging[10] is the implementation of

30 LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

Study of the Anti-Debugging Techniques and their Mitigations

one or more techniques in computer code that
make it difficult to reverse engineer or debug
the target process. These techniques are ways
for a program to detect whether it is running
under the control of a debugger[11]. If a
debugger is detected, the malware will execute
arbitrary code, usually code to terminate. The
anti-debugging process slows down the
reverse engineering process but doesn't stop it.

2. Is Debugger Present:

The easiest debugger detection technique is to
check the BeingDebugged flag in the Process
Environment Block (PEB). The kernel32IsDe-
buggerPresent() function was introduced in
Windows 95, and the Application Programma-
ble Interface (API) checks the value of this flag
to identify the process whether it is in the
user-mode debugger. This code (same 32-bit or
64-bit Windows environment) can be used for
verification to check the 32-bit or 64-bit
Windows environment. As we can see the
assembly code of the IsDebuggerPresent() in
Figure 1.

call Earne |VIFTalehagnadlrasani | F
Febagys rPranast |

rfauad

Figure 1. Assembly code of IsDebuggerPre-
sent()

C/C++ Code:
As we can see in the example if IsDebugger-
Present() in Figure 2.

Solution:

This technique can be easily bypassed by
manually patching the Process Environment
Block (PEB). BeingDebugged flag with the
value 0x00 in the bytes.

3. Nt Query Information Process
() / Check Remote Debugger
Present ()

CheckRemoteDebuggerPresent() is another a
debugger should be attached to a process? Use
this Check Remote DebuggerPresent() to
decide. The API calls ntdll!ProcessDebugPort
inside the kernel A value that is not zero in the
DebugPort field tells that the process is being
debugged in user mode by the debugger. If so,
ProcessInformation ~ will be set to
OxFFFFFFFF,
ProcessInformation will be 0x0.The Check-

otherwise the value of

RemoteDebuggerPresent()[12] function in
Kernel32 is functional.On either the 32-bit or
64-bit version of Windows, the check can be
made by using this 32-bit code to look at the
32-bit window environment. The Function The
function CheckRemoteDebuggerPresent()
takes 2 parameters; the first parameter is the
(PID), and the A pointer to a Boolean variable
serves as the second parameter. That will hold
TRUE if the process is being debugged. As we
can see from the C/C++ code in Figure 3.

BOOL CheckRemoteDebyggerPresent
(

if (IsDebuggerPresent())
ExitProcess(-1);

Figure 2. C/C++ code of IsDebuggerPre-
sent()

HANDLE hProcess,
PBOOL pbDebuggerPresent
]
Figure 3 C/C++ Code for CheckRemoteDe-
bugger

Ntdll! NtQueryInformationProcess() has 5
parameters. To detect the debugger, the

LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022) 31

Study of the Anti-Debugging Techniques and their Mitigations

ProcessInformation class is set to as
ProcessDebugPort as we can see C/C++ code
in the Figure 4.

NTSTATUS WTAOT MiQueryInforastionProcess()
[
HANDILE ProcessHandle,

PROCESSDNFOCLASS ProcessInformationClass,
Ll van] ProcessInformation,
ULong ProcessInforeationLength,
PULONG Returnlength

Figure 4. C/C++ Code for NtQueryInfor-
mationProcess()

This example shows how the call to the Check-
RemoteDebuggerPresent() and To see whether
the current process is being debugged, utilize
the NtQueryInformationProcess function. as
we can see in Figure 5 and Figure 6.

i uaing kermelJdTCheckRenotebebuggerFrescnt)

lea uax.t.hllb-u]!irl‘ﬂnlt I

push r‘lhlh-huguwl'r'-.'-r'nl:
push Iul'l'H'l'l'l'l' Pracess

call Ch:kﬂ-ml-ﬁ-buljurl’rutunt!l

cmp duwnrd DeubherFrezent |

ine .dehagger_Found

to hide threads from the debugger. It can also be
done with the help of a non-documented value,
which is not documented but can be used.
THREAD INFORMATION CLASS::Threa-
dHideFromDebugger (0x11). When a thread is
hidden in the debugger, it will not be informed
of anything pertaining to that thread not be
informed of anything pertaining to that thread.

