
1.  Introduction

 Malicious software or malware are 
designed to harm or cause trouble with the 

purpose of gaining unauthorized access to 
computer systems and networks, disrupt 
computer operations, and collect personal 
information without the owner's permission. 
This poses a threat to Internet use, the integrity 

of computer systems, and the privacy of users 
[1]. 

2 Types Of Malwares 

There are many types of malware such as 
viruses, worms, Trojan horses, rootkits, 
backdoors, botnets, spyware, and adware. It's 
important to note that a single malware can 
exhibit characteristics of multiple types simul-
taneously [1]. 

2.1 Virus

A virus is a harmful program that enters a 
computer and causes damage by changing 

data or information. It needs people to open up. 
It can access the system via links, images, 
acquisition or internet download [2]. There are 
many types of viruses:

a) Boot sector virus: Infects the boot of the 
computer. disk (floppy, CD, or hard disk) 
by changing its contents with its own 
harmful code. However, recent advance-
ments in threat detection have helped 
mitigate this virus [3]. 

b) File Virus: This virus infects executable 
files and stays in the computer's memory. 
It tries to infect all programs that load into 
Bad memory by adding viruses to execut-
able files [3].

c) Internal virus: This virus is stored in the 
computer's memory and is opened when 
the operating system starts or something is 
done.

d) Virus not here: This virus is not in 

memory, it has spread to the target and 
transfers control to the infected applica-
tion. It has a search module to find new 
targets and patterns to disseminate new 
knowledge.

e) Macro Virus: This virus, written in macro 
language, spreads through phishing 
e-mails containing malicious information. 
It can also spread by sharing infected files.

f) Polymorphic virus: This virus changes 
its behavior every time it infects new 
information so that it can detect malware 
scanners. Its changing nature or hiding 
process makes it difficult to detect [4].

g) Virus metamorphosis: This virus chang-
es its properties and rules with each virus, 
making search and analysis very difficult.

h) Stealth virus: This virus uses various 
methods to hide in memory, files and boot 
to avoid detection. It affects boot sectors 
and tries to hide changes in data or boot 
sectors. Antivirus software should be able 
to identify hidden viruses by looking at 
memory evidence.

2.2 Trojan

This is a malicious program designed to steal 
sensitive information from the victim's 
computer. It disguises itself as a non-malicious 
program and does not copy or forward other 
files. It survived undetected by antivirus 
software. Trojans can create backdoors, spy, 
send messages, access remote computers, and 
create bot networks for DDoS attacks [3].

1) Spyware: This malware is installed on the 
victim's computer without the victim's 
knowledge and is used to track and gather 
information about the user. Anti-spyware 
tools can be used to prevent spyware [5].

2) Adware: Software that displays ads to 
users and collects information about users' 
marketing preferences. It analyzes users' 
behavior on the Internet to display ads. 
Adware enters the computer through 
freeware, shareware, and infected 
websites [5].

3) Viruses: Viruses are self-replicating 
malware that infects other computers 
without human intervention. Their main 
goal is to damage the network by using the 
bandwidth and increasing the load. There 
are different viruses such as email worms, 
Internet browsing worms and mobile 
worms that are transmitted via Bluetooth 
or mobile communication applications 
[5].

Table 1 Major Malware attacks and their 
impact 

3  Challenges In The Age Of 
Ransomware Analysis

Ransomware has emerged as a formidable 
cybersecurity threat, constantly evolving in 
complexity and sophistication. Malware 
analysts face unique challenges in the age of 
ransomware analysis, necessitating innovative 
approaches to combat this growing menace. 

3.1  Encryption and Obfuscation Tech-
niques
Ransomware strains employ advanced encryp-
tion and obfuscation techniques to evade 
detection and analysis. These techniques make 
it difficult for analysts to analyze the underly-
ing code, hampering efforts to understand the 
ransomware's behavior and develop effective 
countermeasures [6].

3.2  Rapidly Evolving Variants
Ransomware variants evolve at a rapid pace, 
with new strains and families constantly 
emerging. This rapid evolution challenges 
analysts to keep up with the latest techniques 
and develop timely detection and analysis 
methods [7]

3.3  Anti-Analysis Mechanisms
Ransomware incorporates anti-analysis mech
anisms that actively detect and evade virtual 
environments, sandboxes, and debugging 
tools. These mechanisms hinder analysts' 
ability to observe the ransomware's behavior in 
controlled environments [8].

3.4  Stealthy Delivery and Execution
Ransomware employs various stealthy delivery 
and execution techniques, such as fileless 
attacks and exploit kits. These techniques allow 

the malware to infiltrate systems undetected 
and hinder traditional analysis methods [9].

3.5  Data Integrity Risks
Ransomware poses risks to data integrity, as 
decrypting files without the proper decryption 
key may result in permanent loss or corruption 
of data. Analysts must carefully handle ransom-
ware samples to prevent unintended damage 
[10].

4  Best Practices For Ransom-
ware Analysis

To address the challenges posed by ransomware 
analysis, analysts can adopt best practices that 
enhance their effectiveness in detecting, analyz-
ing, and mitigating ransomware threats.

4.1  Dynamic Analysis
Employ dynamic analysis techniques to observe 
the ransomware's behavior in a controlled 
environment, allowing for better understanding 
of its execution flow and potential impact [11].

4.2  Automated Analysis Frameworks
Develop automated analysis frameworks 
that combine behavior-based analysis, static 
analysis, and machine learning techniques 
to expedite detection and classification of 
ransomware strains [12].

4.3 Collaboration and Information Sharing
Foster collaboration among analysts and 
organizations to share insights, indicators of 
compromise (IOCs), and mitigation strategies. 
Collective knowledge can strengthen defenses 
against ransomware attacks [13].

4.4  Threat Intelligence Feeds
Leverage threat intelligence feeds to stay 

c) The use of remote command execution to 
communicate with the attacker.

d) The use of obfuscation techniques to make 
the malware more difficult to analyze.

We will explore static analysis techniques for 
ransomware analysis: file and code analysis 
methods, signature-based detection, code 
deobfuscation and unpacking techniques, and 
malicious document analysis and exploit 
detection.

6  File And Code Analysis 
Methods To Identify 
Ransomware Characteristics

Static analysis involves the examination of 
files and code without executing them. This 
technique allows analysts to uncover vital 
insights about ransomware and its underlying 
characteristics. By scrutinizing file headers, 
metadata, and code structure, researchers can 
identify suspicious activities such as file 
encryption routines, command and control 
communication, or attempts to modify system 
settings. Analyzing ransomware behavior 
patterns is crucial for building detection mech-
anisms and developing effective mitigation 
strategies. This can be done using a tool file, 
which will display the file type and other 
characteristics of the file. For example, the 
following output from the file command shows 
that the file ransomware.exe is a Windows 
executable file:

$ file ransomware.exeransomware.exe: 
PE32 executable for MS Windows (GUI) 
Intel 80386, for MS Windows

Once the file type has been identified, the next 

step is to disassemble the malware code. This 
can be done using a tool like IDA Pro, which 
will display the assembly code for the 
malware. The assembly code can be used to 
identify ransomware characteristics, such as 
the use of encryption algorithms, the presence 
of ransom demands, and the use of remote 
command execution.

7  Signature-based Detection 
And Pattern Matching

Ransomware can also be detected using signa-
ture-based detection and pattern matching. 
Signature-based detection relies on predefined 
patterns or signatures to identify known 
ransomware variants. Analysts create signa-
tures based on unique characteristics or behav-
iors exhibited by specific ransomware 
families. These signatures are then matched 
against files or code samples to detect potential 
infections. Commercial antivirus scanners 
often look for signatures, which are sequences 
of bytes in the malware code, declaring that the 
scanned program is malicious. 
There are three types of malware: simple 
malware, polymorphic malware, and metamor-
phic malware. In simple malware, the 
program's entry points are changed to transfer 
control to the malicious payload. Diagnosis is 
relative if the signature of the virus code is 
visible[26]. While signature-based detection is 
effective against known ransomware strains, it 
may struggle with new or modified variants. 
Continuous updates and expansion of signature 
databases are necessary to combat emerging 
threats effectively. Pattern matching 
techniques analyze the structure, behavior, and 
code of ransomware samples to identify 
common patterns or characteristics associated 
with specific ransomware families. YARA is 

an efficient and optimized tool for pattern 
matching . Signature-based detection and 
pattern matching are both effective methods 
for detecting ransomware. However, they 
canbe defeated by ransomware authors who 
use obfuscation techniques to make their 
malware more difficult to analyze [26].
 
8  Unpacking Techniques

Ransomware authors often employ obfusca-
tion and packing techniques to evade detection 
and analysis. Obfuscation hides information so 
others cannot find the true meaning. Software 
vendors use obfuscation techniques to make 
software harder to reverse. Malware is better to 
write this down and uses many modifications 
to confuse malicious programs, making it 
difficult to reverse engineer the malware so 
that it cannot recognize its malicious intent 
[27]. 

Unpacking, on the other hand, refers to the 
process of extracting and reconstructing the 
original code from its packed form. Code 
deobfuscation is a technique for reversing the 
effects of obfuscation. This can be done using 
a variety of tools and techniques, including 
manual deobfuscation, automated deobfusca-
tion tools, and dynamic analysis. Static analy-
sis techniques include identifying and deobfus-
cating these code transformations, allowing 
researchers to gain insight into the ransom-
ware's inner workings, encryption algorithms, 
and communication protocols. Deobfuscation 
improves when static and dynamic analyses 
are combined [28].

9  Malicious Document Analysis 
And Exploit Detection

Portable Document Format (PDF) is one of the 
most popular file formats for data exchange. 
The origin of the PDF format has made PDF 
files the primary vector for malware distribu-
tion, as the targets of attackers have recently 
changed from server-side attacks to client-side 
attacks [29].  Basically, the corrupt PDF file 
can be thought of as the reincarnation of the 
macro virus that infected Microsoft Office and 
other products from the mid-1990s to the early 
2000s [30]. Static analysis techniques play a 
vital role in analyzing these documents to 
detect potential exploits or malicious macros. 
By dissecting the document's structure, exam-
ining embedded objects, and analyzing script 
or macro code, analysts can uncover the 
ransomware's delivery mechanisms, payloads, 
and potential vulnerabilities that attackers 
exploit. After reading the input data, MDScan 
analyzes its structure and removes all recog-
nized objects placed in hierarchies. The 
complexity and ambiguity of the PDF specifi-
cation makes this process a daunting task. 
Also, most PDF viewers (like Adobe Reader) 
even try to render the document incorrectly 
and often do not conform to the PDF specifica-
tion. This gives attackers more room to 
compromise data analysis, and they can use 
this complexity to uncover patterns of 
malicious PDF files. Exploit detection is a 
technique for identifying malicious documents 
that contain embedded macros or scripts that 
can be executed when the document is opened. 
Exploit detection can be done using a variety 
of tools and techniques, including signa-
ture-based detection, pattern matching, and 
dynamic analysis [31].

10 Dynamic Analysis 
Techniques For Ransomware 
Analysis

Ransomware analysis is essential for investi-
gating ransomware attacks and understanding 
the actions and behavior of malicious 
campaigns. It includes three main categories: 
static analysis, dynamic analysis, and hybrid 
analysis. The analysis seems to focus on 
analyzing the ransomware's code and features 
without success. Dynamic analysis involves 
running the ransomware in a controlled 
environment to monitor its behavior in a timely 
manner. Hybrid analysis combines static and 
dynamic analysis techniques. Dynamic analy-
sis is a great way to achieve success by writing 
bad code. Malicious code written in a 
controlled environment and exposed to 
features captured by the controlled environ-
ment [32,33]. 

A system called EldeRan uses dynamic analy-
sis to monitor what the application is doing. It 
captures API calls and strings at runtime to 
monitor the malicious behavior of ransomware 
applications. Applications are monitored 
during installation to identify ransomware 
signatures [34].

11  Research On Dynamic 
Analysis Of Ransomware Using 
Machine Learning

The system aims to perform an in-depth analy-
sis by recording system calls. Introduce 
optimization techniques to minimize API calls 
and train machine learning classes on data to 
optimize system calls [35].

A multi-layered ransomware detection system 

based on machine learning works in three 
phases: identification, learning, and discovery. 
Perform behavioral analysis to identify 
unknown ransomware variants [36].

Build a real-time ransomware detection system 
integrated with the Integrated Clinical 
Environment (ICE) to protect a hospital 
network. The system detected and isolated 
victim devices to prevent the spread of the 
attack [37].

12 Conclusion

It is concluded that ransomware analysis faces 
different challenges due to its tactics and 
challenging nature employed by cyber crimi-
nals. The key challenges are evasion 
techniques, advanced encryption, dynamic 
behavior, zero-day exploits, anti-analysis 
mechanism and most importantly lack of 
resources to follow up the latest track. Security 
researchers have been continuously finding out 
AI solutions, relating with software vendors 
and produce effective measures against 
ransomware attacks. Sometimes it is difficult 
for individuals and organizations to stay 
vigilant and use robust measures and update 
their defense to reduce the risk of falling victim 
to ransomware. 

In addition to this, the constantly updation of 
nature of ransomware requires security 
researchers to stay updated and work on 
adaption of latest techniques to fight against 
new strains strongly. Thus, these new changes 
require collaboration, continuous research, 
huge investments and proper planning to stay 
one step ahead of cyber criminals. Effective 
Ransomware Analysis is about behavior analy-
sis, combination of segmentation and isolation 

skills, reverse engineering and high intelli-
gence. By analyzing these ransomware 
samples in controlled environments such as 
sandboxes, virtual machines can prevent 
malwaring from infecting the systems. Behav-
ior analysis can detect malicious pursuit and 
alleviate ransomware campaigns. 

Furthermore, to apply security measures in 
organizations prevent them from ransomware 
attacks. Regular upgradation, backup plan and 
strong passwords can help the organizations on 
how to analyze ransomware and reduce its 
impact. Static analysis techniques serve as a 
fundamental pillar in the fight against ransom-
ware attacks. By employing file and code 
analysis methods, signature-based detection, 
code deobfuscation and unpacking techniques, 
and malicious document analysis, security 
analysts can effectively identify ransomware 
characteristics, detect infections, and under-
stand the underlying mechanisms used by 
attackers. As ransomware continues to evolve, 
it is imperative to stay abreast of the latest 
static analysis techniques and continuously 
enhance detection mechanisms to mitigate the 
impact of these malicious threats. 

Dynamic analysis techniques are essential for 
analyzing and understanding the behavior of 
ransomware. Through sandboxing, behavior 
monitoring, traffic analysis, memory analysis, 
dynamic code analysis, and runtime environ-
ment analysis, analysts can gain valuable 
insights into a ransomware's capabilities, 
evasion techniques, communication patterns, 
and potential impact on a system. These 
techniques allow for a comprehensive under-
standing of the ransomware's functionalities 
and aid in the development of effective 
countermeasures and mitigation strategies.
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updated on the latest ransomware variants, 
their associated indicators, and attack patterns. 
This information can enhance the accuracy and 
efficacy of analysis efforts [14].

4.5 Network and Endpoint Monitoring
Implement robust network and endpoint 
monitoring solutions to detect and respond to 
ransomware activities promptly. Early detection 
can mitigate the impact of an attack and aid in 
subsequent analysis [15].

4.6 Regular Backup and Recovery
Establish a good backup strategy to regularly 
recover important data, enabling rapid recovery 
in the event of a ransomware attack. This 
practice minimizes the potential impact of 
ransomware on data integrity[16].

4.7 Security Awareness and Training
Provide security awareness and regular training 
to educate employees about ransomware 
threats, phishing techniques, and security prac-
tices. This will help create a safe environment 
[17].

4.8  Incident Response Planning
Have an incident response plan that outlines 
the steps to take in the event of a ransomware 
incident. This allows for quick coordination 
to resolve the issue and facilitates follow-up. 
[18].

4.9 Reverse Engineering and Code Analysis
Utilize reverse engineering and code analysis 
techniques to dissect ransomware samples, 
understand their underlying functionalities, and 
identify vulnerabilities that can be exploited for 
analysis and mitigation [19].

4.10 Continuous Learning and Research

Stay abreast of the latest advancements in 
ransomware analysis techniques and actively 
participate in ongoing research and knowledge 
sharing forums. Continuous learning ensures 
analysts remain equipped to tackle emerging 
ransomware challenges [20].

5  Static Analysis Techniques 
For Ransomware Analysis

Over the last few years, malware has continued 
to evolve in terms of the complexity of 
malware cloaking and the variety of attack 
vectors [21]. Ransomware is one of the biggest 
and fastest growing threats facing the digital 
world [22]. Ransomware usually works by 
locking a desktop computer or accessing, 
overwriting, or deleting the user's data to 
prevent the user from accessing the computer 
[23]. To counter changing cyber threats, securi-
ty researchers and analysts are turning to static 
analysis techniques as a powerful tool for 
ransomware detection and analysis. Static 
testing is the process of analysing program 
code without running the code. We analysed 
the ransomware samples using the PEView 
program and the PE parser. PEFile analysis is 
an essential part of static analysis [24]. This 
can be done by disassembling the malware 
code, examining the file header, and searching 
for strings and other indicators of malicious 
activity. Static analysis is the analysis of code 
that is not executed at write time. [25]. Static 
analysis can be used to identify ransomware 
characteristics, such as:

a) The use of encryption algorithms to 
encrypt victim files.

b) The presence of ransom demands.
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1.  Introduction

 Short exon detection is a formidable 
issue for bioinformatics and becomes more 
complicated as becomes more complicated 
side of short intron. To categorize these exonic 
regions accurately, it’s essential to create 
computer methods that are both more efficient 
and dependable. This is necessary because 
many of the existing methods do not handle the 

small exons separated by brief introns effec-
tively. The methods for identifying exons are 
based on the quest for material, signal or 
resemblance. For classification of exon 
disunited by short intron has been divided into 
two methods; Model independent and model 
dependent [1]. The DNA coding model 
frequently relies on probability, enabling the 
measurement of the likelihood of a DNA 
sequence because it encodes the sequence. 
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Although the values (scores) of a specific data 
code statist are calculable in a variety of differ-
ent ways in reality, we will measure scores 
based on this probability for model-based 
coding statistics. In fact, provided the query 
sequence, under the coding model and an 
alternate model or DNA non coding we can 
determine the likelihood of the sequence. The 
model-based coding statistics may catch more 
of the particular DNA-coding characteristics, 
more as the model is more complex i.e. more 
parameters dependent. Model based coding 
statistics can also be more effective in distin-
guishing against non-coding DNA coding. 
However, model based coding statistics 
involve a representative DNA coding sample 
from the species included in the estimation of 
model parameters (probabilities). The more 
intricate the model, the more susceptible it is to 
sample distortion and dimension. Model 
independent coding statistics, however, 
capture only the "universal" characteristics of 
DNA coding, as no sample is needed and 
where coding regions of the species being 
considered are not identified, they may be 
used[2]. In [3], they have used Markov Chain 
to identify the sequences in DNA. Markov 
chain models of DNA and its use for Bayesian 
gene recognition algorithms for protein coding 
sequences. Gene Scout is the other method for 
detecting DNA sequences that used Markov 
Chain. In recent work, the local spectrum of 
the first intrinsic mode feature was determined 
to detect short exons. A technique focused on 
filters was also documented in order to detect 
short exons [4]. However, this method is based 
on the model by evaluating the fictitious EIIP 
values the fictitious EIIP values the fictitious 
EIIP values optimised and the weights for the 
four filtered binary sequences. Depending on 
the study of the windows form and scale, the 

efficiency of DSP bases that DFT can be used 
to analyse the spectral properties of DNA 
sequence depends [5]. 

2  Literature Review 

A more concise timeframe can detect short 
exons, but not long exon scan lead to further 
false alarm. On the other side, wide windows 
can lead to fewer fake detections, however 
short exons are lacking. Multiscale analysis 
was conducted by MGWT-based approach [6]. 
Marhon & Kremer recently suggested the 
Broad Range Wavelet Window (WRWW) 
approach to the forecasting of protein coding 
areas in a recent work [7].  In order to deal with 
the problem of window size. A technique to fix 
the issue of window size selection was also 
introduced to adapt the window length [8]. The 
WRWW approach has been shown to operate 
effectively over a number of exon lengths 
through simulation experiments. The effective-
ness of the methods used for detecting exons 
has not yet been assessed when there is a brief 
intron separating two adjacent short exons. 
Furthermore, no computer model to identify 
alternate splicing that could occur due to intron 
retention has been investigated for implemen-
tation of the annotation of certain regions in 
eukaryotic DNA (IR)[9]. In IR, part of the gene 
is not encrypted and can join premature stop 
codons in the center of a mature transcription. 
In an IR, numerous factors such as weak splice 
sites, short introns within genes, elevated 
levels of exonic splicing silencing, and lower 
density can contribute to the occurrence of IR 
[10].

Additionally, the IR is linked to short introns 
(274 nucleotides) and, if retention takes place, 
all neighboring exons, which are about 135 nt 

long, are linked to the exon retained, creating 
an exon retention intron (EIE) exon that is 544 
nt long. In order to find IR-likely sites, short 
exons separated by short introns can be identi-
fied using computer-based methods.

3  Dna Mapping Scheme 

"Deoxyribonucleic acid (DNA)" sequences are 
important for the understanding of living 
organisms, and in these macromolecules, much 
of the knowledge concerning heritable evolu-
tion and species growth is stored. Prokaryotes 
and eukaryotes are possible for organisms. 
DNA is free inside the cell in prokaryotes 
while DNA is retained within the nucleus in 
eukaryotes and is disassociated by a nuclear 
memebrane from the rest of the cell. Four 
major chemicals, thymine (T), cytosine(C) 
guanine (G) and adenine (A)  form the DNA 
chain . The determination of protein coating 
regions (exons) in eucaryotic gene structures is 
one of the present problems in studying the 
DNA sequences. Both probabilistic and deter-
ministic approaches are employed to catego-
rize protein coding regions or exons in eukary-
otic cells. Probabilistic methods have high 
precision, but rely on model and require 
adequate prediction training data. In the other 
hand, predictability of detergent methods is 
comparatively lower but model-independent 
and best suited for study of uncharacterized 
genomic sequences, where prior details of the 
studied species does not exist. 

The base-coding region contains a pronounced 
period-3 segment attributed to the codon struc-
ture utilized in the translation of the base 

sequence into amino acids. Most deterrent 
techniques use the "Discrete Fourier Trans-
form" to classify the period-3 portion by 
spectral analysis of the DNA sequences. A 
variety of algorithms were designed to classify 
protein-coding regions based on the period-3 
property. DFT-based approaches efficiency 
depends on the duration of the window[11]. In 
order to classify protein-coding areas, a system 
based on "Modified Gabor-wavelet transform" 
(MGWT) was implemented. Depending on 
window length, the efficiency of the MGWT is 
higher than the DFT based approaches[6].

There are four significant shortcomings in the 
present method for representing and aligning 
new input genomes with the reference genome. 
To begin, even though several algorithmic 
implementations are widely used, there is no 
established standard method for aligning DNA 
bases from a newly sequenced input genome 
with positions in the reference genome [12].

Secondly, various mapping procedures 
encounter a challenge when there are (almost) 
equally valid mappings to multiple separate 
positions within the reference genome, a 
situation often referred to as the "multi-map-
ping problem." This arises because of the 
inherent repetition of larger subsequences in 
the reference genome. 

Thirdly, the GRC reference genome encom-
passes only a limited portion of common 
segregating genome variations, with the 
remainder scattered across various formats and 
data sources like the Single Nucleotide 
Polymorphism Database (dbSNP) and the 

1000 Genomes Project. Consequently, there is 
presently no singular, all-encompassing 
resource for common human genome varia-
tions, and there is a lack of consistent naming 
or identification conventions [13].