The thread is also capable of anti-debugging
methods, such as examining debug flags, code
checksums, etc. If there are hidden breakpoints
in the thread, If we try to keep the main thread
hidden from the debugger, either the process
will crash or the debugger will gets stuck. An
example of calling the NtSetInformation-
Thread would be like this, as we can see in

Figure 7.
push L] ilnfornat lenlength
push

HELL
puch ThreadHidaFramDebugger :@x11
push BRFIFITife
call IHtSetinfornation] hroad)

sletCurrent Thraadd{d

Figure 5 Assembly code of CheckRemot-

eDebuggerPresent()

A g atdllTNcQuervinler lonPracessiPracessDebugPert)
]-rl [TE M Ilrlﬂ:-rnl.tnh
push oax fReturalen

ek § -|-ar.~u|n¥m~mtmnr.uqrh

&8 wan, [dubebugPers 1
puih Lt
punh PracossBabugPore IPFraconelnforant lonClans
Punk Bl FEEEEne :Pracesslandle
aall IHtQuerylalsrant lenProaess |
ERp duard | .dubsbugPare]. B
Jma ~Aabugger_faeun

Figure 6. Assembly code of NtQuerylInfor-
mationProcess()

Solution:

One solution is to set NtQueryInformationPro-
cess(return)'s value is a breakpoint. ProcessIn-
formation is patched to a DWORD value of 0
when the breakpoint is reached of 0.

4. Nt Setinformation Thread:

NtSetInformationThread()[13] is usually used
to set the priority of a thread. It can also be used

Figure 7. Assembly code of NtSetInforma-
tionThread()

C/C++ Code:
As we can see, C/C++ code in Figure 8.

rl vt Aty (]

ETSIATLS chwten = whddlooWeSetinformationThresd]
Wlurrent Thrusd,
wrdll: - THEEAD INFORFATION LASE: : Theeaaiedde rosDeratyer
L,

0
retern STatE 3=)

Figure 8. C/C++ code of NtSetInformation-
Thread()

Solution:

The breakpoint is set to ntdll!NtSetInforma-
tionThread(), and when the breakpoint is hit,
reverse engineers can modify the EIP, to
prevent the API calls from reaching the kernel
and being called from other functions.

32 LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

Study of the Anti-Debugging Techniques and their Mitigations

5. SwitchDesktop()

Platforms based on Windows NT allow for
multiple desktop sessions. The windows of the
previous active desktop can be hidden by
choosing a different active desktop, but there is
no visible way to return to the previous
desktop. the mouse and keyboard events won't
be sent to the debugger from the debugger's
desktop.[13] , they no longer divulge their
source, either. Debugging could become
impossible as a result. Both the 32-bit and
64-bit versions of Windows can be used to
make this call. Here is an example of a 32-bit

version of Windows as we can see in Figure 9.

HEF AN, BAN
pii h ads

(DESETOF CREATEU] MBOW
i* DEXKTOF_URITEORJECTS
* DEENTOF EWITCHRETETOF

push 1EZh

puzh. max

push max

puEh max

push of faet 11

call Cretebackeapd

push eax

eall EvitehBaaktep

dh “Mybsaktap”™. B

Figure 9. Assembly code of SwitchDesk-
top()

C/C++ Code:
As we can see the C/C++ code in the Figure 10.

POCL. Dl ok

WA s LT = LFEETECEIETORS
a_pen thaulie Ut nntenns,
-
i
'
BESETIR, [MIATESINO0 | DESWNOF_ USTTOBECECTE | DIBOTI SuTTOECITON,
L
i | Pt
S—T

reture bultckdeiitas] nisDoskton 1

Figure 10 C/C++ code of SwitchDesktop()

6. Execution Time / Timing
Checks

When a reverse engineer tries to debug a

process and uses a single step in code, there is
a significant delay between the execution of
the individual’s instructions[13]. The process
is running under a debugger if the amount of
time required is excessive compared to a
typical execution. Here is a list of some
instructions that can be used to increase the
execution time of the instruction.

a. RDTSC (Read Time-Stamp Counter)

b. RDPMC (Read Performance-Monitor-
ing Counters)

c. GetLocalTime
d. GetSystemTime
e. GetTickCount

Now we will take an example of a timing
check.

As we can see in Figure 11.

[T

et ——

T whn,ndE

Bons merw A0S Pwo bume

puE wan
P maE

fine mers Dnsbrsol s

; nenputs delts betwvesn EFTSC instract lass
rdtan

i wherk high sreder Bins

cnp wdeaha
il Lig L]

Teheeh 1iw sraer Eit
Frtr

e =aw, BuT@l

Ju cdahayger_lomad

Figure 11 Assembly Code of GetTick-
Count()

We check the synchronization using the
kernel32 GetTickCount() API or manually
verify that the SharedUserData structure's
TickCountLow and TickCountMultiplier
entries are always set to Oxc.Identifying these
timing techniques can be challenging,
especially when RDTSC is used as spam, when
other obscure techniques are used to mask

them.

LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022) 33

Study of the Anti-Debugging Techniques and their Mitigations

Solution:

One of the solutions is to identify where the
time checks are and try to avoid stepping into
them. and the code between these time checks.
Reverse Engineers can place a breakpoint
before that delta and execute instead of steps
until a breakpoint is reached or a breakpoint is
reached. We can also set a breakpoint in
GetTickCount() to specify where to call it or to
change its return value. Mitigations During
Debugging: just fill time checks with NOPs
and set the result of these checks to the appro-
priate value. For anti-debugging solution
development: there is no great need to do
anything with it, as time checks are not very
reliable, but you can still hook timing functions
and accelerate the time between calls.

Mitigations:

. During Debugging, just fill time checks
with NOPs and set the result of these
checks to the appropriate value.

. For anti-debugging solution develop-
ment: there is no great need to do
anything with it, as time checks are not
very reliable, but you can still hook
timing functions and accelerate the time
between calls.

7. SeDebugPrivilege:

By default, the SeDebugPrivilege permission
is disabled for the process access token. When
a debugger like x32dbg, OllyDBG, etc. loads a
process, SeDebugPrivilege permission is
enabled. This is because these debuggers keep
trying .

inherited.

SeDebugPrivilege permissions are

If the process can open the CSRSS.EXE
process, then SeDebugPrivilege is active when
the process is accessed.

Token pointing to the process being debugged.
The test is valid for the following reasons: The
CSRSS.EXE
allows the system access to the process.

Process Security Descriptor

However, if the process has SeDebugPrivilege
privilege, other processes have independent
access to the Security Descriptor. This permis-
sion is only granted to administrative groups
by default, as we can see in Figure 12.

i quary Fer the FID of CER3E.EXE
call [CerGecProcessld]

i try te apen the CEREE.EXE process

puzh EaxX

puzh FaLSE

push PROCESS _QUERY _INFORHATIOM
ocall lopenProcess |

+ if OpenProcess{} was successflul
i process is probaly being debugged

TeEt BAN. BAx
Jnz -debugger _Found

Figure 12 Assembly Code of SeDebugPrivi-
lege()

This control uses ntdll! The CSRSS.exe
GetProcessld() API gets the Process ID (PID)
from CSRSS.EXE. You can get it manually by
looking at the Process ID CSRSS.EXE
processes. If OpenProcess() succeeds, SeDe-
bugPrivilege is activated, indicating that the
process is currently running and debugging,
too.

Solution:

The ntdll breakpoint can be hit by setting a
breakpoint as a solution. Returns from
NtOpenProcess(). If PID passed by
CSRSS.exe is CSRSS.exe, set the EX-value to

0xC0000022 (STATUS_ACCESS_DENIED).