Lastly, whenever a new reference genome 
assembly is issued, updates are made to the 
reference genome's coordinates, necessitating 
the remapping of all associated data. This 
remapping process is often the most computa-
tionally intensive stage in a genome analysis 
pipeline. It can be a time-consuming task, 
taking weeks to complete and consuming 
substantial computational resources, particu-
larly when dealing with a large set of genomes.

4  Representation Of DNA

The following five representation methods 
were used to numerically represent the 
sequences of the selected genes DNA:

4.1 Genetic Code Context (GCC)
The following triple codons are found in the 
various reading frameworks for a particular 
DNA sequence Y= ACGATTCAGGT: The 
initial reading phrase is ACG ATT CAG, 
followed by CGA TTC AGG and finally by 
GAT TCA GGT.The corresponding encoded 
amino acids for the first frame are [T, I, Q], [R, 
F, R], and [D, S, G] for the second and third 
frames, respectively. Each amino acid is 
described by a unique complex number, as 
shown in Table 1.

4.2 Frequency of Nucleotide Occurrence

According to Table 2 given below, A real value 
is assigned to each nucleotide in the DNA 
sequence Y= ACGATTCAGGT from two 
different datasets. As a result, the correspond-
ing DNA numerical sequence from the 
HMR195 dataset is [0.22750, 0.28312, 
0.27600, 0.22750, 0.21336, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336].

4.3 Atomic Number 
The molecular signature pattern constants over 
a certain DNA sequence Y= ACGATTCAGGT 
are: A=70, G=78, C=58, T=66. As a conse-
quence, the numerical sequence of DNA is [70, 
58, 78, 70, 66, 66, 58, 70, 78, 66, 58, 70, 78, 66, 
58, 70, 78, 66, 58, 70, 78, 66, 58, 70, 78, 66, 58, 
70, 78, 66, 58, 70, 78, 66].

4.4 Electron Ion Interaction Potential (EIIP)
The EIIP indicator sequence values for the 
specific DNA sequence Y= ACGATTCAGGT 
are A= 0.1260, G= 0.0806, C= 0.1340, and T= 
0.1335.As a result, [0.1260, 0.1340, 0.0806, 
0.1260, 0.1335, 0.1335, 0.1340, 0.1260, 
0.0806, 0.0806, 0] is the numerical sequence 
for DNA .1335]

4.5 2-bit Binary
The values of the DNA the 2-bit digital sign 
sequencesY= ACGATTCAGGT are A=00, 
G=10, T=01, C=11 for the DNA sequence Y= 
ACGATTCAGGT.

5  Results 

The detection technique was applied using the 
IIR inverse Chepyshev electronic filter on 20 
human testing genes with single and multiple 
exons downloaded from the HMR195 
dataset.in order to achieve our goal. The acces-
sion numbers, gene descriptions, sequence 
lengths, and true exon locations of the genes 
are all displayed in Table 3.

5.1 Single Exon Gene 
 Both the frequency of nucleotide occurrence 
in exons (FNO) and the 2-bit binary represen-
tation schemes showed a distinct and promi-
nent peak at the precise location of true exons 
(964-1938), without any misleading peaks at 
the individual exon level, when compared to 
EIIP, GCC, and atomic number schemes. Addi-
tionally, the FNO and 2-bit binary representa-
tion schemes demonstrated the highest levels 
of sensitivity, specificity, and correlation 
coefficient for various single exon genes, 
achieving 100 percent, 75.228 percent, and 
0.4994, respectively. Notably, the 2-bit binary 
representation scheme clocked in at 7.38ms, 
which was the quickest processing time when 
compared to the other representation methods.

5.2 Two Exonic Region Gene 
Different genes with two exonic regions were 
used to test the predictive accuracy of different 
representation techniques. Surprisingly, nucle-
otide location identification and sensitivity for 
the FNO and 2-bit binary techniques were 
identical, as shown in Fig. 6. These two 
techniques successfully located the two 
authentic exons (at locations 115–482 and 
1867–2662) within the (GALNR2) gene.

The FNO and 2-bit binary methods fared better 
than other schemes, with specificity scores of 
56.012 percent and 65.02 percent, respectively, 
despite having almost half the specificity of 
single exonic region prediction. Interestingly, 
among all the representation techniques, the 
2-bit binary representation approach had the 
highest correlation coefficient (0.6838) and the 
fastest processing speed.

5.3 Three Exonic and Four Exonic Region 
Gene 
When applying five various recognition 
algorithms to genes with three and four exonic 

regions, the 2-bit binary representation method 
consistently beat other representation methods 
in terms of accuracy. The number of incorrect 
exons was reduced by this method's accurate 
detection of actual nucleotide locations in the 
proper order. As a result, in this particular 
situation, it achieved the highest levels of 
sensitivity, correlation, specificity, and CPU 
run time.

6  Conclusion

The findings demonstrated that the 2-bit binary 
representation method, when compared to 
other representation schemes, significantly 
improved true nucleotide position identifica-
tion accuracy regardless of the number of 
exonic regions in the sequences tested, with 
high levels of sensitivity, correlation coeffi-
cient, specificity, and minimal processing time. 
These results are consistent with other studies 
that applied the 2-bit binary technique in a 
different setting. When applied to human DNA 
sequences for promoter prediction using neural 
networks, it was found that the 2-bit binary 
scheme outperformed the 4-bit binary and 
integer representation methods.

Intriguingly, the 2-bit binary and FNO repre-
sentation schemes both displayed comparable 
high levels of sensitivity, correlation coeffi-
cient, and specificity when compared to other 
schemes, especially at the one and two exonic 
region detection levels, despite using different 
numerical representation techniques. Notably, 
the FNO system is based on statistically 
derived measurements while the 2-bit binary 
scheme relies on the arbitrary assignment of 
nucleotide numbers.

The FNO was outperformed by the 2-bit binary 
representation approach for the detection of 
three and four exonic areas. These results 

corroborate a previous study that found that the 
protein coding region prediction accuracy 
could be improved by using the DFT base 
technique by increasing the frequency of 
nucleotide occurrence and matching numeric 
recognition schemes.
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1.  Introduction

 Malicious software or malware are 
designed to harm or cause trouble with the 

purpose of gaining unauthorized access to 
computer systems and networks, disrupt 
computer operations, and collect personal 
information without the owner's permission. 
This poses a threat to Internet use, the integrity 

of computer systems, and the privacy of users 
[1]. 

2 Types Of Malwares 

There are many types of malware such as 
viruses, worms, Trojan horses, rootkits, 
backdoors, botnets, spyware, and adware. It's 
important to note that a single malware can 
exhibit characteristics of multiple types simul-
taneously [1]. 

2.1 Virus

A virus is a harmful program that enters a 
computer and causes damage by changing 

data or information. It needs people to open up. 
It can access the system via links, images, 
acquisition or internet download [2]. There are 
many types of viruses:

a) Boot sector virus: Infects the boot of the 
computer. disk (floppy, CD, or hard disk) 
by changing its contents with its own 
harmful code. However, recent advance-
ments in threat detection have helped 
mitigate this virus [3]. 

b) File Virus: This virus infects executable 
files and stays in the computer's memory. 
It tries to infect all programs that load into 
Bad memory by adding viruses to execut-
able files [3].

c) Internal virus: This virus is stored in the 
computer's memory and is opened when 
the operating system starts or something is 
done.

d) Virus not here: This virus is not in 

memory, it has spread to the target and 
transfers control to the infected applica-
tion. It has a search module to find new 
targets and patterns to disseminate new 
knowledge.

e) Macro Virus: This virus, written in macro 
language, spreads through phishing 
e-mails containing malicious information. 
It can also spread by sharing infected files.

f) Polymorphic virus: This virus changes 
its behavior every time it infects new 
information so that it can detect malware 
scanners. Its changing nature or hiding 
process makes it difficult to detect [4].

g) Virus metamorphosis: This virus chang-
es its properties and rules with each virus, 
making search and analysis very difficult.

h) Stealth virus: This virus uses various 
methods to hide in memory, files and boot 
to avoid detection. It affects boot sectors 
and tries to hide changes in data or boot 
sectors. Antivirus software should be able 
to identify hidden viruses by looking at 
memory evidence.

2.2 Trojan

This is a malicious program designed to steal 
sensitive information from the victim's 
computer. It disguises itself as a non-malicious 
program and does not copy or forward other 
files. It survived undetected by antivirus 
software. Trojans can create backdoors, spy, 
send messages, access remote computers, and 
create bot networks for DDoS attacks [3].

1) Spyware: This malware is installed on the 
victim's computer without the victim's 
knowledge and is used to track and gather 
information about the user. Anti-spyware 
tools can be used to prevent spyware [5].

2) Adware: Software that displays ads to 
users and collects information about users' 
marketing preferences. It analyzes users' 
behavior on the Internet to display ads. 
Adware enters the computer through 
freeware, shareware, and infected 
websites [5].

3) Viruses: Viruses are self-replicating 
malware that infects other computers 
without human intervention. Their main 
goal is to damage the network by using the 
bandwidth and increasing the load. There 
are different viruses such as email worms, 
Internet browsing worms and mobile 
worms that are transmitted via Bluetooth 
or mobile communication applications 
[5].

Table 1 Major Malware attacks and their 
impact 

3  Challenges In The Age Of 
Ransomware Analysis

Ransomware has emerged as a formidable 
cybersecurity threat, constantly evolving in 
complexity and sophistication. Malware 
analysts face unique challenges in the age of 
ransomware analysis, necessitating innovative 
approaches to combat this growing menace. 

3.1  Encryption and Obfuscation Tech-
niques
Ransomware strains employ advanced encryp-
tion and obfuscation techniques to evade 
detection and analysis. These techniques make 
it difficult for analysts to analyze the underly-
ing code, hampering efforts to understand the 
ransomware's behavior and develop effective 
countermeasures [6].

3.2  Rapidly Evolving Variants
Ransomware variants evolve at a rapid pace, 
with new strains and families constantly 
emerging. This rapid evolution challenges 
analysts to keep up with the latest techniques 
and develop timely detection and analysis 
methods [7]

3.3  Anti-Analysis Mechanisms
Ransomware incorporates anti-analysis mech
anisms that actively detect and evade virtual 
environments, sandboxes, and debugging 
tools. These mechanisms hinder analysts' 
ability to observe the ransomware's behavior in 
controlled environments [8].

3.4  Stealthy Delivery and Execution
Ransomware employs various stealthy delivery 
and execution techniques, such as fileless 
attacks and exploit kits. These techniques allow 

the malware to infiltrate systems undetected 
and hinder traditional analysis methods [9].

3.5  Data Integrity Risks
Ransomware poses risks to data integrity, as 
decrypting files without the proper decryption 
key may result in permanent loss or corruption 
of data. Analysts must carefully handle ransom-
ware samples to prevent unintended damage 
[10].

4  Best Practices For Ransom-
ware Analysis

To address the challenges posed by ransomware 
analysis, analysts can adopt best practices that 
enhance their effectiveness in detecting, analyz-
ing, and mitigating ransomware threats.

4.1  Dynamic Analysis
Employ dynamic analysis techniques to observe 
the ransomware's behavior in a controlled 
environment, allowing for better understanding 
of its execution flow and potential impact [11].

4.2  Automated Analysis Frameworks
Develop automated analysis frameworks 
that combine behavior-based analysis, static 
analysis, and machine learning techniques 
to expedite detection and classification of 
ransomware strains [12].

4.3 Collaboration and Information Sharing
Foster collaboration among analysts and 
organizations to share insights, indicators of 
compromise (IOCs), and mitigation strategies. 
Collective knowledge can strengthen defenses 
against ransomware attacks [13].

4.4  Threat Intelligence Feeds
Leverage threat intelligence feeds to stay 

c) The use of remote command execution to 
communicate with the attacker.

d) The use of obfuscation techniques to make 
the malware more difficult to analyze.

We will explore static analysis techniques for 
ransomware analysis: file and code analysis 
methods, signature-based detection, code 
deobfuscation and unpacking techniques, and 
malicious document analysis and exploit 
detection.

6  File And Code Analysis 
Methods To Identify 
Ransomware Characteristics

Static analysis involves the examination of 
files and code without executing them. This 
technique allows analysts to uncover vital 
insights about ransomware and its underlying 
characteristics. By scrutinizing file headers, 
metadata, and code structure, researchers can 
identify suspicious activities such as file 
encryption routines, command and control 
communication, or attempts to modify system 
settings. Analyzing ransomware behavior 
patterns is crucial for building detection mech-
anisms and developing effective mitigation 
strategies. This can be done using a tool file, 
which will display the file type and other 
characteristics of the file. For example, the 
following output from the file command shows 
that the file ransomware.exe is a Windows 
executable file:

$ file ransomware.exeransomware.exe: 
PE32 executable for MS Windows (GUI) 
Intel 80386, for MS Windows

Once the file type has been identified, the next 

step is to disassemble the malware code. This 
can be done using a tool like IDA Pro, which 
will display the assembly code for the 
malware. The assembly code can be used to 
identify ransomware characteristics, such as 
the use of encryption algorithms, the presence 
of ransom demands, and the use of remote 
command execution.

7  Signature-based Detection 
And Pattern Matching

Ransomware can also be detected using signa-
ture-based detection and pattern matching. 
Signature-based detection relies on predefined 
patterns or signatures to identify known 
ransomware variants. Analysts create signa-
tures based on unique characteristics or behav-
iors exhibited by specific ransomware 
families. These signatures are then matched 
against files or code samples to detect potential 
infections. Commercial antivirus scanners 
often look for signatures, which are sequences 
of bytes in the malware code, declaring that the 
scanned program is malicious. 
There are three types of malware: simple 
malware, polymorphic malware, and metamor-
phic malware. In simple malware, the 
program's entry points are changed to transfer 
control to the malicious payload. Diagnosis is 
relative if the signature of the virus code is 
visible[26]. While signature-based detection is 
effective against known ransomware strains, it 
may struggle with new or modified variants. 
Continuous updates and expansion of signature 
databases are necessary to combat emerging 
threats effectively. Pattern matching 
techniques analyze the structure, behavior, and 
code of ransomware samples to identify 
common patterns or characteristics associated 
with specific ransomware families. YARA is 

an efficient and optimized tool for pattern 
matching . Signature-based detection and 
pattern matching are both effective methods 
for detecting ransomware. However, they 
canbe defeated by ransomware authors who 
use obfuscation techniques to make their 
malware more difficult to analyze [26].
 
8  Unpacking Techniques

Ransomware authors often employ obfusca-
tion and packing techniques to evade detection 
and analysis. Obfuscation hides information so 
others cannot find the true meaning. Software 
vendors use obfuscation techniques to make 
software harder to reverse. Malware is better to 
write this down and uses many modifications 
to confuse malicious programs, making it 
difficult to reverse engineer the malware so 
that it cannot recognize its malicious intent 
[27]. 

Unpacking, on the other hand, refers to the 
process of extracting and reconstructing the 
original code from its packed form. Code 
deobfuscation is a technique for reversing the 
effects of obfuscation. This can be done using 
a variety of tools and techniques, including 
manual deobfuscation, automated deobfusca-
tion tools, and dynamic analysis. Static analy-
sis techniques include identifying and deobfus-
cating these code transformations, allowing 
researchers to gain insight into the ransom-
ware's inner workings, encryption algorithms, 
and communication protocols. Deobfuscation 
improves when static and dynamic analyses 
are combined [28].

9  Malicious Document Analysis 
And Exploit Detection

Portable Document Format (PDF) is one of the 
most popular file formats for data exchange. 
The origin of the PDF format has made PDF 
files the primary vector for malware distribu-
tion, as the targets of attackers have recently 
changed from server-side attacks to client-side 
attacks [29].  Basically, the corrupt PDF file 
can be thought of as the reincarnation of the 
macro virus that infected Microsoft Office and 
other products from the mid-1990s to the early 
2000s [30]. Static analysis techniques play a 
vital role in analyzing these documents to 
detect potential exploits or malicious macros. 
By dissecting the document's structure, exam-
ining embedded objects, and analyzing script 
or macro code, analysts can uncover the 
ransomware's delivery mechanisms, payloads, 
and potential vulnerabilities that attackers 
exploit. After reading the input data, MDScan 
analyzes its structure and removes all recog-
nized objects placed in hierarchies. The 
complexity and ambiguity of the PDF specifi-
cation makes this process a daunting task. 
Also, most PDF viewers (like Adobe Reader) 
even try to render the document incorrectly 
and often do not conform to the PDF specifica-
tion. This gives attackers more room to 
compromise data analysis, and they can use 
this complexity to uncover patterns of 
malicious PDF files. Exploit detection is a 
technique for identifying malicious documents 
that contain embedded macros or scripts that 
can be executed when the document is opened. 
Exploit detection can be done using a variety 
of tools and techniques, including signa-
ture-based detection, pattern matching, and 
dynamic analysis [31].

10 Dynamic Analysis 
Techniques For Ransomware 
Analysis

Ransomware analysis is essential for investi-
gating ransomware attacks and understanding 
the actions and behavior of malicious 
campaigns. It includes three main categories: 
static analysis, dynamic analysis, and hybrid 
analysis. The analysis seems to focus on 
analyzing the ransomware's code and features 
without success. Dynamic analysis involves 
running the ransomware in a controlled 
environment to monitor its behavior in a timely 
manner. Hybrid analysis combines static and 
dynamic analysis techniques. Dynamic analy-
sis is a great way to achieve success by writing 
bad code. Malicious code written in a 
controlled environment and exposed to 
features captured by the controlled environ-
ment [32,33]. 

A system called EldeRan uses dynamic analy-
sis to monitor what the application is doing. It 
captures API calls and strings at runtime to 
monitor the malicious behavior of ransomware 
applications. Applications are monitored 
during installation to identify ransomware 
signatures [34].

11  Research On Dynamic 
Analysis Of Ransomware Using 
Machine Learning

The system aims to perform an in-depth analy-
sis by recording system calls. Introduce 
optimization techniques to minimize API calls 
and train machine learning classes on data to 
optimize system calls [35].

A multi-layered ransomware detection system 

based on machine learning works in three 
phases: identification, learning, and discovery. 
Perform behavioral analysis to identify 
unknown ransomware variants [36].

Build a real-time ransomware detection system 
integrated with the Integrated Clinical 
Environment (ICE) to protect a hospital 
network. The system detected and isolated 
victim devices to prevent the spread of the 
attack [37].

12 Conclusion

It is concluded that ransomware analysis faces 
different challenges due to its tactics and 
challenging nature employed by cyber crimi-
nals. The key challenges are evasion 
techniques, advanced encryption, dynamic 
behavior, zero-day exploits, anti-analysis 
mechanism and most importantly lack of 
resources to follow up the latest track. Security 
researchers have been continuously finding out 
AI solutions, relating with software vendors 
and produce effective measures against 
ransomware attacks. Sometimes it is difficult 
for individuals and organizations to stay 
vigilant and use robust measures and update 
their defense to reduce the risk of falling victim 
to ransomware. 

In addition to this, the constantly updation of 
nature of ransomware requires security 
researchers to stay updated and work on 
adaption of latest techniques to fight against 
new strains strongly. Thus, these new changes 
require collaboration, continuous research, 
huge investments and proper planning to stay 
one step ahead of cyber criminals. Effective 
Ransomware Analysis is about behavior analy-
sis, combination of segmentation and isolation 

skills, reverse engineering and high intelli-
gence. By analyzing these ransomware 
samples in controlled environments such as 
sandboxes, virtual machines can prevent 
malwaring from infecting the systems. Behav-
ior analysis can detect malicious pursuit and 
alleviate ransomware campaigns. 

Furthermore, to apply security measures in 
organizations prevent them from ransomware 
attacks. Regular upgradation, backup plan and 
strong passwords can help the organizations on 
how to analyze ransomware and reduce its 
impact. Static analysis techniques serve as a 
fundamental pillar in the fight against ransom-
ware attacks. By employing file and code 
analysis methods, signature-based detection, 
code deobfuscation and unpacking techniques, 
and malicious document analysis, security 
analysts can effectively identify ransomware 
characteristics, detect infections, and under-
stand the underlying mechanisms used by 
attackers. As ransomware continues to evolve, 
it is imperative to stay abreast of the latest 
static analysis techniques and continuously 
enhance detection mechanisms to mitigate the 
impact of these malicious threats. 

Dynamic analysis techniques are essential for 
analyzing and understanding the behavior of 
ransomware. Through sandboxing, behavior 
monitoring, traffic analysis, memory analysis, 
dynamic code analysis, and runtime environ-
ment analysis, analysts can gain valuable 
insights into a ransomware's capabilities, 
evasion techniques, communication patterns, 
and potential impact on a system. These 
techniques allow for a comprehensive under-
standing of the ransomware's functionalities 
and aid in the development of effective 
countermeasures and mitigation strategies.
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updated on the latest ransomware variants, 
their associated indicators, and attack patterns. 
This information can enhance the accuracy and 
efficacy of analysis efforts [14].

4.5 Network and Endpoint Monitoring
Implement robust network and endpoint 
monitoring solutions to detect and respond to 
ransomware activities promptly. Early detection 
can mitigate the impact of an attack and aid in 
subsequent analysis [15].

4.6 Regular Backup and Recovery
Establish a good backup strategy to regularly 
recover important data, enabling rapid recovery 
in the event of a ransomware attack. This 
practice minimizes the potential impact of 
ransomware on data integrity[16].

4.7 Security Awareness and Training
Provide security awareness and regular training 
to educate employees about ransomware 
threats, phishing techniques, and security prac-
tices. This will help create a safe environment 
[17].

4.8  Incident Response Planning
Have an incident response plan that outlines 
the steps to take in the event of a ransomware 
incident. This allows for quick coordination 
to resolve the issue and facilitates follow-up. 
[18].

4.9 Reverse Engineering and Code Analysis
Utilize reverse engineering and code analysis 
techniques to dissect ransomware samples, 
understand their underlying functionalities, and 
identify vulnerabilities that can be exploited for 
analysis and mitigation [19].

4.10 Continuous Learning and Research

Stay abreast of the latest advancements in 
ransomware analysis techniques and actively 
participate in ongoing research and knowledge 
sharing forums. Continuous learning ensures 
analysts remain equipped to tackle emerging 
ransomware challenges [20].

5  Static Analysis Techniques 
For Ransomware Analysis

Over the last few years, malware has continued 
to evolve in terms of the complexity of 
malware cloaking and the variety of attack 
vectors [21]. Ransomware is one of the biggest 
and fastest growing threats facing the digital 
world [22]. Ransomware usually works by 
locking a desktop computer or accessing, 
overwriting, or deleting the user's data to 
prevent the user from accessing the computer 
[23]. To counter changing cyber threats, securi-
ty researchers and analysts are turning to static 
analysis techniques as a powerful tool for 
ransomware detection and analysis. Static 
testing is the process of analysing program 
code without running the code. We analysed 
the ransomware samples using the PEView 
program and the PE parser. PEFile analysis is 
an essential part of static analysis [24]. This 
can be done by disassembling the malware 
code, examining the file header, and searching 
for strings and other indicators of malicious 
activity. Static analysis is the analysis of code 
that is not executed at write time. [25]. Static 
analysis can be used to identify ransomware 
characteristics, such as:

a) The use of encryption algorithms to 
encrypt victim files.

b) The presence of ransom demands.

1.  Introduction

 Short exon detection is a formidable 
issue for bioinformatics and becomes more 
complicated as becomes more complicated 
side of short intron. To categorize these exonic 
regions accurately, it’s essential to create 
computer methods that are both more efficient 
and dependable. This is necessary because 
many of the existing methods do not handle the 

small exons separated by brief introns effec-
tively. The methods for identifying exons are 
based on the quest for material, signal or 
resemblance. For classification of exon 
disunited by short intron has been divided into 
two methods; Model independent and model 
dependent [1]. The DNA coding model 
frequently relies on probability, enabling the 
measurement of the likelihood of a DNA 
sequence because it encodes the sequence. 
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Although the values (scores) of a specific data 
code statist are calculable in a variety of differ-
ent ways in reality, we will measure scores 
based on this probability for model-based 
coding statistics. In fact, provided the query 
sequence, under the coding model and an 
alternate model or DNA non coding we can 
determine the likelihood of the sequence. The 
model-based coding statistics may catch more 
of the particular DNA-coding characteristics, 
more as the model is more complex i.e. more 
parameters dependent. Model based coding 
statistics can also be more effective in distin-
guishing against non-coding DNA coding. 
However, model based coding statistics 
involve a representative DNA coding sample 
from the species included in the estimation of 
model parameters (probabilities). The more 
intricate the model, the more susceptible it is to 
sample distortion and dimension. Model 
independent coding statistics, however, 
capture only the "universal" characteristics of 
DNA coding, as no sample is needed and 
where coding regions of the species being 
considered are not identified, they may be 
used[2]. In [3], they have used Markov Chain 
to identify the sequences in DNA. Markov 
chain models of DNA and its use for Bayesian 
gene recognition algorithms for protein coding 
sequences. Gene Scout is the other method for 
detecting DNA sequences that used Markov 
Chain. In recent work, the local spectrum of 
the first intrinsic mode feature was determined 
to detect short exons. A technique focused on 
filters was also documented in order to detect 
short exons [4]. However, this method is based 
on the model by evaluating the fictitious EIIP 
values the fictitious EIIP values the fictitious 
EIIP values optimised and the weights for the 
four filtered binary sequences. Depending on 
the study of the windows form and scale, the 

efficiency of DSP bases that DFT can be used 
to analyse the spectral properties of DNA 
sequence depends [5]. 

2  Literature Review 

A more concise timeframe can detect short 
exons, but not long exon scan lead to further 
false alarm. On the other side, wide windows 
can lead to fewer fake detections, however 
short exons are lacking. Multiscale analysis 
was conducted by MGWT-based approach [6]. 
Marhon & Kremer recently suggested the 
Broad Range Wavelet Window (WRWW) 
approach to the forecasting of protein coding 
areas in a recent work [7].  In order to deal with 
the problem of window size. A technique to fix 
the issue of window size selection was also 
introduced to adapt the window length [8]. The 
WRWW approach has been shown to operate 
effectively over a number of exon lengths 
through simulation experiments. The effective-
ness of the methods used for detecting exons 
has not yet been assessed when there is a brief 
intron separating two adjacent short exons. 
Furthermore, no computer model to identify 
alternate splicing that could occur due to intron 
retention has been investigated for implemen-
tation of the annotation of certain regions in 
eukaryotic DNA (IR)[9]. In IR, part of the gene 
is not encrypted and can join premature stop 
codons in the center of a mature transcription. 
In an IR, numerous factors such as weak splice 
sites, short introns within genes, elevated 
levels of exonic splicing silencing, and lower 
density can contribute to the occurrence of IR 
[10].

Additionally, the IR is linked to short introns 
(274 nucleotides) and, if retention takes place, 
all neighboring exons, which are about 135 nt 

long, are linked to the exon retained, creating 
an exon retention intron (EIE) exon that is 544 
nt long. In order to find IR-likely sites, short 
exons separated by short introns can be identi-
fied using computer-based methods.

3  Dna Mapping Scheme 

"Deoxyribonucleic acid (DNA)" sequences are 
important for the understanding of living 
organisms, and in these macromolecules, much 
of the knowledge concerning heritable evolu-
tion and species growth is stored. Prokaryotes 
and eukaryotes are possible for organisms. 
DNA is free inside the cell in prokaryotes 
while DNA is retained within the nucleus in 
eukaryotes and is disassociated by a nuclear 
memebrane from the rest of the cell. Four 
major chemicals, thymine (T), cytosine(C) 
guanine (G) and adenine (A)  form the DNA 
chain . The determination of protein coating 
regions (exons) in eucaryotic gene structures is 
one of the present problems in studying the 
DNA sequences. Both probabilistic and deter-
ministic approaches are employed to catego-
rize protein coding regions or exons in eukary-
otic cells. Probabilistic methods have high 
precision, but rely on model and require 
adequate prediction training data. In the other 
hand, predictability of detergent methods is 
comparatively lower but model-independent 
and best suited for study of uncharacterized 
genomic sequences, where prior details of the 
studied species does not exist. 

The base-coding region contains a pronounced 
period-3 segment attributed to the codon struc-
ture utilized in the translation of the base 

sequence into amino acids. Most deterrent 
techniques use the "Discrete Fourier Trans-
form" to classify the period-3 portion by 
spectral analysis of the DNA sequences. A 
variety of algorithms were designed to classify 
protein-coding regions based on the period-3 
property. DFT-based approaches efficiency 
depends on the duration of the window[11]. In 
order to classify protein-coding areas, a system 
based on "Modified Gabor-wavelet transform" 
(MGWT) was implemented. Depending on 
window length, the efficiency of the MGWT is 
higher than the DFT based approaches[6].

There are four significant shortcomings in the 
present method for representing and aligning 
new input genomes with the reference genome. 
To begin, even though several algorithmic 
implementations are widely used, there is no 
established standard method for aligning DNA 
bases from a newly sequenced input genome 
with positions in the reference genome [12].

Secondly, various mapping procedures 
encounter a challenge when there are (almost) 
equally valid mappings to multiple separate 
positions within the reference genome, a 
situation often referred to as the "multi-map-
ping problem." This arises because of the 
inherent repetition of larger subsequences in 
the reference genome. 

Thirdly, the GRC reference genome encom-
passes only a limited portion of common 
segregating genome variations, with the 
remainder scattered across various formats and 
data sources like the Single Nucleotide 
Polymorphism Database (dbSNP) and the 

1000 Genomes Project. Consequently, there is 
presently no singular, all-encompassing 
resource for common human genome varia-
tions, and there is a lack of consistent naming 
or identification conventions [13].

Lastly, whenever a new reference genome 
assembly is issued, updates are made to the 
reference genome's coordinates, necessitating 
the remapping of all associated data. This 
remapping process is often the most computa-
tionally intensive stage in a genome analysis 
pipeline. It can be a time-consuming task, 
taking weeks to complete and consuming 
substantial computational resources, particu-
larly when dealing with a large set of genomes.

4  Representation Of DNA

The following five representation methods 
were used to numerically represent the 
sequences of the selected genes DNA:

4.1 Genetic Code Context (GCC)
The following triple codons are found in the 
various reading frameworks for a particular 
DNA sequence Y= ACGATTCAGGT: The 
initial reading phrase is ACG ATT CAG, 
followed by CGA TTC AGG and finally by 
GAT TCA GGT.The corresponding encoded 
amino acids for the first frame are [T, I, Q], [R, 
F, R], and [D, S, G] for the second and third 
frames, respectively. Each amino acid is 
described by a unique complex number, as 
shown in Table 1.

4.2 Frequency of Nucleotide Occurrence

According to Table 2 given below, A real value 
is assigned to each nucleotide in the DNA 
sequence Y= ACGATTCAGGT from two 
different datasets. As a result, the correspond-
ing DNA numerical sequence from the 
HMR195 dataset is [0.22750, 0.28312, 
0.27600, 0.22750, 0.21336, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336].

4.3 Atomic Number 
The molecular signature pattern constants over 
a certain DNA sequence Y= ACGATTCAGGT 
are: A=70, G=78, C=58, T=66. As a conse-
quence, the numerical sequence of DNA is [70, 
58, 78, 70, 66, 66, 58, 70, 78, 66, 58, 70, 78, 66, 
58, 70, 78, 66, 58, 70, 78, 66, 58, 70, 78, 66, 58, 
70, 78, 66, 58, 70, 78, 66].

4.4 Electron Ion Interaction Potential (EIIP)
The EIIP indicator sequence values for the 
specific DNA sequence Y= ACGATTCAGGT 
are A= 0.1260, G= 0.0806, C= 0.1340, and T= 
0.1335.As a result, [0.1260, 0.1340, 0.0806, 
0.1260, 0.1335, 0.1335, 0.1340, 0.1260, 
0.0806, 0.0806, 0] is the numerical sequence 
for DNA .1335]

4.5 2-bit Binary
The values of the DNA the 2-bit digital sign 
sequencesY= ACGATTCAGGT are A=00, 
G=10, T=01, C=11 for the DNA sequence Y= 
ACGATTCAGGT.

5  Results 

The detection technique was applied using the 
IIR inverse Chepyshev electronic filter on 20 
human testing genes with single and multiple 
exons downloaded from the HMR195 
dataset.in order to achieve our goal. The acces-
sion numbers, gene descriptions, sequence 
lengths, and true exon locations of the genes 
are all displayed in Table 3.

5.1 Single Exon Gene 
 Both the frequency of nucleotide occurrence 
in exons (FNO) and the 2-bit binary represen-
tation schemes showed a distinct and promi-
nent peak at the precise location of true exons 
(964-1938), without any misleading peaks at 
the individual exon level, when compared to 
EIIP, GCC, and atomic number schemes. Addi-
tionally, the FNO and 2-bit binary representa-
tion schemes demonstrated the highest levels 
of sensitivity, specificity, and correlation 
coefficient for various single exon genes, 
achieving 100 percent, 75.228 percent, and 
0.4994, respectively. Notably, the 2-bit binary 
representation scheme clocked in at 7.38ms, 
which was the quickest processing time when 
compared to the other representation methods.

5.2 Two Exonic Region Gene 
Different genes with two exonic regions were 
used to test the predictive accuracy of different 
representation techniques. Surprisingly, nucle-
otide location identification and sensitivity for 
the FNO and 2-bit binary techniques were 
identical, as shown in Fig. 6. These two 
techniques successfully located the two 
authentic exons (at locations 115–482 and 
1867–2662) within the (GALNR2) gene.

The FNO and 2-bit binary methods fared better 
than other schemes, with specificity scores of 
56.012 percent and 65.02 percent, respectively, 
despite having almost half the specificity of 
single exonic region prediction. Interestingly, 
among all the representation techniques, the 
2-bit binary representation approach had the 
highest correlation coefficient (0.6838) and the 
fastest processing speed.

5.3 Three Exonic and Four Exonic Region 
Gene 
When applying five various recognition 
algorithms to genes with three and four exonic 

regions, the 2-bit binary representation method 
consistently beat other representation methods 
in terms of accuracy. The number of incorrect 
exons was reduced by this method's accurate 
detection of actual nucleotide locations in the 
proper order. As a result, in this particular 
situation, it achieved the highest levels of 
sensitivity, correlation, specificity, and CPU 
run time.

6  Conclusion

The findings demonstrated that the 2-bit binary 
representation method, when compared to 
other representation schemes, significantly 
improved true nucleotide position identifica-
tion accuracy regardless of the number of 
exonic regions in the sequences tested, with 
high levels of sensitivity, correlation coeffi-
cient, specificity, and minimal processing time. 
These results are consistent with other studies 
that applied the 2-bit binary technique in a 
different setting. When applied to human DNA 
sequences for promoter prediction using neural 
networks, it was found that the 2-bit binary 
scheme outperformed the 4-bit binary and 
integer representation methods.

Intriguingly, the 2-bit binary and FNO repre-
sentation schemes both displayed comparable 
high levels of sensitivity, correlation coeffi-
cient, and specificity when compared to other 
schemes, especially at the one and two exonic 
region detection levels, despite using different 
numerical representation techniques. Notably, 
the FNO system is based on statistically 
derived measurements while the 2-bit binary 
scheme relies on the arbitrary assignment of 
nucleotide numbers.

The FNO was outperformed by the 2-bit binary 
representation approach for the detection of 
three and four exonic areas. These results 

corroborate a previous study that found that the 
protein coding region prediction accuracy 
could be improved by using the DFT base 
technique by increasing the frequency of 
nucleotide occurrence and matching numeric 
recognition schemes.
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1.  Introduction

 Malicious software or malware are 
designed to harm or cause trouble with the 

purpose of gaining unauthorized access to 
computer systems and networks, disrupt 
computer operations, and collect personal 
information without the owner's permission. 
This poses a threat to Internet use, the integrity 

of computer systems, and the privacy of users 
[1]. 

2 Types Of Malwares 

There are many types of malware such as 
viruses, worms, Trojan horses, rootkits, 
backdoors, botnets, spyware, and adware. It's 
important to note that a single malware can 
exhibit characteristics of multiple types simul-
taneously [1]. 

2.1 Virus

A virus is a harmful program that enters a 
computer and causes damage by changing 

data or information. It needs people to open up. 
It can access the system via links, images, 
acquisition or internet download [2]. There are 
many types of viruses:

a) Boot sector virus: Infects the boot of the 
computer. disk (floppy, CD, or hard disk) 
by changing its contents with its own 
harmful code. However, recent advance-
ments in threat detection have helped 
mitigate this virus [3]. 

b) File Virus: This virus infects executable 
files and stays in the computer's memory. 
It tries to infect all programs that load into 
Bad memory by adding viruses to execut-
able files [3].

c) Internal virus: This virus is stored in the 
computer's memory and is opened when 
the operating system starts or something is 
done.

d) Virus not here: This virus is not in 

memory, it has spread to the target and 
transfers control to the infected applica-
tion. It has a search module to find new 
targets and patterns to disseminate new 
knowledge.

e) Macro Virus: This virus, written in macro 
language, spreads through phishing 
e-mails containing malicious information. 
It can also spread by sharing infected files.

f) Polymorphic virus: This virus changes 
its behavior every time it infects new 
information so that it can detect malware 
scanners. Its changing nature or hiding 
process makes it difficult to detect [4].

g) Virus metamorphosis: This virus chang-
es its properties and rules with each virus, 
making search and analysis very difficult.

h) Stealth virus: This virus uses various 
methods to hide in memory, files and boot 
to avoid detection. It affects boot sectors 
and tries to hide changes in data or boot 
sectors. Antivirus software should be able 
to identify hidden viruses by looking at 
memory evidence.

2.2 Trojan

This is a malicious program designed to steal 
sensitive information from the victim's 
computer. It disguises itself as a non-malicious 
program and does not copy or forward other 
files. It survived undetected by antivirus 
software. Trojans can create backdoors, spy, 
send messages, access remote computers, and 
create bot networks for DDoS attacks [3].

1) Spyware: This malware is installed on the 
victim's computer without the victim's 
knowledge and is used to track and gather 
information about the user. Anti-spyware 
tools can be used to prevent spyware [5].

2) Adware: Software that displays ads to 
users and collects information about users' 
marketing preferences. It analyzes users' 
behavior on the Internet to display ads. 
Adware enters the computer through 
freeware, shareware, and infected 
websites [5].

3) Viruses: Viruses are self-replicating 
malware that infects other computers 
without human intervention. Their main 
goal is to damage the network by using the 
bandwidth and increasing the load. There 
are different viruses such as email worms, 
Internet browsing worms and mobile 
worms that are transmitted via Bluetooth 
or mobile communication applications 
[5].

Table 1 Major Malware attacks and their 
impact 

3  Challenges In The Age Of 
Ransomware Analysis

Ransomware has emerged as a formidable 
cybersecurity threat, constantly evolving in 
complexity and sophistication. Malware 
analysts face unique challenges in the age of 
ransomware analysis, necessitating innovative 
approaches to combat this growing menace. 

3.1  Encryption and Obfuscation Tech-
niques
Ransomware strains employ advanced encryp-
tion and obfuscation techniques to evade 
detection and analysis. These techniques make 
it difficult for analysts to analyze the underly-
ing code, hampering efforts to understand the 
ransomware's behavior and develop effective 
countermeasures [6].

3.2  Rapidly Evolving Variants
Ransomware variants evolve at a rapid pace, 
with new strains and families constantly 
emerging. This rapid evolution challenges 
analysts to keep up with the latest techniques 
and develop timely detection and analysis 
methods [7]

3.3  Anti-Analysis Mechanisms
Ransomware incorporates anti-analysis mech
anisms that actively detect and evade virtual 
environments, sandboxes, and debugging 
tools. These mechanisms hinder analysts' 
ability to observe the ransomware's behavior in 
controlled environments [8].

3.4  Stealthy Delivery and Execution
Ransomware employs various stealthy delivery 
and execution techniques, such as fileless 
attacks and exploit kits. These techniques allow 

the malware to infiltrate systems undetected 
and hinder traditional analysis methods [9].

3.5  Data Integrity Risks
Ransomware poses risks to data integrity, as 
decrypting files without the proper decryption 
key may result in permanent loss or corruption 
of data. Analysts must carefully handle ransom-
ware samples to prevent unintended damage 
[10].

4  Best Practices For Ransom-
ware Analysis

To address the challenges posed by ransomware 
analysis, analysts can adopt best practices that 
enhance their effectiveness in detecting, analyz-
ing, and mitigating ransomware threats.

4.1  Dynamic Analysis
Employ dynamic analysis techniques to observe 
the ransomware's behavior in a controlled 
environment, allowing for better understanding 
of its execution flow and potential impact [11].

4.2  Automated Analysis Frameworks
Develop automated analysis frameworks 
that combine behavior-based analysis, static 
analysis, and machine learning techniques 
to expedite detection and classification of 
ransomware strains [12].

4.3 Collaboration and Information Sharing
Foster collaboration among analysts and 
organizations to share insights, indicators of 
compromise (IOCs), and mitigation strategies. 
Collective knowledge can strengthen defenses 
against ransomware attacks [13].

4.4  Threat Intelligence Feeds
Leverage threat intelligence feeds to stay 

c) The use of remote command execution to 
communicate with the attacker.

d) The use of obfuscation techniques to make 
the malware more difficult to analyze.

We will explore static analysis techniques for 
ransomware analysis: file and code analysis 
methods, signature-based detection, code 
deobfuscation and unpacking techniques, and 
malicious document analysis and exploit 
detection.

6  File And Code Analysis 
Methods To Identify 
Ransomware Characteristics

Static analysis involves the examination of 
files and code without executing them. This 
technique allows analysts to uncover vital 
insights about ransomware and its underlying 
characteristics. By scrutinizing file headers, 
metadata, and code structure, researchers can 
identify suspicious activities such as file 
encryption routines, command and control 
communication, or attempts to modify system 
settings. Analyzing ransomware behavior 
patterns is crucial for building detection mech-
anisms and developing effective mitigation 
strategies. This can be done using a tool file, 
which will display the file type and other 
characteristics of the file. For example, the 
following output from the file command shows 
that the file ransomware.exe is a Windows 
executable file:

$ file ransomware.exeransomware.exe: 
PE32 executable for MS Windows (GUI) 
Intel 80386, for MS Windows

Once the file type has been identified, the next 

step is to disassemble the malware code. This 
can be done using a tool like IDA Pro, which 
will display the assembly code for the 
malware. The assembly code can be used to 
identify ransomware characteristics, such as 
the use of encryption algorithms, the presence 
of ransom demands, and the use of remote 
command execution.

7  Signature-based Detection 
And Pattern Matching

Ransomware can also be detected using signa-
ture-based detection and pattern matching. 
Signature-based detection relies on predefined 
patterns or signatures to identify known 
ransomware variants. Analysts create signa-
tures based on unique characteristics or behav-
iors exhibited by specific ransomware 
families. These signatures are then matched 
against files or code samples to detect potential 
infections. Commercial antivirus scanners 
often look for signatures, which are sequences 
of bytes in the malware code, declaring that the 
scanned program is malicious. 
There are three types of malware: simple 
malware, polymorphic malware, and metamor-
phic malware. In simple malware, the 
program's entry points are changed to transfer 
control to the malicious payload. Diagnosis is 
relative if the signature of the virus code is 
visible[26]. While signature-based detection is 
effective against known ransomware strains, it 
may struggle with new or modified variants. 
Continuous updates and expansion of signature 
databases are necessary to combat emerging 
threats effectively. Pattern matching 
techniques analyze the structure, behavior, and 
code of ransomware samples to identify 
common patterns or characteristics associated 
with specific ransomware families. YARA is 

an efficient and optimized tool for pattern 
matching . Signature-based detection and 
pattern matching are both effective methods 
for detecting ransomware. However, they 
canbe defeated by ransomware authors who 
use obfuscation techniques to make their 
malware more difficult to analyze [26].
 
8  Unpacking Techniques

Ransomware authors often employ obfusca-
tion and packing techniques to evade detection 
and analysis. Obfuscation hides information so 
others cannot find the true meaning. Software 
vendors use obfuscation techniques to make 
software harder to reverse. Malware is better to 
write this down and uses many modifications 
to confuse malicious programs, making it 
difficult to reverse engineer the malware so 
that it cannot recognize its malicious intent 
[27]. 

Unpacking, on the other hand, refers to the 
process of extracting and reconstructing the 
original code from its packed form. Code 
deobfuscation is a technique for reversing the 
effects of obfuscation. This can be done using 
a variety of tools and techniques, including 
manual deobfuscation, automated deobfusca-
tion tools, and dynamic analysis. Static analy-
sis techniques include identifying and deobfus-
cating these code transformations, allowing 
researchers to gain insight into the ransom-
ware's inner workings, encryption algorithms, 
and communication protocols. Deobfuscation 
improves when static and dynamic analyses 
are combined [28].

9  Malicious Document Analysis 
And Exploit Detection

Portable Document Format (PDF) is one of the 
most popular file formats for data exchange. 
The origin of the PDF format has made PDF 
files the primary vector for malware distribu-
tion, as the targets of attackers have recently 
changed from server-side attacks to client-side 
attacks [29].  Basically, the corrupt PDF file 
can be thought of as the reincarnation of the 
macro virus that infected Microsoft Office and 
other products from the mid-1990s to the early 
2000s [30]. Static analysis techniques play a 
vital role in analyzing these documents to 
detect potential exploits or malicious macros. 
By dissecting the document's structure, exam-
ining embedded objects, and analyzing script 
or macro code, analysts can uncover the 
ransomware's delivery mechanisms, payloads, 
and potential vulnerabilities that attackers 
exploit. After reading the input data, MDScan 
analyzes its structure and removes all recog-
nized objects placed in hierarchies. The 
complexity and ambiguity of the PDF specifi-
cation makes this process a daunting task. 
Also, most PDF viewers (like Adobe Reader) 
even try to render the document incorrectly 
and often do not conform to the PDF specifica-
tion. This gives attackers more room to 
compromise data analysis, and they can use 
this complexity to uncover patterns of 
malicious PDF files. Exploit detection is a 
technique for identifying malicious documents 
that contain embedded macros or scripts that 
can be executed when the document is opened. 
Exploit detection can be done using a variety 
of tools and techniques, including signa-
ture-based detection, pattern matching, and 
dynamic analysis [31].

10 Dynamic Analysis 
Techniques For Ransomware 
Analysis

Ransomware analysis is essential for investi-
gating ransomware attacks and understanding 
the actions and behavior of malicious 
campaigns. It includes three main categories: 
static analysis, dynamic analysis, and hybrid 
analysis. The analysis seems to focus on 
analyzing the ransomware's code and features 
without success. Dynamic analysis involves 
running the ransomware in a controlled 
environment to monitor its behavior in a timely 
manner. Hybrid analysis combines static and 
dynamic analysis techniques. Dynamic analy-
sis is a great way to achieve success by writing 
bad code. Malicious code written in a 
controlled environment and exposed to 
features captured by the controlled environ-
ment [32,33]. 

A system called EldeRan uses dynamic analy-
sis to monitor what the application is doing. It 
captures API calls and strings at runtime to 
monitor the malicious behavior of ransomware 
applications. Applications are monitored 
during installation to identify ransomware 
signatures [34].

11  Research On Dynamic 
Analysis Of Ransomware Using 
Machine Learning

The system aims to perform an in-depth analy-
sis by recording system calls. Introduce 
optimization techniques to minimize API calls 
and train machine learning classes on data to 
optimize system calls [35].