34 LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

Study of the Anti-Debugging Techniques and their Mitigations

Parent Process:

Users launch apps by clicking on the executa-
ble's icon that the shell process displays
(Explorer.exe).By clicking on the executable's
icon that the shell process displays, users can
launch apps (Explorer.exe).Due to this,Explor-
er.exe becomes the parent process of the active
process. This will show that the program was
created by someone else and suggest that you
can debug it.

1. Using Process32First/Next(), it will list
every process and note explorer.exe.
PROCESS32.szExeFile and the PRO-
CESSENTRY32.th32parentProcessID
are the two files that provide the process
ID and the parent process ID of the
current process, respectively.

2. The target is being debugged if the
Process ID (PID) of the parent process
differs from the Process ID (PID) of the
explorer.exe.

Solution:

We need to patch the element of
Kernel32!Process32NextW() that contains the
code that performs a return after setting the
value of EAX to 0.

8. Debugger Window:

The presence of the debug window is a flag
that the debugger is running system[13].
Because the debugger creates windows with
special class names (OllyDBG for OLLYDBG
and WinDbgFrameClass for WinDbg), user32
can easily identify these debug windows!
FindWindow'() or User32! findWindowEx().

Solution:

One solution is to set breakpoints in FindWin-
dow() and FindWindowEx() When the break-
point is hit, modify the value of the
IpClassName string parameter to prevent the
API from functioning. Setting the return value
to NULL is another option.

9. Debugger Process:

List all the processes on the system and see
whether the process name matches the name of
the debugger to find out if it is currently
running (for example, OLLYDBG.EXE, wind-
bg.exe, etc.).Simple to implement; just use
Process32First / Next() after confirming that
the image name corresponds to the name of the
debugger.

Sometimes these methods also use Kernel32
ReadProcessMemory() to read process
memory and then look for debugger-related
strings such as "x64dbg", "IDA", "OllyDBG",
etc. to reverse engineer the debugger. to imple-
ment. After getting the debugger. The malware
will stop his execution and silently exit or

terminates the process.

Solution:

Another solution is to check the main process,
including patching the kernel 32 patch!
Process32NextW() always fails and prevents
the developer from enumerating the process.

10. Device Drivers

An old technique is to verify that the debugger
is running in a Kernel Mode in the system and
try to, access device drivers. This technique is
very simple and consists of simply making a
call to the against well-known device names

LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022) 35

Study of the Anti-Debugging Techniques and their Mitigations

used by kernel-mode debuggers, such as
SoftICE, using Kernel32!CreateFile().Some
versions of Soft-ICE also add numbers to the
device name, making it to check. The reversing
forum's suggested technique is to brute force
the corresponding digits until the right device
name is discovered[14].The new packer also
uses device driver detection techniques to
detect system monitors such as “Process Moni-
tor” etc.

Solution:

Establishing a breakpoint in kernel32 is the
simple fix. When the breakpoint is reached,
CreateFileFileW() should either handle the
FileName parameter or alter its return value to
INVALID HANDLE VALUE (0xFFFFFFFF).

Process Memory:

A process can check or interact with its own
memory for the presence of a debugger. This
section includes anti-hitch methods[15] such
as process memory and thread context check-
ing, breakpoint DETECTION, PATCHING function
and debugging functions.

11. Breakpoint and Patching
Detection:

To verify if our code has any software break-
points, we may still inspect the process
memory, and we can also check the CPU
debug registers to see if any hardware break-
points have been set.

12. Software Breakpoints
Detection:

Software breakpoints are defined as break-
points that are created by altering the code at
the target location and replacing it with the

byte value 0xCC (INT3 / Breakpoint
Interrupt)[17]. Finding the byte 0xCC in the
API code and protector code will help you
locate software breakpoints as seen by the
example of assembly code in Figure 13.

eld

Ry sdi,Fratactad Cods_Start

Ay ecu,Pretected Code - Protected Cods _Svart

Ay al.Bxe

rapna scash

J= .hraskpoist _Found

ir fhyte EOR BuSh == Bu¥FPr than breakpoint Fewnd

where Bx99 == B=OC HOR B=55

Figure 13 Assembly Code of Software
Breakpoint Detection

C/C++ Code:
As we can C/C++ code in the Figure 14.

boal Dhacioripec i f Loy tadIVTT oiyte, PVOD pwscry, KIIT_T nhescryilon = &
BEOTT plyten = [PEVTE] pPesory
for [(SITET 0 = By § 4
B {{iressryiiee » 0) B (L v aewseeyiliad) |
{[APesmrpkise = 0 b (plyts| 0] = BaC1}ih
LT
B (preall] == oiyve

el Ui

retrn falueg

im‘l. Esbebmpprd)
PTID fowthomatolhmck]] =
[T
EPanctionl,
EPencticad;
far [swta fascidse @ fusctiongTolheck)
U {EeerkPurtper (T Ly teBeCT . Fusnhies

rlmen e

Fatus Tale

Figure 14. C/C++ code of Software Break-
point Detection

Solution:

Hardware breakpoints can be reverse
engineered if software breakpoints are identi-
fied. If you need to set a breakpoint in the API
code, and when the packer tries to find a break-
point in the API code, reverse engineering the
UNICODE API version allows for the setting
of breakpoints. That eventually calls the ANSI

version, such as LoadLibraryExW LoadLibrar-

36 LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

Study of the Anti-Debugging Techniques and their Mitigations

yA or the native API corresponding to Load-
DLL to replace.

13. Hardware Breakpoints:

DRO, DR1, DR2, and DR3 are debug registers
that can be obtained from the thread context.
Debug registers 0-3 are used to store virtual
address of the so-called hardware breakpoints.
C/C++ Code:

As we can see C/C++ code in the figure 15.

beal IsDebugged()
]

CONTEXT <tn)
ZaroMamory (Rots, sireod (DONTEXNT)]
ctx.ContentFlags = CONTEKT DEBUG REGISTERS|

1#{ 'setThreadiantext {Gevlurrent Trread(), Retu))
retern false)

return ots, D@ || cos, Del etn.Br2 || ciu.Drlj

Typedef smm _ROEY_EUFOEMAT I0N_CLALS
RemoryBasic Information,
Beworyicraingsetiist,

HERCEY_INFORFATED_CLASS,

typede! emlon PLAP] LDEx T SET_ALOCK |
ULOMG Flagy;
wfrutt
oMl Protection i3]
PADNE Sharelpant 0
oMl Shares
LLOM Regarved i
oMy virtualfupe e

PLAP]_WCAUTRE_SIT BLOCK, *PeRar] wOaniss S8T_BLOCK
Typede! strwct _REROEY WO® WG SET_LIST
VLEA Murmlen 34T agan

PSAPE wolx N SET_ELOON woruingietiise]i];)
WERORY_MOBx TNl SET_LTST, “heEnORY WOk bl SEY_LE4T

Figure 15 C/C++ code of Hardware
Breakpoints

14. Memory Checks:

This section includes methods for directly
inspecting or modifying a process's virtual
memory in order to spot and stop debug-
ging[18].

15. Nt Query Virtual Memory ():

The memory page of the process in which the
code is located is shared by all processes prior
to the page being written. Then the OS creates
a replica of this page and allocates it to the
process's virtual memory[19], so the page is no
longer "shared". Now we can see how to
declare NTDLL, as we can see in figure 16.

NTDLL declarations:

Figure 16 NTDLL Deceleration of
NtQueryVirtualMemory()

C/C++ Code:
As we can see the C/C++ code in the Figure

Figure 17 C/C++ Code for Hardware
Breakpoints

16. Detecting A function Patch:

Calling kernel32 is a common approach to find
a debugger. IsDebuggerPresent(). By altering
the outcome in the EAX register or hacking the
kernel32, you may easily get around this
check!