A multi-layered ransomware detection system 

based on machine learning works in three 
phases: identification, learning, and discovery. 
Perform behavioral analysis to identify 
unknown ransomware variants [36].

Build a real-time ransomware detection system 
integrated with the Integrated Clinical 
Environment (ICE) to protect a hospital 
network. The system detected and isolated 
victim devices to prevent the spread of the 
attack [37].

12 Conclusion

It is concluded that ransomware analysis faces 
different challenges due to its tactics and 
challenging nature employed by cyber crimi-
nals. The key challenges are evasion 
techniques, advanced encryption, dynamic 
behavior, zero-day exploits, anti-analysis 
mechanism and most importantly lack of 
resources to follow up the latest track. Security 
researchers have been continuously finding out 
AI solutions, relating with software vendors 
and produce effective measures against 
ransomware attacks. Sometimes it is difficult 
for individuals and organizations to stay 
vigilant and use robust measures and update 
their defense to reduce the risk of falling victim 
to ransomware. 

In addition to this, the constantly updation of 
nature of ransomware requires security 
researchers to stay updated and work on 
adaption of latest techniques to fight against 
new strains strongly. Thus, these new changes 
require collaboration, continuous research, 
huge investments and proper planning to stay 
one step ahead of cyber criminals. Effective 
Ransomware Analysis is about behavior analy-
sis, combination of segmentation and isolation 

skills, reverse engineering and high intelli-
gence. By analyzing these ransomware 
samples in controlled environments such as 
sandboxes, virtual machines can prevent 
malwaring from infecting the systems. Behav-
ior analysis can detect malicious pursuit and 
alleviate ransomware campaigns. 

Furthermore, to apply security measures in 
organizations prevent them from ransomware 
attacks. Regular upgradation, backup plan and 
strong passwords can help the organizations on 
how to analyze ransomware and reduce its 
impact. Static analysis techniques serve as a 
fundamental pillar in the fight against ransom-
ware attacks. By employing file and code 
analysis methods, signature-based detection, 
code deobfuscation and unpacking techniques, 
and malicious document analysis, security 
analysts can effectively identify ransomware 
characteristics, detect infections, and under-
stand the underlying mechanisms used by 
attackers. As ransomware continues to evolve, 
it is imperative to stay abreast of the latest 
static analysis techniques and continuously 
enhance detection mechanisms to mitigate the 
impact of these malicious threats. 

Dynamic analysis techniques are essential for 
analyzing and understanding the behavior of 
ransomware. Through sandboxing, behavior 
monitoring, traffic analysis, memory analysis, 
dynamic code analysis, and runtime environ-
ment analysis, analysts can gain valuable 
insights into a ransomware's capabilities, 
evasion techniques, communication patterns, 
and potential impact on a system. These 
techniques allow for a comprehensive under-
standing of the ransomware's functionalities 
and aid in the development of effective 
countermeasures and mitigation strategies.
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updated on the latest ransomware variants, 
their associated indicators, and attack patterns. 
This information can enhance the accuracy and 
efficacy of analysis efforts [14].

4.5 Network and Endpoint Monitoring
Implement robust network and endpoint 
monitoring solutions to detect and respond to 
ransomware activities promptly. Early detection 
can mitigate the impact of an attack and aid in 
subsequent analysis [15].

4.6 Regular Backup and Recovery
Establish a good backup strategy to regularly 
recover important data, enabling rapid recovery 
in the event of a ransomware attack. This 
practice minimizes the potential impact of 
ransomware on data integrity[16].

4.7 Security Awareness and Training
Provide security awareness and regular training 
to educate employees about ransomware 
threats, phishing techniques, and security prac-
tices. This will help create a safe environment 
[17].

4.8  Incident Response Planning
Have an incident response plan that outlines 
the steps to take in the event of a ransomware 
incident. This allows for quick coordination 
to resolve the issue and facilitates follow-up. 
[18].

4.9 Reverse Engineering and Code Analysis
Utilize reverse engineering and code analysis 
techniques to dissect ransomware samples, 
understand their underlying functionalities, and 
identify vulnerabilities that can be exploited for 
analysis and mitigation [19].

4.10 Continuous Learning and Research

Stay abreast of the latest advancements in 
ransomware analysis techniques and actively 
participate in ongoing research and knowledge 
sharing forums. Continuous learning ensures 
analysts remain equipped to tackle emerging 
ransomware challenges [20].

5  Static Analysis Techniques 
For Ransomware Analysis

Over the last few years, malware has continued 
to evolve in terms of the complexity of 
malware cloaking and the variety of attack 
vectors [21]. Ransomware is one of the biggest 
and fastest growing threats facing the digital 
world [22]. Ransomware usually works by 
locking a desktop computer or accessing, 
overwriting, or deleting the user's data to 
prevent the user from accessing the computer 
[23]. To counter changing cyber threats, securi-
ty researchers and analysts are turning to static 
analysis techniques as a powerful tool for 
ransomware detection and analysis. Static 
testing is the process of analysing program 
code without running the code. We analysed 
the ransomware samples using the PEView 
program and the PE parser. PEFile analysis is 
an essential part of static analysis [24]. This 
can be done by disassembling the malware 
code, examining the file header, and searching 
for strings and other indicators of malicious 
activity. Static analysis is the analysis of code 
that is not executed at write time. [25]. Static 
analysis can be used to identify ransomware 
characteristics, such as:

a) The use of encryption algorithms to 
encrypt victim files.

b) The presence of ransom demands.

1.  Introduction

 Short exon detection is a formidable 
issue for bioinformatics and becomes more 
complicated as becomes more complicated 
side of short intron. To categorize these exonic 
regions accurately, it’s essential to create 
computer methods that are both more efficient 
and dependable. This is necessary because 
many of the existing methods do not handle the 

small exons separated by brief introns effec-
tively. The methods for identifying exons are 
based on the quest for material, signal or 
resemblance. For classification of exon 
disunited by short intron has been divided into 
two methods; Model independent and model 
dependent [1]. The DNA coding model 
frequently relies on probability, enabling the 
measurement of the likelihood of a DNA 
sequence because it encodes the sequence. 

Although the values (scores) of a specific data 
code statist are calculable in a variety of differ-
ent ways in reality, we will measure scores 
based on this probability for model-based 
coding statistics. In fact, provided the query 
sequence, under the coding model and an 
alternate model or DNA non coding we can 
determine the likelihood of the sequence. The 
model-based coding statistics may catch more 
of the particular DNA-coding characteristics, 
more as the model is more complex i.e. more 
parameters dependent. Model based coding 
statistics can also be more effective in distin-
guishing against non-coding DNA coding. 
However, model based coding statistics 
involve a representative DNA coding sample 
from the species included in the estimation of 
model parameters (probabilities). The more 
intricate the model, the more susceptible it is to 
sample distortion and dimension. Model 
independent coding statistics, however, 
capture only the "universal" characteristics of 
DNA coding, as no sample is needed and 
where coding regions of the species being 
considered are not identified, they may be 
used[2]. In [3], they have used Markov Chain 
to identify the sequences in DNA. Markov 
chain models of DNA and its use for Bayesian 
gene recognition algorithms for protein coding 
sequences. Gene Scout is the other method for 
detecting DNA sequences that used Markov 
Chain. In recent work, the local spectrum of 
the first intrinsic mode feature was determined 
to detect short exons. A technique focused on 
filters was also documented in order to detect 
short exons [4]. However, this method is based 
on the model by evaluating the fictitious EIIP 
values the fictitious EIIP values the fictitious 
EIIP values optimised and the weights for the 
four filtered binary sequences. Depending on 
the study of the windows form and scale, the 

efficiency of DSP bases that DFT can be used 
to analyse the spectral properties of DNA 
sequence depends [5]. 

2  Literature Review 

A more concise timeframe can detect short 
exons, but not long exon scan lead to further 
false alarm. On the other side, wide windows 
can lead to fewer fake detections, however 
short exons are lacking. Multiscale analysis 
was conducted by MGWT-based approach [6]. 
Marhon & Kremer recently suggested the 
Broad Range Wavelet Window (WRWW) 
approach to the forecasting of protein coding 
areas in a recent work [7].  In order to deal with 
the problem of window size. A technique to fix 
the issue of window size selection was also 
introduced to adapt the window length [8]. The 
WRWW approach has been shown to operate 
effectively over a number of exon lengths 
through simulation experiments. The effective-
ness of the methods used for detecting exons 
has not yet been assessed when there is a brief 
intron separating two adjacent short exons. 
Furthermore, no computer model to identify 
alternate splicing that could occur due to intron 
retention has been investigated for implemen-
tation of the annotation of certain regions in 
eukaryotic DNA (IR)[9]. In IR, part of the gene 
is not encrypted and can join premature stop 
codons in the center of a mature transcription. 
In an IR, numerous factors such as weak splice 
sites, short introns within genes, elevated 
levels of exonic splicing silencing, and lower 
density can contribute to the occurrence of IR 
[10].

Additionally, the IR is linked to short introns 
(274 nucleotides) and, if retention takes place, 
all neighboring exons, which are about 135 nt 
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long, are linked to the exon retained, creating 
an exon retention intron (EIE) exon that is 544 
nt long. In order to find IR-likely sites, short 
exons separated by short introns can be identi-
fied using computer-based methods.

3  Dna Mapping Scheme 

"Deoxyribonucleic acid (DNA)" sequences are 
important for the understanding of living 
organisms, and in these macromolecules, much 
of the knowledge concerning heritable evolu-
tion and species growth is stored. Prokaryotes 
and eukaryotes are possible for organisms. 
DNA is free inside the cell in prokaryotes 
while DNA is retained within the nucleus in 
eukaryotes and is disassociated by a nuclear 
memebrane from the rest of the cell. Four 
major chemicals, thymine (T), cytosine(C) 
guanine (G) and adenine (A)  form the DNA 
chain . The determination of protein coating 
regions (exons) in eucaryotic gene structures is 
one of the present problems in studying the 
DNA sequences. Both probabilistic and deter-
ministic approaches are employed to catego-
rize protein coding regions or exons in eukary-
otic cells. Probabilistic methods have high 
precision, but rely on model and require 
adequate prediction training data. In the other 
hand, predictability of detergent methods is 
comparatively lower but model-independent 
and best suited for study of uncharacterized 
genomic sequences, where prior details of the 
studied species does not exist. 

The base-coding region contains a pronounced 
period-3 segment attributed to the codon struc-
ture utilized in the translation of the base 

sequence into amino acids. Most deterrent 
techniques use the "Discrete Fourier Trans-
form" to classify the period-3 portion by 
spectral analysis of the DNA sequences. A 
variety of algorithms were designed to classify 
protein-coding regions based on the period-3 
property. DFT-based approaches efficiency 
depends on the duration of the window[11]. In 
order to classify protein-coding areas, a system 
based on "Modified Gabor-wavelet transform" 
(MGWT) was implemented. Depending on 
window length, the efficiency of the MGWT is 
higher than the DFT based approaches[6].

There are four significant shortcomings in the 
present method for representing and aligning 
new input genomes with the reference genome. 
To begin, even though several algorithmic 
implementations are widely used, there is no 
established standard method for aligning DNA 
bases from a newly sequenced input genome 
with positions in the reference genome [12].

Secondly, various mapping procedures 
encounter a challenge when there are (almost) 
equally valid mappings to multiple separate 
positions within the reference genome, a 
situation often referred to as the "multi-map-
ping problem." This arises because of the 
inherent repetition of larger subsequences in 
the reference genome. 

Thirdly, the GRC reference genome encom-
passes only a limited portion of common 
segregating genome variations, with the 
remainder scattered across various formats and 
data sources like the Single Nucleotide 
Polymorphism Database (dbSNP) and the 

1000 Genomes Project. Consequently, there is 
presently no singular, all-encompassing 
resource for common human genome varia-
tions, and there is a lack of consistent naming 
or identification conventions [13].

Lastly, whenever a new reference genome 
assembly is issued, updates are made to the 
reference genome's coordinates, necessitating 
the remapping of all associated data. This 
remapping process is often the most computa-
tionally intensive stage in a genome analysis 
pipeline. It can be a time-consuming task, 
taking weeks to complete and consuming 
substantial computational resources, particu-
larly when dealing with a large set of genomes.

4  Representation Of DNA

The following five representation methods 
were used to numerically represent the 
sequences of the selected genes DNA:

4.1 Genetic Code Context (GCC)
The following triple codons are found in the 
various reading frameworks for a particular 
DNA sequence Y= ACGATTCAGGT: The 
initial reading phrase is ACG ATT CAG, 
followed by CGA TTC AGG and finally by 
GAT TCA GGT.The corresponding encoded 
amino acids for the first frame are [T, I, Q], [R, 
F, R], and [D, S, G] for the second and third 
frames, respectively. Each amino acid is 
described by a unique complex number, as 
shown in Table 1.

4.2 Frequency of Nucleotide Occurrence

According to Table 2 given below, A real value 
is assigned to each nucleotide in the DNA 
sequence Y= ACGATTCAGGT from two 
different datasets. As a result, the correspond-
ing DNA numerical sequence from the 
HMR195 dataset is [0.22750, 0.28312, 
0.27600, 0.22750, 0.21336, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336].

4.3 Atomic Number 
The molecular signature pattern constants over 
a certain DNA sequence Y= ACGATTCAGGT 
are: A=70, G=78, C=58, T=66. As a conse-
quence, the numerical sequence of DNA is [70, 
58, 78, 70, 66, 66, 58, 70, 78, 66, 58, 70, 78, 66, 
58, 70, 78, 66, 58, 70, 78, 66, 58, 70, 78, 66, 58, 
70, 78, 66, 58, 70, 78, 66].

4.4 Electron Ion Interaction Potential (EIIP)
The EIIP indicator sequence values for the 
specific DNA sequence Y= ACGATTCAGGT 
are A= 0.1260, G= 0.0806, C= 0.1340, and T= 
0.1335.As a result, [0.1260, 0.1340, 0.0806, 
0.1260, 0.1335, 0.1335, 0.1340, 0.1260, 
0.0806, 0.0806, 0] is the numerical sequence 
for DNA .1335]

4.5 2-bit Binary
The values of the DNA the 2-bit digital sign 
sequencesY= ACGATTCAGGT are A=00, 
G=10, T=01, C=11 for the DNA sequence Y= 
ACGATTCAGGT.

5  Results 

The detection technique was applied using the 
IIR inverse Chepyshev electronic filter on 20 
human testing genes with single and multiple 
exons downloaded from the HMR195 
dataset.in order to achieve our goal. The acces-
sion numbers, gene descriptions, sequence 
lengths, and true exon locations of the genes 
are all displayed in Table 3.

5.1 Single Exon Gene 
 Both the frequency of nucleotide occurrence 
in exons (FNO) and the 2-bit binary represen-
tation schemes showed a distinct and promi-
nent peak at the precise location of true exons 
(964-1938), without any misleading peaks at 
the individual exon level, when compared to 
EIIP, GCC, and atomic number schemes. Addi-
tionally, the FNO and 2-bit binary representa-
tion schemes demonstrated the highest levels 
of sensitivity, specificity, and correlation 
coefficient for various single exon genes, 
achieving 100 percent, 75.228 percent, and 
0.4994, respectively. Notably, the 2-bit binary 
representation scheme clocked in at 7.38ms, 
which was the quickest processing time when 
compared to the other representation methods.

5.2 Two Exonic Region Gene 
Different genes with two exonic regions were 
used to test the predictive accuracy of different 
representation techniques. Surprisingly, nucle-
otide location identification and sensitivity for 
the FNO and 2-bit binary techniques were 
identical, as shown in Fig. 6. These two 
techniques successfully located the two 
authentic exons (at locations 115–482 and 
1867–2662) within the (GALNR2) gene.

The FNO and 2-bit binary methods fared better 
than other schemes, with specificity scores of 
56.012 percent and 65.02 percent, respectively, 
despite having almost half the specificity of 
single exonic region prediction. Interestingly, 
among all the representation techniques, the 
2-bit binary representation approach had the 
highest correlation coefficient (0.6838) and the 
fastest processing speed.

5.3 Three Exonic and Four Exonic Region 
Gene 
When applying five various recognition 
algorithms to genes with three and four exonic 

regions, the 2-bit binary representation method 
consistently beat other representation methods 
in terms of accuracy. The number of incorrect 
exons was reduced by this method's accurate 
detection of actual nucleotide locations in the 
proper order. As a result, in this particular 
situation, it achieved the highest levels of 
sensitivity, correlation, specificity, and CPU 
run time.

6  Conclusion

The findings demonstrated that the 2-bit binary 
representation method, when compared to 
other representation schemes, significantly 
improved true nucleotide position identifica-
tion accuracy regardless of the number of 
exonic regions in the sequences tested, with 
high levels of sensitivity, correlation coeffi-
cient, specificity, and minimal processing time. 
These results are consistent with other studies 
that applied the 2-bit binary technique in a 
different setting. When applied to human DNA 
sequences for promoter prediction using neural 
networks, it was found that the 2-bit binary 
scheme outperformed the 4-bit binary and 
integer representation methods.

Intriguingly, the 2-bit binary and FNO repre-
sentation schemes both displayed comparable 
high levels of sensitivity, correlation coeffi-
cient, and specificity when compared to other 
schemes, especially at the one and two exonic 
region detection levels, despite using different 
numerical representation techniques. Notably, 
the FNO system is based on statistically 
derived measurements while the 2-bit binary 
scheme relies on the arbitrary assignment of 
nucleotide numbers.

The FNO was outperformed by the 2-bit binary 
representation approach for the detection of 
three and four exonic areas. These results 

corroborate a previous study that found that the 
protein coding region prediction accuracy 
could be improved by using the DFT base 
technique by increasing the frequency of 
nucleotide occurrence and matching numeric 
recognition schemes.

7  References

[1] A. D. Baxevanis and B. F. F. Ouellette, 
Bioinformatics_-a-practical-guide- 
to-the-analysis-of-genes- and-proteins, 
2nd ed. Wiley Interscience 2004 

[2] R. Guigó, "DNA Composition, Codon 
Usage and Exon Prediction," Academic 
Press 1997.

[3] Mx. Borodovsky and J. Mcininch, 
"GENMARK: PARALLEL GENE 
RECOGNITION FOR BOTH DNA 
STRANDS," Computers Chem, vol. 17, 
pp. 123-133, 1993 

[4] N. Y. Song and H. Yan, "Short Exon 
Detection in DNA Sequences Based on 
Multifeature Spectral Analysis," EUR-
ASIP Journal on Advances in Signal 
Processing, vol. 2011, no. 1, 2010.

[5] P. Ramachandran, W. S. Lu, and A. 
Antoniou, "Filter-based methodology 
for the location of hot spots in proteins 
and exons in DNA," IEEE Trans Biomed 
Eng, vol. 59, no. 6, pp. 1598-609, Jun 
2012.

[6] J. P. Mena-Chalco, H. Carrer, Y. Zana, 
and R. M. Cesar, Jr., "Identification of 
protein coding regions using the modi-
fied Gabor-wavelet transform," 
IEEE/ACM Trans Comput Biol Bioin-
form, vol. 5, no. 2, pp. 198-207, Apr-Jun 
2008.

[7] S. A. Marhon and S. C. Kremer, "Predic-
tion of Protein Coding Regions Using a 
Wide-Range Wavelet Window Method," 
IEEE/ACM Trans Comput Biol Bioin-
form, vol. 13, no. 4, pp. 742-53, Jul-Aug 
2016.

[8] D. K. Shakya, R. Saxena, and S. N. 
Sharma, "An adaptive window length 
strategy for eukaryotic CDS prediction," 
IEEE/ACM Trans Comput Biol Bioin-
form, vol. 10, no. 5, pp. 1241-52, 
Sep-Oct 2013.

[9] A. J. Matlin, F. Clark, and C. W. Smith, 
"Understanding alternative splicing: 
towards a cellular code," Nat Rev Mol 
Cell Biol, vol. 6, no. 5, pp. 386-98, May 
2005.

[10] N. J. Sakabe and S. J. de Souza, 
"Sequence features responsible for 
intron retention in human," BMC 
Genomics, vol. 8, p. 59, Feb 26 2007.

[11] S. D. Sharma, K. Shakya, and S. N. 
Sharma, "Evaluation of DNA mapping 
schemes for exon detection," Interna-
tional Conference on Computer, Com-
munication and Electrical Technology – 
ICCCET, 2011.

[12] W. J. B. Matei Zaharia, Kristal Curtis, 
Armando Fox, David Patterson, Scott 
Shenker, Ion Stoica, Richard M. Karp, 
Taylor Sittler‡∗, "Faster and More Accu-
rate Sequence Alignment with SNAP," 
2011.

[13] C. Genomes Project et al., "A map of 
human genome variation from popula-
tion-scale sequencing," Nature, vol. 467, 
no. 7319, pp. 1061-73, Oct 28 2010.



1.  Introduction

 Malicious software or malware are 
designed to harm or cause trouble with the 

purpose of gaining unauthorized access to 
computer systems and networks, disrupt 
computer operations, and collect personal 
information without the owner's permission. 
This poses a threat to Internet use, the integrity 

of computer systems, and the privacy of users 
[1]. 

2 Types Of Malwares 

There are many types of malware such as 
viruses, worms, Trojan horses, rootkits, 
backdoors, botnets, spyware, and adware. It's 
important to note that a single malware can 
exhibit characteristics of multiple types simul-
taneously [1]. 

2.1 Virus

A virus is a harmful program that enters a 
computer and causes damage by changing 

data or information. It needs people to open up. 
It can access the system via links, images, 
acquisition or internet download [2]. There are 
many types of viruses:

a) Boot sector virus: Infects the boot of the 
computer. disk (floppy, CD, or hard disk) 
by changing its contents with its own 
harmful code. However, recent advance-
ments in threat detection have helped 
mitigate this virus [3]. 

b) File Virus: This virus infects executable 
files and stays in the computer's memory. 
It tries to infect all programs that load into 
Bad memory by adding viruses to execut-
able files [3].

c) Internal virus: This virus is stored in the 
computer's memory and is opened when 
the operating system starts or something is 
done.

d) Virus not here: This virus is not in 

memory, it has spread to the target and 
transfers control to the infected applica-
tion. It has a search module to find new 
targets and patterns to disseminate new 
knowledge.

e) Macro Virus: This virus, written in macro 
language, spreads through phishing 
e-mails containing malicious information. 
It can also spread by sharing infected files.

f) Polymorphic virus: This virus changes 
its behavior every time it infects new 
information so that it can detect malware 
scanners. Its changing nature or hiding 
process makes it difficult to detect [4].

g) Virus metamorphosis: This virus chang-
es its properties and rules with each virus, 
making search and analysis very difficult.

h) Stealth virus: This virus uses various 
methods to hide in memory, files and boot 
to avoid detection. It affects boot sectors 
and tries to hide changes in data or boot 
sectors. Antivirus software should be able 
to identify hidden viruses by looking at 
memory evidence.

2.2 Trojan

This is a malicious program designed to steal 
sensitive information from the victim's 
computer. It disguises itself as a non-malicious 
program and does not copy or forward other 
files. It survived undetected by antivirus 
software. Trojans can create backdoors, spy, 
send messages, access remote computers, and 
create bot networks for DDoS attacks [3].

1) Spyware: This malware is installed on the 
victim's computer without the victim's 
knowledge and is used to track and gather 
information about the user. Anti-spyware 
tools can be used to prevent spyware [5].

2) Adware: Software that displays ads to 
users and collects information about users' 
marketing preferences. It analyzes users' 
behavior on the Internet to display ads. 
Adware enters the computer through 
freeware, shareware, and infected 
websites [5].

3) Viruses: Viruses are self-replicating 
malware that infects other computers 
without human intervention. Their main 
goal is to damage the network by using the 
bandwidth and increasing the load. There 
are different viruses such as email worms, 
Internet browsing worms and mobile 
worms that are transmitted via Bluetooth 
or mobile communication applications 
[5].