IsDebuggerPresent(). Instead of

LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022) 37

Study of the Anti-Debugging Techniques and their Mitigations

looking for breakpoints in the process memory,
we can check to see if kernel32IsDebuggerPre-
sent() has been altered[20].The first few bytes
of this function can be read and compared to
the same function's bytes from other processes.
Windows libraries are loaded at the same base
address throughout the process, even if the
Address Space Layout Randomization (ASLR)
feature is enabled. The base address only
changes across reboots but remains the same
for the duration of the session.

Mitigations:

° During Debugging: Enter the function
that conducts the Step-Over check and
run it till the end(Ctrl + F9).

° Finding the specific check and either
path it with NOPs or setting the return to
a value that permits the application to
keep running are the best ways to
mitigate all

"memory" techniques,

including anti-step over.

Conclusion:
To defend itself against reverse engineering
analysis, the malware employs anti-debugging
techniques. Debug analysis can be avoided by
anti-debugging techniques. Reverse engineers
need advanced debuggers and knowledge to
analyze malware using anti-debugging
techniques. By applying common sense and
slowly debugging the process, it is possible to
identify the

techniques. For example, if you see that the

majority of anti-debugging

code is terminating too rapidly in a conditional
jump, which could mean preventing debugging
technical. The most widely used anti-debug-
ging methods involve fs access: [30h] by using
a Windows API or performing a time check.

Of course, as with all malware analysis, the
best way to learn how to stop it by using
debugging techniques by continuously testing
malware. Malware developers are constantly
coming up with new techniques to evade
debuggers and keep security researchers like
you on their toes.

17. References:

[1T V. Bhardwaj, V. Kukreja, C. Sharma, I.

Kansal, and R. Popali, “Reverse
Engineering-A Method for Analyzing
Malicious Code Behavior,” in 2021
International Conference on Advances
in Computing, Communication, and
Control (ICAC3), Dec. 2021, pp. 1-5.
doi: 10.1109/ICAC353642.2021.

9697150.

[2] M. N. Gagnon, S. Taylor, and A. K.
Ghosh, “Software Protection through
Anti-Debugging,” [EEE Security &
Privacy Magazine, vol. 5, no. 3, pp.
82-84, May 2007, doi: 10.1109/M-
SP.2007.71.

[3] J.-W. Kim, J. Bang, Y.-S. Moon, and
M.-J. Choi, “Disabling Anti-Debugging
Techniques for Unpacking System in
User-level Debugger,” in 2019 Interna-
tional Conference on Information and
Communication Technology Conver-
gence (ICTC), Oct. 2019, pp. 954-959.
doi: 10.1109/ICTC46691.2019.
8939719.

[4] T. Akhtar, B. B. Gupta, and S. Yamagu-
chi, “Malware propagation effects on
SCADA system and smart power grid,”
in 2018 IEEE International Conference
on Consumer Electronics (ICCE), Jan.

38 LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

Study of the Anti-Debugging Techniques and their Mitigations

(3]

2018, pp. 1-6. doi: 10.1109/ICCE.2018.
8326281.

G. Wang, L. Zhuang, T. Liu, S. Li, S.
Yang, and J. Lan, “Formal analysis and
verification of industrial control system
security via timed automata,” in 2020
International Conference on Internet of
Things and Intelligent Applications
(ITIA), Nov. 2020, pp. 1-5. doi:
10.1109/1TTIA50152.2020.9312289.

A.J. Smith, R. F. Mills, A. R. Bryant, G.
L. Peterson, and M. R. Grimaila,
“REDIR: Automated static detection of
obfuscated anti-debugging techniques,”
in 2014 International Conference on
Collaboration Technologies and
Systems (CTS), May 2014, pp. 173-180.
doi: 10.1109/CTS.2014.6867561.

J. Raber, “Stealthy Profiling and Debug-
ging of Malware Trampolining from
User to Kernel Space,” in 2011 18th
Working Conference on Reverse
Engineering, Oct. 2011, pp. 431-432.
doi: 10.1109/WCRE.2011.62.

J. G. Alcalde, G. Chua, I. M. Demabildo,
M. A. Ong, and R. L. Uy, “CALVIS32:
Customizable assembly language
visualizer and simulator for intel x86-32
architecture,” in 2016 IEEE Region 10
Conference (TENCON), Nov. 2016, pp.
214-217. doi: 10.1109/TEN-

CON.2016.7847992.

Chan Lee Yee, Lee Ling Chuan, M.
Ismail, and N. Zainal, “A static and
dynamic visual debugger for malware
analysis,” in 2012 18th Asia-Pacific

Conference on Communications

[10]

[12]

[13]

[15]

(APCC), Oct. 2012, pp. 765-769. doi:
10.1109/APCC.2012.6388211.

Xu Chen, J. Andersen, Z. M. Mao, M.
Bailey, and J. Nazario, “Towards an
understanding of anti-virtualization and
anti-debugging behavior in modern
malware,” in 2008 IEEE International
Conference on Dependable Systems and
Networks With FTCS and DCC (DSN),
2008, pp. 177-186. doi: 10.1109/
DSN.2008.4630086.

P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323-336.
doi: 10.1007/978-3-319-33630-5_22.

P. Xie, X. Lu, Y. Wang, J. Su, and M. Li,
“An Automatic Approach to Detect
Anti-debugging in Malware Analysis,”
2013, pp. 436-442. doi: 10.1007/
978-3-642-35795-4 55.

A. Mylonas and D. Gritzalis, “Practical
The Hands-On
Dissecting ~ Malicious

Malware Analysis:
Guide to
Software,” Comput Secur, vol. 31, no. 6,
pp- 802—-803, Sep. 2012, doi: 10.1016/j.-
co0se.2012.05.004.

P. Chen, C. Huygens, L. Desmet, and W.
Joosen, “Advanced or Not? A Compara-
tive Study of the Use of Anti-debugging
and Anti-VM Techniques in Generic and
Targeted Malware,” 2016, pp. 323-336.
doi: 10.1007/978-3-319-33630-5 22.

J.-W. Kim, J. Namgung, Y.-S. Moon,
and M.-J. Choi, “Experimental Compar-

LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022) 39

Study of the Anti-Debugging Techniques and their Mitigations

ison of Machine Learning Models in Malware
Packing Detection,” in 2020 2lIst
Asia-Pacific Network Operations and
Management Symposium (APNOMS),
Sep. 2020, pp. 377-380. doi:
10.23919/APNOMS50412.2020.
9237007.

[16] R. R. Branco and G. N. Barbosa,
“Distributed malware analysis schedul-
ing,” in 2011 6th International Confer-
ence on Malicious and Unwanted
Sofiware, Oct. 2011, pp. 34-41. doi:
10.1109/MALWARE.2011.6112324.

[17] K. Coogan, S. Debray, T. Kaochar, and
G. Townsend, “Automatic Static
Unpacking of Malware Binaries,” in
2009 16th Working Conference on
Reverse Engineering, 2009, pp.
167-176. doi: 10.1109/WCRE.2009.24.

[18] G. Jeong, E. Choo, J. Lee, M.
Bat-Erdene, and H. Lee, “Generic
unpacking using entropy analysis,” in
2010 5th International Conference on
Malicious and Unwanted Software, Oct.
2010, pp. 98-105. doi: 10.1109/MAL-
WARE.2010.5665789.

[19] C. R. Hill, “A real-time microprocessor
debugging technique,” ACM SIGPLAN
Notices, vol. 18, no. 8, pp. 145-148,
Aug. 1983, doi: 10.1145/1006142.
1006179.

[20] R. Sihwail, K. Omar, K. Zainol Ariffin,
and S. al Afghani, “Malware Detection
Approach Based on Artifacts in Memory
Image and Dynamic Analysis,” Applied
Sciences, vol. 9, no. 18, p. 3680, Sep.
2019, doi: 10.3390/app9183680.

40 LGU Int.J. Elect.Crime Investigation 6(3):LGUIJECI MS.ID- 05 (2022)