Table 1 Major Malware attacks and their 
impact 

3  Challenges In The Age Of 
Ransomware Analysis

Ransomware has emerged as a formidable 
cybersecurity threat, constantly evolving in 
complexity and sophistication. Malware 
analysts face unique challenges in the age of 
ransomware analysis, necessitating innovative 
approaches to combat this growing menace. 

3.1  Encryption and Obfuscation Tech-
niques
Ransomware strains employ advanced encryp-
tion and obfuscation techniques to evade 
detection and analysis. These techniques make 
it difficult for analysts to analyze the underly-
ing code, hampering efforts to understand the 
ransomware's behavior and develop effective 
countermeasures [6].

3.2  Rapidly Evolving Variants
Ransomware variants evolve at a rapid pace, 
with new strains and families constantly 
emerging. This rapid evolution challenges 
analysts to keep up with the latest techniques 
and develop timely detection and analysis 
methods [7]

3.3  Anti-Analysis Mechanisms
Ransomware incorporates anti-analysis mech
anisms that actively detect and evade virtual 
environments, sandboxes, and debugging 
tools. These mechanisms hinder analysts' 
ability to observe the ransomware's behavior in 
controlled environments [8].

3.4  Stealthy Delivery and Execution
Ransomware employs various stealthy delivery 
and execution techniques, such as fileless 
attacks and exploit kits. These techniques allow 

the malware to infiltrate systems undetected 
and hinder traditional analysis methods [9].

3.5  Data Integrity Risks
Ransomware poses risks to data integrity, as 
decrypting files without the proper decryption 
key may result in permanent loss or corruption 
of data. Analysts must carefully handle ransom-
ware samples to prevent unintended damage 
[10].

4  Best Practices For Ransom-
ware Analysis

To address the challenges posed by ransomware 
analysis, analysts can adopt best practices that 
enhance their effectiveness in detecting, analyz-
ing, and mitigating ransomware threats.

4.1  Dynamic Analysis
Employ dynamic analysis techniques to observe 
the ransomware's behavior in a controlled 
environment, allowing for better understanding 
of its execution flow and potential impact [11].

4.2  Automated Analysis Frameworks
Develop automated analysis frameworks 
that combine behavior-based analysis, static 
analysis, and machine learning techniques 
to expedite detection and classification of 
ransomware strains [12].

4.3 Collaboration and Information Sharing
Foster collaboration among analysts and 
organizations to share insights, indicators of 
compromise (IOCs), and mitigation strategies. 
Collective knowledge can strengthen defenses 
against ransomware attacks [13].

4.4  Threat Intelligence Feeds
Leverage threat intelligence feeds to stay 

c) The use of remote command execution to 
communicate with the attacker.

d) The use of obfuscation techniques to make 
the malware more difficult to analyze.

We will explore static analysis techniques for 
ransomware analysis: file and code analysis 
methods, signature-based detection, code 
deobfuscation and unpacking techniques, and 
malicious document analysis and exploit 
detection.

6  File And Code Analysis 
Methods To Identify 
Ransomware Characteristics

Static analysis involves the examination of 
files and code without executing them. This 
technique allows analysts to uncover vital 
insights about ransomware and its underlying 
characteristics. By scrutinizing file headers, 
metadata, and code structure, researchers can 
identify suspicious activities such as file 
encryption routines, command and control 
communication, or attempts to modify system 
settings. Analyzing ransomware behavior 
patterns is crucial for building detection mech-
anisms and developing effective mitigation 
strategies. This can be done using a tool file, 
which will display the file type and other 
characteristics of the file. For example, the 
following output from the file command shows 
that the file ransomware.exe is a Windows 
executable file:

$ file ransomware.exeransomware.exe: 
PE32 executable for MS Windows (GUI) 
Intel 80386, for MS Windows

Once the file type has been identified, the next 

step is to disassemble the malware code. This 
can be done using a tool like IDA Pro, which 
will display the assembly code for the 
malware. The assembly code can be used to 
identify ransomware characteristics, such as 
the use of encryption algorithms, the presence 
of ransom demands, and the use of remote 
command execution.

7  Signature-based Detection 
And Pattern Matching

Ransomware can also be detected using signa-
ture-based detection and pattern matching. 
Signature-based detection relies on predefined 
patterns or signatures to identify known 
ransomware variants. Analysts create signa-
tures based on unique characteristics or behav-
iors exhibited by specific ransomware 
families. These signatures are then matched 
against files or code samples to detect potential 
infections. Commercial antivirus scanners 
often look for signatures, which are sequences 
of bytes in the malware code, declaring that the 
scanned program is malicious. 
There are three types of malware: simple 
malware, polymorphic malware, and metamor-
phic malware. In simple malware, the 
program's entry points are changed to transfer 
control to the malicious payload. Diagnosis is 
relative if the signature of the virus code is 
visible[26]. While signature-based detection is 
effective against known ransomware strains, it 
may struggle with new or modified variants. 
Continuous updates and expansion of signature 
databases are necessary to combat emerging 
threats effectively. Pattern matching 
techniques analyze the structure, behavior, and 
code of ransomware samples to identify 
common patterns or characteristics associated 
with specific ransomware families. YARA is 

an efficient and optimized tool for pattern 
matching . Signature-based detection and 
pattern matching are both effective methods 
for detecting ransomware. However, they 
canbe defeated by ransomware authors who 
use obfuscation techniques to make their 
malware more difficult to analyze [26].
 
8  Unpacking Techniques

Ransomware authors often employ obfusca-
tion and packing techniques to evade detection 
and analysis. Obfuscation hides information so 
others cannot find the true meaning. Software 
vendors use obfuscation techniques to make 
software harder to reverse. Malware is better to 
write this down and uses many modifications 
to confuse malicious programs, making it 
difficult to reverse engineer the malware so 
that it cannot recognize its malicious intent 
[27]. 

Unpacking, on the other hand, refers to the 
process of extracting and reconstructing the 
original code from its packed form. Code 
deobfuscation is a technique for reversing the 
effects of obfuscation. This can be done using 
a variety of tools and techniques, including 
manual deobfuscation, automated deobfusca-
tion tools, and dynamic analysis. Static analy-
sis techniques include identifying and deobfus-
cating these code transformations, allowing 
researchers to gain insight into the ransom-
ware's inner workings, encryption algorithms, 
and communication protocols. Deobfuscation 
improves when static and dynamic analyses 
are combined [28].

9  Malicious Document Analysis 
And Exploit Detection

Portable Document Format (PDF) is one of the 
most popular file formats for data exchange. 
The origin of the PDF format has made PDF 
files the primary vector for malware distribu-
tion, as the targets of attackers have recently 
changed from server-side attacks to client-side 
attacks [29].  Basically, the corrupt PDF file 
can be thought of as the reincarnation of the 
macro virus that infected Microsoft Office and 
other products from the mid-1990s to the early 
2000s [30]. Static analysis techniques play a 
vital role in analyzing these documents to 
detect potential exploits or malicious macros. 
By dissecting the document's structure, exam-
ining embedded objects, and analyzing script 
or macro code, analysts can uncover the 
ransomware's delivery mechanisms, payloads, 
and potential vulnerabilities that attackers 
exploit. After reading the input data, MDScan 
analyzes its structure and removes all recog-
nized objects placed in hierarchies. The 
complexity and ambiguity of the PDF specifi-
cation makes this process a daunting task. 
Also, most PDF viewers (like Adobe Reader) 
even try to render the document incorrectly 
and often do not conform to the PDF specifica-
tion. This gives attackers more room to 
compromise data analysis, and they can use 
this complexity to uncover patterns of 
malicious PDF files. Exploit detection is a 
technique for identifying malicious documents 
that contain embedded macros or scripts that 
can be executed when the document is opened. 
Exploit detection can be done using a variety 
of tools and techniques, including signa-
ture-based detection, pattern matching, and 
dynamic analysis [31].

10 Dynamic Analysis 
Techniques For Ransomware 
Analysis

Ransomware analysis is essential for investi-
gating ransomware attacks and understanding 
the actions and behavior of malicious 
campaigns. It includes three main categories: 
static analysis, dynamic analysis, and hybrid 
analysis. The analysis seems to focus on 
analyzing the ransomware's code and features 
without success. Dynamic analysis involves 
running the ransomware in a controlled 
environment to monitor its behavior in a timely 
manner. Hybrid analysis combines static and 
dynamic analysis techniques. Dynamic analy-
sis is a great way to achieve success by writing 
bad code. Malicious code written in a 
controlled environment and exposed to 
features captured by the controlled environ-
ment [32,33]. 

A system called EldeRan uses dynamic analy-
sis to monitor what the application is doing. It 
captures API calls and strings at runtime to 
monitor the malicious behavior of ransomware 
applications. Applications are monitored 
during installation to identify ransomware 
signatures [34].

11  Research On Dynamic 
Analysis Of Ransomware Using 
Machine Learning

The system aims to perform an in-depth analy-
sis by recording system calls. Introduce 
optimization techniques to minimize API calls 
and train machine learning classes on data to 
optimize system calls [35].

A multi-layered ransomware detection system 

based on machine learning works in three 
phases: identification, learning, and discovery. 
Perform behavioral analysis to identify 
unknown ransomware variants [36].

Build a real-time ransomware detection system 
integrated with the Integrated Clinical 
Environment (ICE) to protect a hospital 
network. The system detected and isolated 
victim devices to prevent the spread of the 
attack [37].

12 Conclusion

It is concluded that ransomware analysis faces 
different challenges due to its tactics and 
challenging nature employed by cyber crimi-
nals. The key challenges are evasion 
techniques, advanced encryption, dynamic 
behavior, zero-day exploits, anti-analysis 
mechanism and most importantly lack of 
resources to follow up the latest track. Security 
researchers have been continuously finding out 
AI solutions, relating with software vendors 
and produce effective measures against 
ransomware attacks. Sometimes it is difficult 
for individuals and organizations to stay 
vigilant and use robust measures and update 
their defense to reduce the risk of falling victim 
to ransomware. 

In addition to this, the constantly updation of 
nature of ransomware requires security 
researchers to stay updated and work on 
adaption of latest techniques to fight against 
new strains strongly. Thus, these new changes 
require collaboration, continuous research, 
huge investments and proper planning to stay 
one step ahead of cyber criminals. Effective 
Ransomware Analysis is about behavior analy-
sis, combination of segmentation and isolation 

skills, reverse engineering and high intelli-
gence. By analyzing these ransomware 
samples in controlled environments such as 
sandboxes, virtual machines can prevent 
malwaring from infecting the systems. Behav-
ior analysis can detect malicious pursuit and 
alleviate ransomware campaigns. 

Furthermore, to apply security measures in 
organizations prevent them from ransomware 
attacks. Regular upgradation, backup plan and 
strong passwords can help the organizations on 
how to analyze ransomware and reduce its 
impact. Static analysis techniques serve as a 
fundamental pillar in the fight against ransom-
ware attacks. By employing file and code 
analysis methods, signature-based detection, 
code deobfuscation and unpacking techniques, 
and malicious document analysis, security 
analysts can effectively identify ransomware 
characteristics, detect infections, and under-
stand the underlying mechanisms used by 
attackers. As ransomware continues to evolve, 
it is imperative to stay abreast of the latest 
static analysis techniques and continuously 
enhance detection mechanisms to mitigate the 
impact of these malicious threats. 

Dynamic analysis techniques are essential for 
analyzing and understanding the behavior of 
ransomware. Through sandboxing, behavior 
monitoring, traffic analysis, memory analysis, 
dynamic code analysis, and runtime environ-
ment analysis, analysts can gain valuable 
insights into a ransomware's capabilities, 
evasion techniques, communication patterns, 
and potential impact on a system. These 
techniques allow for a comprehensive under-
standing of the ransomware's functionalities 
and aid in the development of effective 
countermeasures and mitigation strategies.
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updated on the latest ransomware variants, 
their associated indicators, and attack patterns. 
This information can enhance the accuracy and 
efficacy of analysis efforts [14].

4.5 Network and Endpoint Monitoring
Implement robust network and endpoint 
monitoring solutions to detect and respond to 
ransomware activities promptly. Early detection 
can mitigate the impact of an attack and aid in 
subsequent analysis [15].

4.6 Regular Backup and Recovery
Establish a good backup strategy to regularly 
recover important data, enabling rapid recovery 
in the event of a ransomware attack. This 
practice minimizes the potential impact of 
ransomware on data integrity[16].

4.7 Security Awareness and Training
Provide security awareness and regular training 
to educate employees about ransomware 
threats, phishing techniques, and security prac-
tices. This will help create a safe environment 
[17].

4.8  Incident Response Planning
Have an incident response plan that outlines 
the steps to take in the event of a ransomware 
incident. This allows for quick coordination 
to resolve the issue and facilitates follow-up. 
[18].

4.9 Reverse Engineering and Code Analysis
Utilize reverse engineering and code analysis 
techniques to dissect ransomware samples, 
understand their underlying functionalities, and 
identify vulnerabilities that can be exploited for 
analysis and mitigation [19].

4.10 Continuous Learning and Research

Stay abreast of the latest advancements in 
ransomware analysis techniques and actively 
participate in ongoing research and knowledge 
sharing forums. Continuous learning ensures 
analysts remain equipped to tackle emerging 
ransomware challenges [20].

5  Static Analysis Techniques 
For Ransomware Analysis

Over the last few years, malware has continued 
to evolve in terms of the complexity of 
malware cloaking and the variety of attack 
vectors [21]. Ransomware is one of the biggest 
and fastest growing threats facing the digital 
world [22]. Ransomware usually works by 
locking a desktop computer or accessing, 
overwriting, or deleting the user's data to 
prevent the user from accessing the computer 
[23]. To counter changing cyber threats, securi-
ty researchers and analysts are turning to static 
analysis techniques as a powerful tool for 
ransomware detection and analysis. Static 
testing is the process of analysing program 
code without running the code. We analysed 
the ransomware samples using the PEView 
program and the PE parser. PEFile analysis is 
an essential part of static analysis [24]. This 
can be done by disassembling the malware 
code, examining the file header, and searching 
for strings and other indicators of malicious 
activity. Static analysis is the analysis of code 
that is not executed at write time. [25]. Static 
analysis can be used to identify ransomware 
characteristics, such as:

a) The use of encryption algorithms to 
encrypt victim files.

b) The presence of ransom demands.

1.  Introduction

 Short exon detection is a formidable 
issue for bioinformatics and becomes more 
complicated as becomes more complicated 
side of short intron. To categorize these exonic 
regions accurately, it’s essential to create 
computer methods that are both more efficient 
and dependable. This is necessary because 
many of the existing methods do not handle the 

small exons separated by brief introns effec-
tively. The methods for identifying exons are 
based on the quest for material, signal or 
resemblance. For classification of exon 
disunited by short intron has been divided into 
two methods; Model independent and model 
dependent [1]. The DNA coding model 
frequently relies on probability, enabling the 
measurement of the likelihood of a DNA 
sequence because it encodes the sequence. 

Although the values (scores) of a specific data 
code statist are calculable in a variety of differ-
ent ways in reality, we will measure scores 
based on this probability for model-based 
coding statistics. In fact, provided the query 
sequence, under the coding model and an 
alternate model or DNA non coding we can 
determine the likelihood of the sequence. The 
model-based coding statistics may catch more 
of the particular DNA-coding characteristics, 
more as the model is more complex i.e. more 
parameters dependent. Model based coding 
statistics can also be more effective in distin-
guishing against non-coding DNA coding. 
However, model based coding statistics 
involve a representative DNA coding sample 
from the species included in the estimation of 
model parameters (probabilities). The more 
intricate the model, the more susceptible it is to 
sample distortion and dimension. Model 
independent coding statistics, however, 
capture only the "universal" characteristics of 
DNA coding, as no sample is needed and 
where coding regions of the species being 
considered are not identified, they may be 
used[2]. In [3], they have used Markov Chain 
to identify the sequences in DNA. Markov 
chain models of DNA and its use for Bayesian 
gene recognition algorithms for protein coding 
sequences. Gene Scout is the other method for 
detecting DNA sequences that used Markov 
Chain. In recent work, the local spectrum of 
the first intrinsic mode feature was determined 
to detect short exons. A technique focused on 
filters was also documented in order to detect 
short exons [4]. However, this method is based 
on the model by evaluating the fictitious EIIP 
values the fictitious EIIP values the fictitious 
EIIP values optimised and the weights for the 
four filtered binary sequences. Depending on 
the study of the windows form and scale, the 

efficiency of DSP bases that DFT can be used 
to analyse the spectral properties of DNA 
sequence depends [5]. 

2  Literature Review 

A more concise timeframe can detect short 
exons, but not long exon scan lead to further 
false alarm. On the other side, wide windows 
can lead to fewer fake detections, however 
short exons are lacking. Multiscale analysis 
was conducted by MGWT-based approach [6]. 
Marhon & Kremer recently suggested the 
Broad Range Wavelet Window (WRWW) 
approach to the forecasting of protein coding 
areas in a recent work [7].  In order to deal with 
the problem of window size. A technique to fix 
the issue of window size selection was also 
introduced to adapt the window length [8]. The 
WRWW approach has been shown to operate 
effectively over a number of exon lengths 
through simulation experiments. The effective-
ness of the methods used for detecting exons 
has not yet been assessed when there is a brief 
intron separating two adjacent short exons. 
Furthermore, no computer model to identify 
alternate splicing that could occur due to intron 
retention has been investigated for implemen-
tation of the annotation of certain regions in 
eukaryotic DNA (IR)[9]. In IR, part of the gene 
is not encrypted and can join premature stop 
codons in the center of a mature transcription. 
In an IR, numerous factors such as weak splice 
sites, short introns within genes, elevated 
levels of exonic splicing silencing, and lower 
density can contribute to the occurrence of IR 
[10].

Additionally, the IR is linked to short introns 
(274 nucleotides) and, if retention takes place, 
all neighboring exons, which are about 135 nt 

long, are linked to the exon retained, creating 
an exon retention intron (EIE) exon that is 544 
nt long. In order to find IR-likely sites, short 
exons separated by short introns can be identi-
fied using computer-based methods.

3  Dna Mapping Scheme 

"Deoxyribonucleic acid (DNA)" sequences are 
important for the understanding of living 
organisms, and in these macromolecules, much 
of the knowledge concerning heritable evolu-
tion and species growth is stored. Prokaryotes 
and eukaryotes are possible for organisms. 
DNA is free inside the cell in prokaryotes 
while DNA is retained within the nucleus in 
eukaryotes and is disassociated by a nuclear 
memebrane from the rest of the cell. Four 
major chemicals, thymine (T), cytosine(C) 
guanine (G) and adenine (A)  form the DNA 
chain . The determination of protein coating 
regions (exons) in eucaryotic gene structures is 
one of the present problems in studying the 
DNA sequences. Both probabilistic and deter-
ministic approaches are employed to catego-
rize protein coding regions or exons in eukary-
otic cells. Probabilistic methods have high 
precision, but rely on model and require 
adequate prediction training data. In the other 
hand, predictability of detergent methods is 
comparatively lower but model-independent 
and best suited for study of uncharacterized 
genomic sequences, where prior details of the 
studied species does not exist. 

The base-coding region contains a pronounced 
period-3 segment attributed to the codon struc-
ture utilized in the translation of the base 

sequence into amino acids. Most deterrent 
techniques use the "Discrete Fourier Trans-
form" to classify the period-3 portion by 
spectral analysis of the DNA sequences. A 
variety of algorithms were designed to classify 
protein-coding regions based on the period-3 
property. DFT-based approaches efficiency 
depends on the duration of the window[11]. In 
order to classify protein-coding areas, a system 
based on "Modified Gabor-wavelet transform" 
(MGWT) was implemented. Depending on 
window length, the efficiency of the MGWT is 
higher than the DFT based approaches[6].

There are four significant shortcomings in the 
present method for representing and aligning 
new input genomes with the reference genome. 
To begin, even though several algorithmic 
implementations are widely used, there is no 
established standard method for aligning DNA 
bases from a newly sequenced input genome 
with positions in the reference genome [12].

Secondly, various mapping procedures 
encounter a challenge when there are (almost) 
equally valid mappings to multiple separate 
positions within the reference genome, a 
situation often referred to as the "multi-map-
ping problem." This arises because of the 
inherent repetition of larger subsequences in 
the reference genome. 

Thirdly, the GRC reference genome encom-
passes only a limited portion of common 
segregating genome variations, with the 
remainder scattered across various formats and 
data sources like the Single Nucleotide 
Polymorphism Database (dbSNP) and the 

1000 Genomes Project. Consequently, there is 
presently no singular, all-encompassing 
resource for common human genome varia-
tions, and there is a lack of consistent naming 
or identification conventions [13].

Lastly, whenever a new reference genome 
assembly is issued, updates are made to the 
reference genome's coordinates, necessitating 
the remapping of all associated data. This 
remapping process is often the most computa-
tionally intensive stage in a genome analysis 
pipeline. It can be a time-consuming task, 
taking weeks to complete and consuming 
substantial computational resources, particu-
larly when dealing with a large set of genomes.

4  Representation Of DNA

The following five representation methods 
were used to numerically represent the 
sequences of the selected genes DNA:

4.1 Genetic Code Context (GCC)
The following triple codons are found in the 
various reading frameworks for a particular 
DNA sequence Y= ACGATTCAGGT: The 
initial reading phrase is ACG ATT CAG, 
followed by CGA TTC AGG and finally by 
GAT TCA GGT.The corresponding encoded 
amino acids for the first frame are [T, I, Q], [R, 
F, R], and [D, S, G] for the second and third 
frames, respectively. Each amino acid is 
described by a unique complex number, as 
shown in Table 1.

4.2 Frequency of Nucleotide Occurrence

According to Table 2 given below, A real value 
is assigned to each nucleotide in the DNA 
sequence Y= ACGATTCAGGT from two 
different datasets. As a result, the correspond-
ing DNA numerical sequence from the 
HMR195 dataset is [0.22750, 0.28312, 
0.27600, 0.22750, 0.21336, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336].

4.3 Atomic Number 
The molecular signature pattern constants over 
a certain DNA sequence Y= ACGATTCAGGT 
are: A=70, G=78, C=58, T=66. As a conse-
quence, the numerical sequence of DNA is [70, 
58, 78, 70, 66, 66, 58, 70, 78, 66, 58, 70, 78, 66, 
58, 70, 78, 66, 58, 70, 78, 66, 58, 70, 78, 66, 58, 
70, 78, 66, 58, 70, 78, 66].

4.4 Electron Ion Interaction Potential (EIIP)
The EIIP indicator sequence values for the 
specific DNA sequence Y= ACGATTCAGGT 
are A= 0.1260, G= 0.0806, C= 0.1340, and T= 
0.1335.As a result, [0.1260, 0.1340, 0.0806, 
0.1260, 0.1335, 0.1335, 0.1340, 0.1260, 
0.0806, 0.0806, 0] is the numerical sequence 
for DNA .1335]

4.5 2-bit Binary
The values of the DNA the 2-bit digital sign 
sequencesY= ACGATTCAGGT are A=00, 
G=10, T=01, C=11 for the DNA sequence Y= 
ACGATTCAGGT.

5  Results 

The detection technique was applied using the 
IIR inverse Chepyshev electronic filter on 20 
human testing genes with single and multiple 
exons downloaded from the HMR195 
dataset.in order to achieve our goal. The acces-
sion numbers, gene descriptions, sequence 
lengths, and true exon locations of the genes 
are all displayed in Table 3.

5.1 Single Exon Gene 
 Both the frequency of nucleotide occurrence 
in exons (FNO) and the 2-bit binary represen-
tation schemes showed a distinct and promi-
nent peak at the precise location of true exons 
(964-1938), without any misleading peaks at 
the individual exon level, when compared to 
EIIP, GCC, and atomic number schemes. Addi-
tionally, the FNO and 2-bit binary representa-
tion schemes demonstrated the highest levels 
of sensitivity, specificity, and correlation 
coefficient for various single exon genes, 
achieving 100 percent, 75.228 percent, and 
0.4994, respectively. Notably, the 2-bit binary 
representation scheme clocked in at 7.38ms, 
which was the quickest processing time when 
compared to the other representation methods.

5.2 Two Exonic Region Gene 
Different genes with two exonic regions were 
used to test the predictive accuracy of different 
representation techniques. Surprisingly, nucle-
otide location identification and sensitivity for 
the FNO and 2-bit binary techniques were 
identical, as shown in Fig. 6. These two 
techniques successfully located the two 
authentic exons (at locations 115–482 and 
1867–2662) within the (GALNR2) gene.

The FNO and 2-bit binary methods fared better 
than other schemes, with specificity scores of 
56.012 percent and 65.02 percent, respectively, 
despite having almost half the specificity of 
single exonic region prediction. Interestingly, 
among all the representation techniques, the 
2-bit binary representation approach had the 
highest correlation coefficient (0.6838) and the 
fastest processing speed.

5.3 Three Exonic and Four Exonic Region 
Gene 
When applying five various recognition 
algorithms to genes with three and four exonic 

regions, the 2-bit binary representation method 
consistently beat other representation methods 
in terms of accuracy. The number of incorrect 
exons was reduced by this method's accurate 
detection of actual nucleotide locations in the 
proper order. As a result, in this particular 
situation, it achieved the highest levels of 
sensitivity, correlation, specificity, and CPU 
run time.

6  Conclusion

The findings demonstrated that the 2-bit binary 
representation method, when compared to 
other representation schemes, significantly 
improved true nucleotide position identifica-
tion accuracy regardless of the number of 
exonic regions in the sequences tested, with 
high levels of sensitivity, correlation coeffi-
cient, specificity, and minimal processing time. 
These results are consistent with other studies 
that applied the 2-bit binary technique in a 
different setting. When applied to human DNA 
sequences for promoter prediction using neural 
networks, it was found that the 2-bit binary 
scheme outperformed the 4-bit binary and 
integer representation methods.

Intriguingly, the 2-bit binary and FNO repre-
sentation schemes both displayed comparable 
high levels of sensitivity, correlation coeffi-
cient, and specificity when compared to other 
schemes, especially at the one and two exonic 
region detection levels, despite using different 
numerical representation techniques. Notably, 
the FNO system is based on statistically 
derived measurements while the 2-bit binary 
scheme relies on the arbitrary assignment of 
nucleotide numbers.

The FNO was outperformed by the 2-bit binary 
representation approach for the detection of 
three and four exonic areas. These results 

corroborate a previous study that found that the 
protein coding region prediction accuracy 
could be improved by using the DFT base 
technique by increasing the frequency of 
nucleotide occurrence and matching numeric 
recognition schemes.
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 Amino Acid  Number
Representation

 

1 Ala (A) 0.61+88.3i 
2 Cys (C) l.07+112.4i 
3 Asp (D) 0.46+II 0.Si 
4 Glu (E) 0.47+140.Si 
5 Phe (F) 2 02+189i 
6 Gly (G) 0.07+60i 
7 His (H) 0.61+152.6i 
8 lie (I) 2.22+168.Si 
9 Lys (K) Ll 5+175.6i 
10  Leu (L) l.53+168.Si 
11  Met (M) Ll 8+162.2i 
12  TyT (Y) l.88+193i 
13  Trp (W) 2.65+227i 
14  Val (V) l.32+141.4i 
15  Pro (P) l.95+122.2i 
16  Asu (N) 0.06+125.li 
17  Arg (R) 0.60+181.2i 
18  Ser (S) 0.05+88.7 
19  Thr (T) 0.05+118.2i 



1.  Introduction

 Malicious software or malware are 
designed to harm or cause trouble with the 

purpose of gaining unauthorized access to 
computer systems and networks, disrupt 
computer operations, and collect personal 
information without the owner's permission. 
This poses a threat to Internet use, the integrity 

of computer systems, and the privacy of users 
[1]. 

2 Types Of Malwares 

There are many types of malware such as 
viruses, worms, Trojan horses, rootkits, 
backdoors, botnets, spyware, and adware. It's 
important to note that a single malware can 
exhibit characteristics of multiple types simul-
taneously [1]. 

2.1 Virus

A virus is a harmful program that enters a 
computer and causes damage by changing 

data or information. It needs people to open up. 
It can access the system via links, images, 
acquisition or internet download [2]. There are 
many types of viruses:

a) Boot sector virus: Infects the boot of the 
computer. disk (floppy, CD, or hard disk) 
by changing its contents with its own 
harmful code. However, recent advance-
ments in threat detection have helped 
mitigate this virus [3]. 

b) File Virus: This virus infects executable 
files and stays in the computer's memory. 
It tries to infect all programs that load into 
Bad memory by adding viruses to execut-
able files [3].

c) Internal virus: This virus is stored in the 
computer's memory and is opened when 
the operating system starts or something is 
done.

d) Virus not here: This virus is not in 

memory, it has spread to the target and 
transfers control to the infected applica-
tion. It has a search module to find new 
targets and patterns to disseminate new 
knowledge.

e) Macro Virus: This virus, written in macro 
language, spreads through phishing 
e-mails containing malicious information. 
It can also spread by sharing infected files.

f) Polymorphic virus: This virus changes 
its behavior every time it infects new 
information so that it can detect malware 
scanners. Its changing nature or hiding 
process makes it difficult to detect [4].

g) Virus metamorphosis: This virus chang-
es its properties and rules with each virus, 
making search and analysis very difficult.

h) Stealth virus: This virus uses various 
methods to hide in memory, files and boot 
to avoid detection. It affects boot sectors 
and tries to hide changes in data or boot 
sectors. Antivirus software should be able 
to identify hidden viruses by looking at 
memory evidence.

2.2 Trojan

This is a malicious program designed to steal 
sensitive information from the victim's 
computer. It disguises itself as a non-malicious 
program and does not copy or forward other 
files. It survived undetected by antivirus 
software. Trojans can create backdoors, spy, 
send messages, access remote computers, and 
create bot networks for DDoS attacks [3].

1) Spyware: This malware is installed on the 
victim's computer without the victim's 
knowledge and is used to track and gather 
information about the user. Anti-spyware 
tools can be used to prevent spyware [5].

2) Adware: Software that displays ads to 
users and collects information about users' 
marketing preferences. It analyzes users' 
behavior on the Internet to display ads. 
Adware enters the computer through 
freeware, shareware, and infected 
websites [5].

3) Viruses: Viruses are self-replicating 
malware that infects other computers 
without human intervention. Their main 
goal is to damage the network by using the 
bandwidth and increasing the load. There 
are different viruses such as email worms, 
Internet browsing worms and mobile 
worms that are transmitted via Bluetooth 
or mobile communication applications 
[5].

Table 1 Major Malware attacks and their 
impact 

3  Challenges In The Age Of 
Ransomware Analysis

Ransomware has emerged as a formidable 
cybersecurity threat, constantly evolving in 
complexity and sophistication. Malware 
analysts face unique challenges in the age of 
ransomware analysis, necessitating innovative 
approaches to combat this growing menace. 

3.1  Encryption and Obfuscation Tech-
niques
Ransomware strains employ advanced encryp-
tion and obfuscation techniques to evade 
detection and analysis. These techniques make 
it difficult for analysts to analyze the underly-
ing code, hampering efforts to understand the 
ransomware's behavior and develop effective 
countermeasures [6].

3.2  Rapidly Evolving Variants
Ransomware variants evolve at a rapid pace, 
with new strains and families constantly 
emerging. This rapid evolution challenges 
analysts to keep up with the latest techniques 
and develop timely detection and analysis 
methods [7]

3.3  Anti-Analysis Mechanisms
Ransomware incorporates anti-analysis mech
anisms that actively detect and evade virtual 
environments, sandboxes, and debugging 
tools. These mechanisms hinder analysts' 
ability to observe the ransomware's behavior in 
controlled environments [8].

3.4  Stealthy Delivery and Execution
Ransomware employs various stealthy delivery 
and execution techniques, such as fileless 
attacks and exploit kits. These techniques allow 

the malware to infiltrate systems undetected 
and hinder traditional analysis methods [9].

3.5  Data Integrity Risks
Ransomware poses risks to data integrity, as 
decrypting files without the proper decryption 
key may result in permanent loss or corruption 
of data. Analysts must carefully handle ransom-
ware samples to prevent unintended damage 
[10].

4  Best Practices For Ransom-
ware Analysis

To address the challenges posed by ransomware 
analysis, analysts can adopt best practices that 
enhance their effectiveness in detecting, analyz-
ing, and mitigating ransomware threats.

4.1  Dynamic Analysis
Employ dynamic analysis techniques to observe 
the ransomware's behavior in a controlled 
environment, allowing for better understanding 
of its execution flow and potential impact [11].

4.2  Automated Analysis Frameworks
Develop automated analysis frameworks 
that combine behavior-based analysis, static 
analysis, and machine learning techniques 
to expedite detection and classification of 
ransomware strains [12].

4.3 Collaboration and Information Sharing
Foster collaboration among analysts and 
organizations to share insights, indicators of 
compromise (IOCs), and mitigation strategies. 
Collective knowledge can strengthen defenses 
against ransomware attacks [13].

4.4  Threat Intelligence Feeds
Leverage threat intelligence feeds to stay 

c) The use of remote command execution to 
communicate with the attacker.

d) The use of obfuscation techniques to make 
the malware more difficult to analyze.

We will explore static analysis techniques for 
ransomware analysis: file and code analysis 
methods, signature-based detection, code 
deobfuscation and unpacking techniques, and 
malicious document analysis and exploit 
detection.

6  File And Code Analysis 
Methods To Identify 
Ransomware Characteristics

Static analysis involves the examination of 
files and code without executing them. This 
technique allows analysts to uncover vital 
insights about ransomware and its underlying 
characteristics. By scrutinizing file headers, 
metadata, and code structure, researchers can 
identify suspicious activities such as file 
encryption routines, command and control 
communication, or attempts to modify system 
settings. Analyzing ransomware behavior 
patterns is crucial for building detection mech-
anisms and developing effective mitigation 
strategies. This can be done using a tool file, 
which will display the file type and other 
characteristics of the file. For example, the 
following output from the file command shows 
that the file ransomware.exe is a Windows 
executable file:

$ file ransomware.exeransomware.exe: 
PE32 executable for MS Windows (GUI) 
Intel 80386, for MS Windows

Once the file type has been identified, the next 

step is to disassemble the malware code. This 
can be done using a tool like IDA Pro, which 
will display the assembly code for the 
malware. The assembly code can be used to 
identify ransomware characteristics, such as 
the use of encryption algorithms, the presence 
of ransom demands, and the use of remote 
command execution.

7  Signature-based Detection 
And Pattern Matching

Ransomware can also be detected using signa-
ture-based detection and pattern matching. 
Signature-based detection relies on predefined 
patterns or signatures to identify known 
ransomware variants. Analysts create signa-
tures based on unique characteristics or behav-
iors exhibited by specific ransomware 
families. These signatures are then matched 
against files or code samples to detect potential 
infections. Commercial antivirus scanners 
often look for signatures, which are sequences 
of bytes in the malware code, declaring that the 
scanned program is malicious. 
There are three types of malware: simple 
malware, polymorphic malware, and metamor-
phic malware. In simple malware, the 
program's entry points are changed to transfer 
control to the malicious payload. Diagnosis is 
relative if the signature of the virus code is 
visible[26]. While signature-based detection is 
effective against known ransomware strains, it 
may struggle with new or modified variants. 
Continuous updates and expansion of signature 
databases are necessary to combat emerging 
threats effectively. Pattern matching 
techniques analyze the structure, behavior, and 
code of ransomware samples to identify 
common patterns or characteristics associated 
with specific ransomware families. YARA is 

an efficient and optimized tool for pattern 
matching . Signature-based detection and 
pattern matching are both effective methods 
for detecting ransomware. However, they 
canbe defeated by ransomware authors who 
use obfuscation techniques to make their 
malware more difficult to analyze [26].
 
8  Unpacking Techniques

Ransomware authors often employ obfusca-
tion and packing techniques to evade detection 
and analysis. Obfuscation hides information so 
others cannot find the true meaning. Software 
vendors use obfuscation techniques to make 
software harder to reverse. Malware is better to 
write this down and uses many modifications 
to confuse malicious programs, making it 
difficult to reverse engineer the malware so 
that it cannot recognize its malicious intent 
[27]. 

Unpacking, on the other hand, refers to the 
process of extracting and reconstructing the 
original code from its packed form. Code 
deobfuscation is a technique for reversing the 
effects of obfuscation. This can be done using 
a variety of tools and techniques, including 
manual deobfuscation, automated deobfusca-
tion tools, and dynamic analysis. Static analy-
sis techniques include identifying and deobfus-
cating these code transformations, allowing 
researchers to gain insight into the ransom-
ware's inner workings, encryption algorithms, 
and communication protocols. Deobfuscation 
improves when static and dynamic analyses 
are combined [28].

9  Malicious Document Analysis 
And Exploit Detection

Portable Document Format (PDF) is one of the 
most popular file formats for data exchange. 
The origin of the PDF format has made PDF 
files the primary vector for malware distribu-
tion, as the targets of attackers have recently 
changed from server-side attacks to client-side 
attacks [29].  Basically, the corrupt PDF file 
can be thought of as the reincarnation of the 
macro virus that infected Microsoft Office and 
other products from the mid-1990s to the early 
2000s [30]. Static analysis techniques play a 
vital role in analyzing these documents to 
detect potential exploits or malicious macros. 
By dissecting the document's structure, exam-
ining embedded objects, and analyzing script 
or macro code, analysts can uncover the 
ransomware's delivery mechanisms, payloads, 
and potential vulnerabilities that attackers 
exploit. After reading the input data, MDScan 
analyzes its structure and removes all recog-
nized objects placed in hierarchies. The 
complexity and ambiguity of the PDF specifi-
cation makes this process a daunting task. 
Also, most PDF viewers (like Adobe Reader) 
even try to render the document incorrectly 
and often do not conform to the PDF specifica-
tion. This gives attackers more room to 
compromise data analysis, and they can use 
this complexity to uncover patterns of 
malicious PDF files. Exploit detection is a 
technique for identifying malicious documents 
that contain embedded macros or scripts that 
can be executed when the document is opened. 
Exploit detection can be done using a variety 
of tools and techniques, including signa-
ture-based detection, pattern matching, and 
dynamic analysis [31].

10 Dynamic Analysis 
Techniques For Ransomware 
Analysis

Ransomware analysis is essential for investi-
gating ransomware attacks and understanding 
the actions and behavior of malicious 
campaigns. It includes three main categories: 
static analysis, dynamic analysis, and hybrid 
analysis. The analysis seems to focus on 
analyzing the ransomware's code and features 
without success. Dynamic analysis involves 
running the ransomware in a controlled 
environment to monitor its behavior in a timely 
manner. Hybrid analysis combines static and 
dynamic analysis techniques. Dynamic analy-
sis is a great way to achieve success by writing 
bad code. Malicious code written in a 
controlled environment and exposed to 
features captured by the controlled environ-
ment [32,33]. 

A system called EldeRan uses dynamic analy-
sis to monitor what the application is doing. It 
captures API calls and strings at runtime to 
monitor the malicious behavior of ransomware 
applications. Applications are monitored 
during installation to identify ransomware 
signatures [34].

11  Research On Dynamic 
Analysis Of Ransomware Using 
Machine Learning

The system aims to perform an in-depth analy-
sis by recording system calls. Introduce 
optimization techniques to minimize API calls 
and train machine learning classes on data to 
optimize system calls [35].

A multi-layered ransomware detection system 

based on machine learning works in three 
phases: identification, learning, and discovery. 
Perform behavioral analysis to identify 
unknown ransomware variants [36].

Build a real-time ransomware detection system 
integrated with the Integrated Clinical 
Environment (ICE) to protect a hospital 
network. The system detected and isolated 
victim devices to prevent the spread of the 
attack [37].

12 Conclusion

It is concluded that ransomware analysis faces 
different challenges due to its tactics and 
challenging nature employed by cyber crimi-
nals. The key challenges are evasion 
techniques, advanced encryption, dynamic 
behavior, zero-day exploits, anti-analysis 
mechanism and most importantly lack of 
resources to follow up the latest track. Security 
researchers have been continuously finding out 
AI solutions, relating with software vendors 
and produce effective measures against 
ransomware attacks. Sometimes it is difficult 
for individuals and organizations to stay 
vigilant and use robust measures and update 
their defense to reduce the risk of falling victim 
to ransomware. 

In addition to this, the constantly updation of 
nature of ransomware requires security 
researchers to stay updated and work on 
adaption of latest techniques to fight against 
new strains strongly. Thus, these new changes 
require collaboration, continuous research, 
huge investments and proper planning to stay 
one step ahead of cyber criminals. Effective 
Ransomware Analysis is about behavior analy-
sis, combination of segmentation and isolation 

skills, reverse engineering and high intelli-
gence. By analyzing these ransomware 
samples in controlled environments such as 
sandboxes, virtual machines can prevent 
malwaring from infecting the systems. Behav-
ior analysis can detect malicious pursuit and 
alleviate ransomware campaigns. 

Furthermore, to apply security measures in 
organizations prevent them from ransomware 
attacks. Regular upgradation, backup plan and 
strong passwords can help the organizations on 
how to analyze ransomware and reduce its 
impact. Static analysis techniques serve as a 
fundamental pillar in the fight against ransom-
ware attacks. By employing file and code 
analysis methods, signature-based detection, 
code deobfuscation and unpacking techniques, 
and malicious document analysis, security 
analysts can effectively identify ransomware 
characteristics, detect infections, and under-
stand the underlying mechanisms used by 
attackers. As ransomware continues to evolve, 
it is imperative to stay abreast of the latest 
static analysis techniques and continuously 
enhance detection mechanisms to mitigate the 
impact of these malicious threats. 

Dynamic analysis techniques are essential for 
analyzing and understanding the behavior of 
ransomware. Through sandboxing, behavior 
monitoring, traffic analysis, memory analysis, 
dynamic code analysis, and runtime environ-
ment analysis, analysts can gain valuable 
insights into a ransomware's capabilities, 
evasion techniques, communication patterns, 
and potential impact on a system. These 
techniques allow for a comprehensive under-
standing of the ransomware's functionalities 
and aid in the development of effective 
countermeasures and mitigation strategies.
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updated on the latest ransomware variants, 
their associated indicators, and attack patterns. 
This information can enhance the accuracy and 
efficacy of analysis efforts [14].

4.5 Network and Endpoint Monitoring
Implement robust network and endpoint 
monitoring solutions to detect and respond to 
ransomware activities promptly. Early detection 
can mitigate the impact of an attack and aid in 
subsequent analysis [15].

4.6 Regular Backup and Recovery
Establish a good backup strategy to regularly 
recover important data, enabling rapid recovery 
in the event of a ransomware attack. This 
practice minimizes the potential impact of 
ransomware on data integrity[16].

4.7 Security Awareness and Training
Provide security awareness and regular training 
to educate employees about ransomware 
threats, phishing techniques, and security prac-
tices. This will help create a safe environment 
[17].

4.8  Incident Response Planning
Have an incident response plan that outlines 
the steps to take in the event of a ransomware 
incident. This allows for quick coordination 
to resolve the issue and facilitates follow-up. 
[18].

4.9 Reverse Engineering and Code Analysis
Utilize reverse engineering and code analysis 
techniques to dissect ransomware samples, 
understand their underlying functionalities, and 
identify vulnerabilities that can be exploited for 
analysis and mitigation [19].

4.10 Continuous Learning and Research

Stay abreast of the latest advancements in 
ransomware analysis techniques and actively 
participate in ongoing research and knowledge 
sharing forums. Continuous learning ensures 
analysts remain equipped to tackle emerging 
ransomware challenges [20].

5  Static Analysis Techniques 
For Ransomware Analysis

Over the last few years, malware has continued 
to evolve in terms of the complexity of 
malware cloaking and the variety of attack 
vectors [21]. Ransomware is one of the biggest 
and fastest growing threats facing the digital 
world [22]. Ransomware usually works by 
locking a desktop computer or accessing, 
overwriting, or deleting the user's data to 
prevent the user from accessing the computer 
[23]. To counter changing cyber threats, securi-
ty researchers and analysts are turning to static 
analysis techniques as a powerful tool for 
ransomware detection and analysis. Static 
testing is the process of analysing program 
code without running the code. We analysed 
the ransomware samples using the PEView 
program and the PE parser. PEFile analysis is 
an essential part of static analysis [24]. This 
can be done by disassembling the malware 
code, examining the file header, and searching 
for strings and other indicators of malicious 
activity. Static analysis is the analysis of code 
that is not executed at write time. [25]. Static 
analysis can be used to identify ransomware 
characteristics, such as:

a) The use of encryption algorithms to 
encrypt victim files.

b) The presence of ransom demands.

1.  Introduction

 Short exon detection is a formidable 
issue for bioinformatics and becomes more 
complicated as becomes more complicated 
side of short intron. To categorize these exonic 
regions accurately, it’s essential to create 
computer methods that are both more efficient 
and dependable. This is necessary because 
many of the existing methods do not handle the 

small exons separated by brief introns effec-
tively. The methods for identifying exons are 
based on the quest for material, signal or 
resemblance. For classification of exon 
disunited by short intron has been divided into 
two methods; Model independent and model 
dependent [1]. The DNA coding model 
frequently relies on probability, enabling the 
measurement of the likelihood of a DNA 
sequence because it encodes the sequence. 

Although the values (scores) of a specific data 
code statist are calculable in a variety of differ-
ent ways in reality, we will measure scores 
based on this probability for model-based 
coding statistics. In fact, provided the query 
sequence, under the coding model and an 
alternate model or DNA non coding we can 
determine the likelihood of the sequence. The 
model-based coding statistics may catch more 
of the particular DNA-coding characteristics, 
more as the model is more complex i.e. more 
parameters dependent. Model based coding 
statistics can also be more effective in distin-
guishing against non-coding DNA coding. 
However, model based coding statistics 
involve a representative DNA coding sample 
from the species included in the estimation of 
model parameters (probabilities). The more 
intricate the model, the more susceptible it is to 
sample distortion and dimension. Model 
independent coding statistics, however, 
capture only the "universal" characteristics of 
DNA coding, as no sample is needed and 
where coding regions of the species being 
considered are not identified, they may be 
used[2]. In [3], they have used Markov Chain 
to identify the sequences in DNA. Markov 
chain models of DNA and its use for Bayesian 
gene recognition algorithms for protein coding 
sequences. Gene Scout is the other method for 
detecting DNA sequences that used Markov 
Chain. In recent work, the local spectrum of 
the first intrinsic mode feature was determined 
to detect short exons. A technique focused on 
filters was also documented in order to detect 
short exons [4]. However, this method is based 
on the model by evaluating the fictitious EIIP 
values the fictitious EIIP values the fictitious 
EIIP values optimised and the weights for the 
four filtered binary sequences. Depending on 
the study of the windows form and scale, the 

efficiency of DSP bases that DFT can be used 
to analyse the spectral properties of DNA 
sequence depends [5]. 

2  Literature Review 

A more concise timeframe can detect short 
exons, but not long exon scan lead to further 
false alarm. On the other side, wide windows 
can lead to fewer fake detections, however 
short exons are lacking. Multiscale analysis 
was conducted by MGWT-based approach [6]. 
Marhon & Kremer recently suggested the 
Broad Range Wavelet Window (WRWW) 
approach to the forecasting of protein coding 
areas in a recent work [7].  In order to deal with 
the problem of window size. A technique to fix 
the issue of window size selection was also 
introduced to adapt the window length [8]. The 
WRWW approach has been shown to operate 
effectively over a number of exon lengths 
through simulation experiments. The effective-
ness of the methods used for detecting exons 
has not yet been assessed when there is a brief 
intron separating two adjacent short exons. 
Furthermore, no computer model to identify 
alternate splicing that could occur due to intron 
retention has been investigated for implemen-
tation of the annotation of certain regions in 
eukaryotic DNA (IR)[9]. In IR, part of the gene 
is not encrypted and can join premature stop 
codons in the center of a mature transcription. 
In an IR, numerous factors such as weak splice 
sites, short introns within genes, elevated 
levels of exonic splicing silencing, and lower 
density can contribute to the occurrence of IR 
[10].

Additionally, the IR is linked to short introns 
(274 nucleotides) and, if retention takes place, 
all neighboring exons, which are about 135 nt 

long, are linked to the exon retained, creating 
an exon retention intron (EIE) exon that is 544 
nt long. In order to find IR-likely sites, short 
exons separated by short introns can be identi-
fied using computer-based methods.

3  Dna Mapping Scheme 

"Deoxyribonucleic acid (DNA)" sequences are 
important for the understanding of living 
organisms, and in these macromolecules, much 
of the knowledge concerning heritable evolu-
tion and species growth is stored. Prokaryotes 
and eukaryotes are possible for organisms. 
DNA is free inside the cell in prokaryotes 
while DNA is retained within the nucleus in 
eukaryotes and is disassociated by a nuclear 
memebrane from the rest of the cell. Four 
major chemicals, thymine (T), cytosine(C) 
guanine (G) and adenine (A)  form the DNA 
chain . The determination of protein coating 
regions (exons) in eucaryotic gene structures is 
one of the present problems in studying the 
DNA sequences. Both probabilistic and deter-
ministic approaches are employed to catego-
rize protein coding regions or exons in eukary-
otic cells. Probabilistic methods have high 
precision, but rely on model and require 
adequate prediction training data. In the other 
hand, predictability of detergent methods is 
comparatively lower but model-independent 
and best suited for study of uncharacterized 
genomic sequences, where prior details of the 
studied species does not exist. 

The base-coding region contains a pronounced 
period-3 segment attributed to the codon struc-
ture utilized in the translation of the base 

sequence into amino acids. Most deterrent 
techniques use the "Discrete Fourier Trans-
form" to classify the period-3 portion by 
spectral analysis of the DNA sequences. A 
variety of algorithms were designed to classify 
protein-coding regions based on the period-3 
property. DFT-based approaches efficiency 
depends on the duration of the window[11]. In 
order to classify protein-coding areas, a system 
based on "Modified Gabor-wavelet transform" 
(MGWT) was implemented. Depending on 
window length, the efficiency of the MGWT is 
higher than the DFT based approaches[6].

There are four significant shortcomings in the 
present method for representing and aligning 
new input genomes with the reference genome. 
To begin, even though several algorithmic 
implementations are widely used, there is no 
established standard method for aligning DNA 
bases from a newly sequenced input genome 
with positions in the reference genome [12].

Secondly, various mapping procedures 
encounter a challenge when there are (almost) 
equally valid mappings to multiple separate 
positions within the reference genome, a 
situation often referred to as the "multi-map-
ping problem." This arises because of the 
inherent repetition of larger subsequences in 
the reference genome. 

Thirdly, the GRC reference genome encom-
passes only a limited portion of common 
segregating genome variations, with the 
remainder scattered across various formats and 
data sources like the Single Nucleotide 
Polymorphism Database (dbSNP) and the 

1000 Genomes Project. Consequently, there is 
presently no singular, all-encompassing 
resource for common human genome varia-
tions, and there is a lack of consistent naming 
or identification conventions [13].

Lastly, whenever a new reference genome 
assembly is issued, updates are made to the 
reference genome's coordinates, necessitating 
the remapping of all associated data. This 
remapping process is often the most computa-
tionally intensive stage in a genome analysis 
pipeline. It can be a time-consuming task, 
taking weeks to complete and consuming 
substantial computational resources, particu-
larly when dealing with a large set of genomes.

4  Representation Of DNA

The following five representation methods 
were used to numerically represent the 
sequences of the selected genes DNA:

4.1 Genetic Code Context (GCC)
The following triple codons are found in the 
various reading frameworks for a particular 
DNA sequence Y= ACGATTCAGGT: The 
initial reading phrase is ACG ATT CAG, 
followed by CGA TTC AGG and finally by 
GAT TCA GGT.The corresponding encoded 
amino acids for the first frame are [T, I, Q], [R, 
F, R], and [D, S, G] for the second and third 
frames, respectively. Each amino acid is 
described by a unique complex number, as 
shown in Table 1.

4.2 Frequency of Nucleotide Occurrence

According to Table 2 given below, A real value 
is assigned to each nucleotide in the DNA 
sequence Y= ACGATTCAGGT from two 
different datasets. As a result, the correspond-
ing DNA numerical sequence from the 
HMR195 dataset is [0.22750, 0.28312, 
0.27600, 0.22750, 0.21336, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336].
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4.3 Atomic Number 
The molecular signature pattern constants over 
a certain DNA sequence Y= ACGATTCAGGT 
are: A=70, G=78, C=58, T=66. As a conse-
quence, the numerical sequence of DNA is [70, 
58, 78, 70, 66, 66, 58, 70, 78, 66, 58, 70, 78, 66, 
58, 70, 78, 66, 58, 70, 78, 66, 58, 70, 78, 66, 58, 
70, 78, 66, 58, 70, 78, 66].

4.4 Electron Ion Interaction Potential (EIIP)
The EIIP indicator sequence values for the 
specific DNA sequence Y= ACGATTCAGGT 
are A= 0.1260, G= 0.0806, C= 0.1340, and T= 
0.1335.As a result, [0.1260, 0.1340, 0.0806, 
0.1260, 0.1335, 0.1335, 0.1340, 0.1260, 
0.0806, 0.0806, 0] is the numerical sequence 
for DNA .1335]

4.5 2-bit Binary
The values of the DNA the 2-bit digital sign 
sequencesY= ACGATTCAGGT are A=00, 
G=10, T=01, C=11 for the DNA sequence Y= 
ACGATTCAGGT.

5  Results 

The detection technique was applied using the 
IIR inverse Chepyshev electronic filter on 20 
human testing genes with single and multiple 
exons downloaded from the HMR195 
dataset.in order to achieve our goal. The acces-
sion numbers, gene descriptions, sequence 
lengths, and true exon locations of the genes 
are all displayed in Table 3.

Data Set Frequency of Occurrence  

 A  C  G  T 
Burset 0.243 0.27215 0.27909 0.20576 

HMR 195 0.2275 0.28312 0.276 0.21336 

OCTN2 0.243 0.27215 0.27909 0.20576 

MTA1-L1 0.2275 0.28312 0.276 0.21336 

hCLCA1 0.243 0.27215 0.27909 0.20576 

LCC-1 precursor 0.2275 0.28312 0.276 0.21336 

5.1 Single Exon Gene 
 Both the frequency of nucleotide occurrence 
in exons (FNO) and the 2-bit binary represen-
tation schemes showed a distinct and promi-
nent peak at the precise location of true exons 
(964-1938), without any misleading peaks at 
the individual exon level, when compared to 
EIIP, GCC, and atomic number schemes. Addi-
tionally, the FNO and 2-bit binary representa-
tion schemes demonstrated the highest levels 
of sensitivity, specificity, and correlation 
coefficient for various single exon genes, 
achieving 100 percent, 75.228 percent, and 
0.4994, respectively. Notably, the 2-bit binary 
representation scheme clocked in at 7.38ms, 
which was the quickest processing time when 
compared to the other representation methods.

5.2 Two Exonic Region Gene 
Different genes with two exonic regions were 
used to test the predictive accuracy of different 
representation techniques. Surprisingly, nucle-
otide location identification and sensitivity for 
the FNO and 2-bit binary techniques were 
identical, as shown in Fig. 6. These two 
techniques successfully located the two 
authentic exons (at locations 115–482 and 
1867–2662) within the (GALNR2) gene.

The FNO and 2-bit binary methods fared better 
than other schemes, with specificity scores of 
56.012 percent and 65.02 percent, respectively, 
despite having almost half the specificity of 
single exonic region prediction. Interestingly, 
among all the representation techniques, the 
2-bit binary representation approach had the 
highest correlation coefficient (0.6838) and the 
fastest processing speed.

5.3 Three Exonic and Four Exonic Region 
Gene 
When applying five various recognition 
algorithms to genes with three and four exonic 

regions, the 2-bit binary representation method 
consistently beat other representation methods 
in terms of accuracy. The number of incorrect 
exons was reduced by this method's accurate 
detection of actual nucleotide locations in the 
proper order. As a result, in this particular 
situation, it achieved the highest levels of 
sensitivity, correlation, specificity, and CPU 
run time.

6  Conclusion

The findings demonstrated that the 2-bit binary 
representation method, when compared to 
other representation schemes, significantly 
improved true nucleotide position identifica-
tion accuracy regardless of the number of 
exonic regions in the sequences tested, with 
high levels of sensitivity, correlation coeffi-
cient, specificity, and minimal processing time. 
These results are consistent with other studies 
that applied the 2-bit binary technique in a 
different setting. When applied to human DNA 
sequences for promoter prediction using neural 
networks, it was found that the 2-bit binary 
scheme outperformed the 4-bit binary and 
integer representation methods.

Intriguingly, the 2-bit binary and FNO repre-
sentation schemes both displayed comparable 
high levels of sensitivity, correlation coeffi-
cient, and specificity when compared to other 
schemes, especially at the one and two exonic 
region detection levels, despite using different 
numerical representation techniques. Notably, 
the FNO system is based on statistically 
derived measurements while the 2-bit binary 
scheme relies on the arbitrary assignment of 
nucleotide numbers.

The FNO was outperformed by the 2-bit binary 
representation approach for the detection of 
three and four exonic areas. These results 

corroborate a previous study that found that the 
protein coding region prediction accuracy 
could be improved by using the DFT base 
technique by increasing the frequency of 
nucleotide occurrence and matching numeric 
recognition schemes.

7  References

[1] A. D. Baxevanis and B. F. F. Ouellette, 
Bioinformatics_-a-practical-guide- 
to-the-analysis-of-genes- and-proteins, 
2nd ed. Wiley Interscience 2004 

[2] R. Guigó, "DNA Composition, Codon 
Usage and Exon Prediction," Academic 
Press 1997.

[3] Mx. Borodovsky and J. Mcininch, 
"GENMARK: PARALLEL GENE 
RECOGNITION FOR BOTH DNA 
STRANDS," Computers Chem, vol. 17, 
pp. 123-133, 1993 

[4] N. Y. Song and H. Yan, "Short Exon 
Detection in DNA Sequences Based on 
Multifeature Spectral Analysis," EUR-
ASIP Journal on Advances in Signal 
Processing, vol. 2011, no. 1, 2010.

[5] P. Ramachandran, W. S. Lu, and A. 
Antoniou, "Filter-based methodology 
for the location of hot spots in proteins 
and exons in DNA," IEEE Trans Biomed 
Eng, vol. 59, no. 6, pp. 1598-609, Jun 
2012.

[6] J. P. Mena-Chalco, H. Carrer, Y. Zana, 
and R. M. Cesar, Jr., "Identification of 
protein coding regions using the modi-
fied Gabor-wavelet transform," 
IEEE/ACM Trans Comput Biol Bioin-
form, vol. 5, no. 2, pp. 198-207, Apr-Jun 
2008.

[7] S. A. Marhon and S. C. Kremer, "Predic-
tion of Protein Coding Regions Using a 
Wide-Range Wavelet Window Method," 
IEEE/ACM Trans Comput Biol Bioin-
form, vol. 13, no. 4, pp. 742-53, Jul-Aug 
2016.

[8] D. K. Shakya, R. Saxena, and S. N. 
Sharma, "An adaptive window length 
strategy for eukaryotic CDS prediction," 
IEEE/ACM Trans Comput Biol Bioin-
form, vol. 10, no. 5, pp. 1241-52, 
Sep-Oct 2013.

[9] A. J. Matlin, F. Clark, and C. W. Smith, 
"Understanding alternative splicing: 
towards a cellular code," Nat Rev Mol 
Cell Biol, vol. 6, no. 5, pp. 386-98, May 
2005.

[10] N. J. Sakabe and S. J. de Souza, 
"Sequence features responsible for 
intron retention in human," BMC 
Genomics, vol. 8, p. 59, Feb 26 2007.

[11] S. D. Sharma, K. Shakya, and S. N. 
Sharma, "Evaluation of DNA mapping 
schemes for exon detection," Interna-
tional Conference on Computer, Com-
munication and Electrical Technology – 
ICCCET, 2011.

[12] W. J. B. Matei Zaharia, Kristal Curtis, 
Armando Fox, David Patterson, Scott 
Shenker, Ion Stoica, Richard M. Karp, 
Taylor Sittler‡∗, "Faster and More Accu-
rate Sequence Alignment with SNAP," 
2011.

[13] C. Genomes Project et al., "A map of 
human genome variation from popula-
tion-scale sequencing," Nature, vol. 467, 
no. 7319, pp. 1061-73, Oct 28 2010.

Gene
Accession No. 

 Sequence 
lengths 

Gene Description  True Exon 
Location 

One Exon Gene 

AF009731 702 C)' ochrome b (C)' b) gene of Lepussaxatilis 1-702 

AF007189 1601 CLDN3 (Homo sapiens ciaudin 3) gene 477-1139 

AF071552 1618 Homo sapiens N-acetyitransferase-1 (NATI) gene 44 1-1313 

AF055080 2078 Winge.d-heiix transcription factor forkhead 5 gene 
in Homo sapiens 

964-1938 

AF009962 7422 CCR-5 (CC-chernokine receptor) gene in Homo 
sapiens 

3934-4581 



1.  Introduction

 Malicious software or malware are 
designed to harm or cause trouble with the 

purpose of gaining unauthorized access to 
computer systems and networks, disrupt 
computer operations, and collect personal 
information without the owner's permission. 
This poses a threat to Internet use, the integrity 

of computer systems, and the privacy of users 
[1]. 

2 Types Of Malwares 

There are many types of malware such as 
viruses, worms, Trojan horses, rootkits, 
backdoors, botnets, spyware, and adware. It's 
important to note that a single malware can 
exhibit characteristics of multiple types simul-
taneously [1]. 

2.1 Virus

A virus is a harmful program that enters a 
computer and causes damage by changing 

data or information. It needs people to open up. 
It can access the system via links, images, 
acquisition or internet download [2]. There are 
many types of viruses:

a) Boot sector virus: Infects the boot of the 
computer. disk (floppy, CD, or hard disk) 
by changing its contents with its own 
harmful code. However, recent advance-
ments in threat detection have helped 
mitigate this virus [3]. 

b) File Virus: This virus infects executable 
files and stays in the computer's memory. 
It tries to infect all programs that load into 
Bad memory by adding viruses to execut-
able files [3].

c) Internal virus: This virus is stored in the 
computer's memory and is opened when 
the operating system starts or something is 
done.

d) Virus not here: This virus is not in 

memory, it has spread to the target and 
transfers control to the infected applica-
tion. It has a search module to find new 
targets and patterns to disseminate new 
knowledge.

e) Macro Virus: This virus, written in macro 
language, spreads through phishing 
e-mails containing malicious information. 
It can also spread by sharing infected files.

f) Polymorphic virus: This virus changes 
its behavior every time it infects new 
information so that it can detect malware 
scanners. Its changing nature or hiding 
process makes it difficult to detect [4].

g) Virus metamorphosis: This virus chang-
es its properties and rules with each virus, 
making search and analysis very difficult.

h) Stealth virus: This virus uses various 
methods to hide in memory, files and boot 
to avoid detection. It affects boot sectors 
and tries to hide changes in data or boot 
sectors. Antivirus software should be able 
to identify hidden viruses by looking at 
memory evidence.

2.2 Trojan

This is a malicious program designed to steal 
sensitive information from the victim's 
computer. It disguises itself as a non-malicious 
program and does not copy or forward other 
files. It survived undetected by antivirus 
software. Trojans can create backdoors, spy, 
send messages, access remote computers, and 
create bot networks for DDoS attacks [3].

1) Spyware: This malware is installed on the 
victim's computer without the victim's 
knowledge and is used to track and gather 
information about the user. Anti-spyware 
tools can be used to prevent spyware [5].

2) Adware: Software that displays ads to 
users and collects information about users' 
marketing preferences. It analyzes users' 
behavior on the Internet to display ads. 
Adware enters the computer through 
freeware, shareware, and infected 
websites [5].

3) Viruses: Viruses are self-replicating 
malware that infects other computers 
without human intervention. Their main 
goal is to damage the network by using the 
bandwidth and increasing the load. There 
are different viruses such as email worms, 
Internet browsing worms and mobile 
worms that are transmitted via Bluetooth 
or mobile communication applications 
[5].

Table 1 Major Malware attacks and their 
impact 

3  Challenges In The Age Of 
Ransomware Analysis

Ransomware has emerged as a formidable 
cybersecurity threat, constantly evolving in 
complexity and sophistication. Malware 
analysts face unique challenges in the age of 
ransomware analysis, necessitating innovative 
approaches to combat this growing menace. 

3.1  Encryption and Obfuscation Tech-
niques
Ransomware strains employ advanced encryp-
tion and obfuscation techniques to evade 
detection and analysis. These techniques make 
it difficult for analysts to analyze the underly-
ing code, hampering efforts to understand the 
ransomware's behavior and develop effective 
countermeasures [6].

3.2  Rapidly Evolving Variants
Ransomware variants evolve at a rapid pace, 
with new strains and families constantly 
emerging. This rapid evolution challenges 
analysts to keep up with the latest techniques 
and develop timely detection and analysis 
methods [7]

3.3  Anti-Analysis Mechanisms
Ransomware incorporates anti-analysis mech
anisms that actively detect and evade virtual 
environments, sandboxes, and debugging 
tools. These mechanisms hinder analysts' 
ability to observe the ransomware's behavior in 
controlled environments [8].

3.4  Stealthy Delivery and Execution
Ransomware employs various stealthy delivery 
and execution techniques, such as fileless 
attacks and exploit kits. These techniques allow 

the malware to infiltrate systems undetected 
and hinder traditional analysis methods [9].

3.5  Data Integrity Risks
Ransomware poses risks to data integrity, as 
decrypting files without the proper decryption 
key may result in permanent loss or corruption 
of data. Analysts must carefully handle ransom-
ware samples to prevent unintended damage 
[10].

4  Best Practices For Ransom-
ware Analysis

To address the challenges posed by ransomware 
analysis, analysts can adopt best practices that 
enhance their effectiveness in detecting, analyz-
ing, and mitigating ransomware threats.

4.1  Dynamic Analysis
Employ dynamic analysis techniques to observe 
the ransomware's behavior in a controlled 
environment, allowing for better understanding 
of its execution flow and potential impact [11].

4.2  Automated Analysis Frameworks
Develop automated analysis frameworks 
that combine behavior-based analysis, static 
analysis, and machine learning techniques 
to expedite detection and classification of 
ransomware strains [12].

4.3 Collaboration and Information Sharing
Foster collaboration among analysts and 
organizations to share insights, indicators of 
compromise (IOCs), and mitigation strategies. 
Collective knowledge can strengthen defenses 
against ransomware attacks [13].

4.4  Threat Intelligence Feeds
Leverage threat intelligence feeds to stay 

c) The use of remote command execution to 
communicate with the attacker.

d) The use of obfuscation techniques to make 
the malware more difficult to analyze.

We will explore static analysis techniques for 
ransomware analysis: file and code analysis 
methods, signature-based detection, code 
deobfuscation and unpacking techniques, and 
malicious document analysis and exploit 
detection.

6  File And Code Analysis 
Methods To Identify 
Ransomware Characteristics

Static analysis involves the examination of 
files and code without executing them. This 
technique allows analysts to uncover vital 
insights about ransomware and its underlying 
characteristics. By scrutinizing file headers, 
metadata, and code structure, researchers can 
identify suspicious activities such as file 
encryption routines, command and control 
communication, or attempts to modify system 
settings. Analyzing ransomware behavior 
patterns is crucial for building detection mech-
anisms and developing effective mitigation 
strategies. This can be done using a tool file, 
which will display the file type and other 
characteristics of the file. For example, the 
following output from the file command shows 
that the file ransomware.exe is a Windows 
executable file:

$ file ransomware.exeransomware.exe: 
PE32 executable for MS Windows (GUI) 
Intel 80386, for MS Windows

Once the file type has been identified, the next 

step is to disassemble the malware code. This 
can be done using a tool like IDA Pro, which 
will display the assembly code for the 
malware. The assembly code can be used to 
identify ransomware characteristics, such as 
the use of encryption algorithms, the presence 
of ransom demands, and the use of remote 
command execution.

7  Signature-based Detection 
And Pattern Matching

Ransomware can also be detected using signa-
ture-based detection and pattern matching. 
Signature-based detection relies on predefined 
patterns or signatures to identify known 
ransomware variants. Analysts create signa-
tures based on unique characteristics or behav-
iors exhibited by specific ransomware 
families. These signatures are then matched 
against files or code samples to detect potential 
infections. Commercial antivirus scanners 
often look for signatures, which are sequences 
of bytes in the malware code, declaring that the 
scanned program is malicious. 
There are three types of malware: simple 
malware, polymorphic malware, and metamor-
phic malware. In simple malware, the 
program's entry points are changed to transfer 
control to the malicious payload. Diagnosis is 
relative if the signature of the virus code is 
visible[26]. While signature-based detection is 
effective against known ransomware strains, it 
may struggle with new or modified variants. 
Continuous updates and expansion of signature 
databases are necessary to combat emerging 
threats effectively. Pattern matching 
techniques analyze the structure, behavior, and 
code of ransomware samples to identify 
common patterns or characteristics associated 
with specific ransomware families. YARA is 

an efficient and optimized tool for pattern 
matching . Signature-based detection and 
pattern matching are both effective methods 
for detecting ransomware. However, they 
canbe defeated by ransomware authors who 
use obfuscation techniques to make their 
malware more difficult to analyze [26].
 
8  Unpacking Techniques

Ransomware authors often employ obfusca-
tion and packing techniques to evade detection 
and analysis. Obfuscation hides information so 
others cannot find the true meaning. Software 
vendors use obfuscation techniques to make 
software harder to reverse. Malware is better to 
write this down and uses many modifications 
to confuse malicious programs, making it 
difficult to reverse engineer the malware so 
that it cannot recognize its malicious intent 
[27]. 

Unpacking, on the other hand, refers to the 
process of extracting and reconstructing the 
original code from its packed form. Code 
deobfuscation is a technique for reversing the 
effects of obfuscation. This can be done using 
a variety of tools and techniques, including 
manual deobfuscation, automated deobfusca-
tion tools, and dynamic analysis. Static analy-
sis techniques include identifying and deobfus-
cating these code transformations, allowing 
researchers to gain insight into the ransom-
ware's inner workings, encryption algorithms, 
and communication protocols. Deobfuscation 
improves when static and dynamic analyses 
are combined [28].

9  Malicious Document Analysis 
And Exploit Detection

Portable Document Format (PDF) is one of the 
most popular file formats for data exchange. 
The origin of the PDF format has made PDF 
files the primary vector for malware distribu-
tion, as the targets of attackers have recently 
changed from server-side attacks to client-side 
attacks [29].  Basically, the corrupt PDF file 
can be thought of as the reincarnation of the 
macro virus that infected Microsoft Office and 
other products from the mid-1990s to the early 
2000s [30]. Static analysis techniques play a 
vital role in analyzing these documents to 
detect potential exploits or malicious macros. 
By dissecting the document's structure, exam-
ining embedded objects, and analyzing script 
or macro code, analysts can uncover the 
ransomware's delivery mechanisms, payloads, 
and potential vulnerabilities that attackers 
exploit. After reading the input data, MDScan 
analyzes its structure and removes all recog-
nized objects placed in hierarchies. The 
complexity and ambiguity of the PDF specifi-
cation makes this process a daunting task. 
Also, most PDF viewers (like Adobe Reader) 
even try to render the document incorrectly 
and often do not conform to the PDF specifica-
tion. This gives attackers more room to 
compromise data analysis, and they can use 
this complexity to uncover patterns of 
malicious PDF files. Exploit detection is a 
technique for identifying malicious documents 
that contain embedded macros or scripts that 
can be executed when the document is opened. 
Exploit detection can be done using a variety 
of tools and techniques, including signa-
ture-based detection, pattern matching, and 
dynamic analysis [31].

10 Dynamic Analysis 
Techniques For Ransomware 
Analysis

Ransomware analysis is essential for investi-
gating ransomware attacks and understanding 
the actions and behavior of malicious 
campaigns. It includes three main categories: 
static analysis, dynamic analysis, and hybrid 
analysis. The analysis seems to focus on 
analyzing the ransomware's code and features 
without success. Dynamic analysis involves 
running the ransomware in a controlled 
environment to monitor its behavior in a timely 
manner. Hybrid analysis combines static and 
dynamic analysis techniques. Dynamic analy-
sis is a great way to achieve success by writing 
bad code. Malicious code written in a 
controlled environment and exposed to 
features captured by the controlled environ-
ment [32,33]. 

A system called EldeRan uses dynamic analy-
sis to monitor what the application is doing. It 
captures API calls and strings at runtime to 
monitor the malicious behavior of ransomware 
applications. Applications are monitored 
during installation to identify ransomware 
signatures [34].

11  Research On Dynamic 
Analysis Of Ransomware Using 
Machine Learning

The system aims to perform an in-depth analy-
sis by recording system calls. Introduce 
optimization techniques to minimize API calls 
and train machine learning classes on data to 
optimize system calls [35].

A multi-layered ransomware detection system 

based on machine learning works in three 
phases: identification, learning, and discovery. 
Perform behavioral analysis to identify 
unknown ransomware variants [36].

Build a real-time ransomware detection system 
integrated with the Integrated Clinical 
Environment (ICE) to protect a hospital 
network. The system detected and isolated 
victim devices to prevent the spread of the 
attack [37].

12 Conclusion

It is concluded that ransomware analysis faces 
different challenges due to its tactics and 
challenging nature employed by cyber crimi-
nals. The key challenges are evasion 
techniques, advanced encryption, dynamic 
behavior, zero-day exploits, anti-analysis 
mechanism and most importantly lack of 
resources to follow up the latest track. Security 
researchers have been continuously finding out 
AI solutions, relating with software vendors 
and produce effective measures against 
ransomware attacks. Sometimes it is difficult 
for individuals and organizations to stay 
vigilant and use robust measures and update 
their defense to reduce the risk of falling victim 
to ransomware. 

In addition to this, the constantly updation of 
nature of ransomware requires security 
researchers to stay updated and work on 
adaption of latest techniques to fight against 
new strains strongly. Thus, these new changes 
require collaboration, continuous research, 
huge investments and proper planning to stay 
one step ahead of cyber criminals. Effective 
Ransomware Analysis is about behavior analy-
sis, combination of segmentation and isolation 

skills, reverse engineering and high intelli-
gence. By analyzing these ransomware 
samples in controlled environments such as 
sandboxes, virtual machines can prevent 
malwaring from infecting the systems. Behav-
ior analysis can detect malicious pursuit and 
alleviate ransomware campaigns. 

Furthermore, to apply security measures in 
organizations prevent them from ransomware 
attacks. Regular upgradation, backup plan and 
strong passwords can help the organizations on 
how to analyze ransomware and reduce its 
impact. Static analysis techniques serve as a 
fundamental pillar in the fight against ransom-
ware attacks. By employing file and code 
analysis methods, signature-based detection, 
code deobfuscation and unpacking techniques, 
and malicious document analysis, security 
analysts can effectively identify ransomware 
characteristics, detect infections, and under-
stand the underlying mechanisms used by 
attackers. As ransomware continues to evolve, 
it is imperative to stay abreast of the latest 
static analysis techniques and continuously 
enhance detection mechanisms to mitigate the 
impact of these malicious threats. 

Dynamic analysis techniques are essential for 
analyzing and understanding the behavior of 
ransomware. Through sandboxing, behavior 
monitoring, traffic analysis, memory analysis, 
dynamic code analysis, and runtime environ-
ment analysis, analysts can gain valuable 
insights into a ransomware's capabilities, 
evasion techniques, communication patterns, 
and potential impact on a system. These 
techniques allow for a comprehensive under-
standing of the ransomware's functionalities 
and aid in the development of effective 
countermeasures and mitigation strategies.
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updated on the latest ransomware variants, 
their associated indicators, and attack patterns. 
This information can enhance the accuracy and 
efficacy of analysis efforts [14].

4.5 Network and Endpoint Monitoring
Implement robust network and endpoint 
monitoring solutions to detect and respond to 
ransomware activities promptly. Early detection 
can mitigate the impact of an attack and aid in 
subsequent analysis [15].

4.6 Regular Backup and Recovery
Establish a good backup strategy to regularly 
recover important data, enabling rapid recovery 
in the event of a ransomware attack. This 
practice minimizes the potential impact of 
ransomware on data integrity[16].

4.7 Security Awareness and Training
Provide security awareness and regular training 
to educate employees about ransomware 
threats, phishing techniques, and security prac-
tices. This will help create a safe environment 
[17].

4.8  Incident Response Planning
Have an incident response plan that outlines 
the steps to take in the event of a ransomware 
incident. This allows for quick coordination 
to resolve the issue and facilitates follow-up. 
[18].

4.9 Reverse Engineering and Code Analysis
Utilize reverse engineering and code analysis 
techniques to dissect ransomware samples, 
understand their underlying functionalities, and 
identify vulnerabilities that can be exploited for 
analysis and mitigation [19].

4.10 Continuous Learning and Research

Stay abreast of the latest advancements in 
ransomware analysis techniques and actively 
participate in ongoing research and knowledge 
sharing forums. Continuous learning ensures 
analysts remain equipped to tackle emerging 
ransomware challenges [20].

5  Static Analysis Techniques 
For Ransomware Analysis

Over the last few years, malware has continued 
to evolve in terms of the complexity of 
malware cloaking and the variety of attack 
vectors [21]. Ransomware is one of the biggest 
and fastest growing threats facing the digital 
world [22]. Ransomware usually works by 
locking a desktop computer or accessing, 
overwriting, or deleting the user's data to 
prevent the user from accessing the computer 
[23]. To counter changing cyber threats, securi-
ty researchers and analysts are turning to static 
analysis techniques as a powerful tool for 
ransomware detection and analysis. Static 
testing is the process of analysing program 
code without running the code. We analysed 
the ransomware samples using the PEView 
program and the PE parser. PEFile analysis is 
an essential part of static analysis [24]. This 
can be done by disassembling the malware 
code, examining the file header, and searching 
for strings and other indicators of malicious 
activity. Static analysis is the analysis of code 
that is not executed at write time. [25]. Static 
analysis can be used to identify ransomware 
characteristics, such as:

a) The use of encryption algorithms to 
encrypt victim files.

b) The presence of ransom demands.

1.  Introduction

 Short exon detection is a formidable 
issue for bioinformatics and becomes more 
complicated as becomes more complicated 
side of short intron. To categorize these exonic 
regions accurately, it’s essential to create 
computer methods that are both more efficient 
and dependable. This is necessary because 
many of the existing methods do not handle the 

small exons separated by brief introns effec-
tively. The methods for identifying exons are 
based on the quest for material, signal or 
resemblance. For classification of exon 
disunited by short intron has been divided into 
two methods; Model independent and model 
dependent [1]. The DNA coding model 
frequently relies on probability, enabling the 
measurement of the likelihood of a DNA 
sequence because it encodes the sequence. 

Although the values (scores) of a specific data 
code statist are calculable in a variety of differ-
ent ways in reality, we will measure scores 
based on this probability for model-based 
coding statistics. In fact, provided the query 
sequence, under the coding model and an 
alternate model or DNA non coding we can 
determine the likelihood of the sequence. The 
model-based coding statistics may catch more 
of the particular DNA-coding characteristics, 
more as the model is more complex i.e. more 
parameters dependent. Model based coding 
statistics can also be more effective in distin-
guishing against non-coding DNA coding. 
However, model based coding statistics 
involve a representative DNA coding sample 
from the species included in the estimation of 
model parameters (probabilities). The more 
intricate the model, the more susceptible it is to 
sample distortion and dimension. Model 
independent coding statistics, however, 
capture only the "universal" characteristics of 
DNA coding, as no sample is needed and 
where coding regions of the species being 
considered are not identified, they may be 
used[2]. In [3], they have used Markov Chain 
to identify the sequences in DNA. Markov 
chain models of DNA and its use for Bayesian 
gene recognition algorithms for protein coding 
sequences. Gene Scout is the other method for 
detecting DNA sequences that used Markov 
Chain. In recent work, the local spectrum of 
the first intrinsic mode feature was determined 
to detect short exons. A technique focused on 
filters was also documented in order to detect 
short exons [4]. However, this method is based 
on the model by evaluating the fictitious EIIP 
values the fictitious EIIP values the fictitious 
EIIP values optimised and the weights for the 
four filtered binary sequences. Depending on 
the study of the windows form and scale, the 

efficiency of DSP bases that DFT can be used 
to analyse the spectral properties of DNA 
sequence depends [5]. 

2  Literature Review 

A more concise timeframe can detect short 
exons, but not long exon scan lead to further 
false alarm. On the other side, wide windows 
can lead to fewer fake detections, however 
short exons are lacking. Multiscale analysis 
was conducted by MGWT-based approach [6]. 
Marhon & Kremer recently suggested the 
Broad Range Wavelet Window (WRWW) 
approach to the forecasting of protein coding 
areas in a recent work [7].  In order to deal with 
the problem of window size. A technique to fix 
the issue of window size selection was also 
introduced to adapt the window length [8]. The 
WRWW approach has been shown to operate 
effectively over a number of exon lengths 
through simulation experiments. The effective-
ness of the methods used for detecting exons 
has not yet been assessed when there is a brief 
intron separating two adjacent short exons. 
Furthermore, no computer model to identify 
alternate splicing that could occur due to intron 
retention has been investigated for implemen-
tation of the annotation of certain regions in 
eukaryotic DNA (IR)[9]. In IR, part of the gene 
is not encrypted and can join premature stop 
codons in the center of a mature transcription. 
In an IR, numerous factors such as weak splice 
sites, short introns within genes, elevated 
levels of exonic splicing silencing, and lower 
density can contribute to the occurrence of IR 
[10].

Additionally, the IR is linked to short introns 
(274 nucleotides) and, if retention takes place, 
all neighboring exons, which are about 135 nt 

long, are linked to the exon retained, creating 
an exon retention intron (EIE) exon that is 544 
nt long. In order to find IR-likely sites, short 
exons separated by short introns can be identi-
fied using computer-based methods.

3  Dna Mapping Scheme 

"Deoxyribonucleic acid (DNA)" sequences are 
important for the understanding of living 
organisms, and in these macromolecules, much 
of the knowledge concerning heritable evolu-
tion and species growth is stored. Prokaryotes 
and eukaryotes are possible for organisms. 
DNA is free inside the cell in prokaryotes 
while DNA is retained within the nucleus in 
eukaryotes and is disassociated by a nuclear 
memebrane from the rest of the cell. Four 
major chemicals, thymine (T), cytosine(C) 
guanine (G) and adenine (A)  form the DNA 
chain . The determination of protein coating 
regions (exons) in eucaryotic gene structures is 
one of the present problems in studying the 
DNA sequences. Both probabilistic and deter-
ministic approaches are employed to catego-
rize protein coding regions or exons in eukary-
otic cells. Probabilistic methods have high 
precision, but rely on model and require 
adequate prediction training data. In the other 
hand, predictability of detergent methods is 
comparatively lower but model-independent 
and best suited for study of uncharacterized 
genomic sequences, where prior details of the 
studied species does not exist. 

The base-coding region contains a pronounced 
period-3 segment attributed to the codon struc-
ture utilized in the translation of the base 

sequence into amino acids. Most deterrent 
techniques use the "Discrete Fourier Trans-
form" to classify the period-3 portion by 
spectral analysis of the DNA sequences. A 
variety of algorithms were designed to classify 
protein-coding regions based on the period-3 
property. DFT-based approaches efficiency 
depends on the duration of the window[11]. In 
order to classify protein-coding areas, a system 
based on "Modified Gabor-wavelet transform" 
(MGWT) was implemented. Depending on 
window length, the efficiency of the MGWT is 
higher than the DFT based approaches[6].

There are four significant shortcomings in the 
present method for representing and aligning 
new input genomes with the reference genome. 
To begin, even though several algorithmic 
implementations are widely used, there is no 
established standard method for aligning DNA 
bases from a newly sequenced input genome 
with positions in the reference genome [12].

Secondly, various mapping procedures 
encounter a challenge when there are (almost) 
equally valid mappings to multiple separate 
positions within the reference genome, a 
situation often referred to as the "multi-map-
ping problem." This arises because of the 
inherent repetition of larger subsequences in 
the reference genome. 

Thirdly, the GRC reference genome encom-
passes only a limited portion of common 
segregating genome variations, with the 
remainder scattered across various formats and 
data sources like the Single Nucleotide 
Polymorphism Database (dbSNP) and the 

1000 Genomes Project. Consequently, there is 
presently no singular, all-encompassing 
resource for common human genome varia-
tions, and there is a lack of consistent naming 
or identification conventions [13].

Lastly, whenever a new reference genome 
assembly is issued, updates are made to the 
reference genome's coordinates, necessitating 
the remapping of all associated data. This 
remapping process is often the most computa-
tionally intensive stage in a genome analysis 
pipeline. It can be a time-consuming task, 
taking weeks to complete and consuming 
substantial computational resources, particu-
larly when dealing with a large set of genomes.

4  Representation Of DNA

The following five representation methods 
were used to numerically represent the 
sequences of the selected genes DNA:

4.1 Genetic Code Context (GCC)
The following triple codons are found in the 
various reading frameworks for a particular 
DNA sequence Y= ACGATTCAGGT: The 
initial reading phrase is ACG ATT CAG, 
followed by CGA TTC AGG and finally by 
GAT TCA GGT.The corresponding encoded 
amino acids for the first frame are [T, I, Q], [R, 
F, R], and [D, S, G] for the second and third 
frames, respectively. Each amino acid is 
described by a unique complex number, as 
shown in Table 1.

4.2 Frequency of Nucleotide Occurrence

According to Table 2 given below, A real value 
is assigned to each nucleotide in the DNA 
sequence Y= ACGATTCAGGT from two 
different datasets. As a result, the correspond-
ing DNA numerical sequence from the 
HMR195 dataset is [0.22750, 0.28312, 
0.27600, 0.22750, 0.21336, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336].

4.3 Atomic Number 
The molecular signature pattern constants over 
a certain DNA sequence Y= ACGATTCAGGT 
are: A=70, G=78, C=58, T=66. As a conse-
quence, the numerical sequence of DNA is [70, 
58, 78, 70, 66, 66, 58, 70, 78, 66, 58, 70, 78, 66, 
58, 70, 78, 66, 58, 70, 78, 66, 58, 70, 78, 66, 58, 
70, 78, 66, 58, 70, 78, 66].

4.4 Electron Ion Interaction Potential (EIIP)
The EIIP indicator sequence values for the 
specific DNA sequence Y= ACGATTCAGGT 
are A= 0.1260, G= 0.0806, C= 0.1340, and T= 
0.1335.As a result, [0.1260, 0.1340, 0.0806, 
0.1260, 0.1335, 0.1335, 0.1340, 0.1260, 
0.0806, 0.0806, 0] is the numerical sequence 
for DNA .1335]

4.5 2-bit Binary
The values of the DNA the 2-bit digital sign 
sequencesY= ACGATTCAGGT are A=00, 
G=10, T=01, C=11 for the DNA sequence Y= 
ACGATTCAGGT.

5  Results 

The detection technique was applied using the 
IIR inverse Chepyshev electronic filter on 20 
human testing genes with single and multiple 
exons downloaded from the HMR195 
dataset.in order to achieve our goal. The acces-
sion numbers, gene descriptions, sequence 
lengths, and true exon locations of the genes 
are all displayed in Table 3.

5.1 Single Exon Gene 
 Both the frequency of nucleotide occurrence 
in exons (FNO) and the 2-bit binary represen-
tation schemes showed a distinct and promi-
nent peak at the precise location of true exons 
(964-1938), without any misleading peaks at 
the individual exon level, when compared to 
EIIP, GCC, and atomic number schemes. Addi-
tionally, the FNO and 2-bit binary representa-
tion schemes demonstrated the highest levels 
of sensitivity, specificity, and correlation 
coefficient for various single exon genes, 
achieving 100 percent, 75.228 percent, and 
0.4994, respectively. Notably, the 2-bit binary 
representation scheme clocked in at 7.38ms, 
which was the quickest processing time when 
compared to the other representation methods.

5.2 Two Exonic Region Gene 
Different genes with two exonic regions were 
used to test the predictive accuracy of different 
representation techniques. Surprisingly, nucle-
otide location identification and sensitivity for 
the FNO and 2-bit binary techniques were 
identical, as shown in Fig. 6. These two 
techniques successfully located the two 
authentic exons (at locations 115–482 and 
1867–2662) within the (GALNR2) gene.

The FNO and 2-bit binary methods fared better 
than other schemes, with specificity scores of 
56.012 percent and 65.02 percent, respectively, 
despite having almost half the specificity of 
single exonic region prediction. Interestingly, 
among all the representation techniques, the 
2-bit binary representation approach had the 
highest correlation coefficient (0.6838) and the 
fastest processing speed.

5.3 Three Exonic and Four Exonic Region 
Gene 
When applying five various recognition 
algorithms to genes with three and four exonic 

regions, the 2-bit binary representation method 
consistently beat other representation methods 
in terms of accuracy. The number of incorrect 
exons was reduced by this method's accurate 
detection of actual nucleotide locations in the 
proper order. As a result, in this particular 
situation, it achieved the highest levels of 
sensitivity, correlation, specificity, and CPU 
run time.

6  Conclusion

The findings demonstrated that the 2-bit binary 
representation method, when compared to 
other representation schemes, significantly 
improved true nucleotide position identifica-
tion accuracy regardless of the number of 
exonic regions in the sequences tested, with 
high levels of sensitivity, correlation coeffi-
cient, specificity, and minimal processing time. 
These results are consistent with other studies 
that applied the 2-bit binary technique in a 
different setting. When applied to human DNA 
sequences for promoter prediction using neural 
networks, it was found that the 2-bit binary 
scheme outperformed the 4-bit binary and 
integer representation methods.

Intriguingly, the 2-bit binary and FNO repre-
sentation schemes both displayed comparable 
high levels of sensitivity, correlation coeffi-
cient, and specificity when compared to other 
schemes, especially at the one and two exonic 
region detection levels, despite using different 
numerical representation techniques. Notably, 
the FNO system is based on statistically 
derived measurements while the 2-bit binary 
scheme relies on the arbitrary assignment of 
nucleotide numbers.

The FNO was outperformed by the 2-bit binary 
representation approach for the detection of 
three and four exonic areas. These results 

corroborate a previous study that found that the 
protein coding region prediction accuracy 
could be improved by using the DFT base 
technique by increasing the frequency of 
nucleotide occurrence and matching numeric 
recognition schemes.
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Two Exon Gene 
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kinase 4 inhibitor 
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2854-3221 

AF092047 4477 SIX3 (Homo sapiens homeobox protein) gene 1275-2080  
3740-3932 

Three Exon Gene 

AF076214 4002 Homo sapiens prophet of PitI (PROPI) gene 310-4 18          
1901-2133 
3191-3529 

AF042001 4034 The zinc finger protein slug (SLUG) gene in Homo 
sapiens 

447-525         
1271-1816 
2724-2905 

AF015224 4206 
Homo sapiens mammaglobin gene 1056-1110       

1713-1900 
3789-3827 

AF036329   
4498 

Gonadotropin-reie.asing hormone in Homo sapiens 2105-2258       
2369-2526 
3372-3422 

AF028233 4575 Homo sapiens distal-less homeobox protein (DLX3) 68- 392           
1483-1673 
3211-3558 

Four Exon Gene 

AF059734 2401 Gene for Homo sapiens homeodomain transcription 
factor (HESXI). 

335-491 
1296-149 
1756-1857 
1953-2051 

AF013711 5388 Gene for Homo sapiens 22 kDa actin-binding 
protein (51122). 

3643-3822 
3935 4112 
44 10- 4512  
4843- 4987
  

AF045999 5895 The rod cGMPphosphodiesterase delta subunit 
(PDEd) gene of Homo sapiens 

159-297 
1257-1382 
2103-2208 
5296-537 

AF037062 6330 Homo sapiens retinol dehydrogenasegene 
    

2372-2681 
2876-3134 
5065-5228 
5501-5724 

AF055475 9531 Homo sapiens GAGE-7B gene   2226 -2309 
2776-2896 
5718-5843 
8279-8301 



1.  Introduction

 Malicious software or malware are 
designed to harm or cause trouble with the 

purpose of gaining unauthorized access to 
computer systems and networks, disrupt 
computer operations, and collect personal 
information without the owner's permission. 
This poses a threat to Internet use, the integrity 

of computer systems, and the privacy of users 
[1]. 

2 Types Of Malwares 

There are many types of malware such as 
viruses, worms, Trojan horses, rootkits, 
backdoors, botnets, spyware, and adware. It's 
important to note that a single malware can 
exhibit characteristics of multiple types simul-
taneously [1]. 

2.1 Virus

A virus is a harmful program that enters a 
computer and causes damage by changing 

data or information. It needs people to open up. 
It can access the system via links, images, 
acquisition or internet download [2]. There are 
many types of viruses:

a) Boot sector virus: Infects the boot of the 
computer. disk (floppy, CD, or hard disk) 
by changing its contents with its own 
harmful code. However, recent advance-
ments in threat detection have helped 
mitigate this virus [3]. 

b) File Virus: This virus infects executable 
files and stays in the computer's memory. 
It tries to infect all programs that load into 
Bad memory by adding viruses to execut-
able files [3].

c) Internal virus: This virus is stored in the 
computer's memory and is opened when 
the operating system starts or something is 
done.

d) Virus not here: This virus is not in 

memory, it has spread to the target and 
transfers control to the infected applica-
tion. It has a search module to find new 
targets and patterns to disseminate new 
knowledge.

e) Macro Virus: This virus, written in macro 
language, spreads through phishing 
e-mails containing malicious information. 
It can also spread by sharing infected files.

f) Polymorphic virus: This virus changes 
its behavior every time it infects new 
information so that it can detect malware 
scanners. Its changing nature or hiding 
process makes it difficult to detect [4].

g) Virus metamorphosis: This virus chang-
es its properties and rules with each virus, 
making search and analysis very difficult.

h) Stealth virus: This virus uses various 
methods to hide in memory, files and boot 
to avoid detection. It affects boot sectors 
and tries to hide changes in data or boot 
sectors. Antivirus software should be able 
to identify hidden viruses by looking at 
memory evidence.

2.2 Trojan

This is a malicious program designed to steal 
sensitive information from the victim's 
computer. It disguises itself as a non-malicious 
program and does not copy or forward other 
files. It survived undetected by antivirus 
software. Trojans can create backdoors, spy, 
send messages, access remote computers, and 
create bot networks for DDoS attacks [3].

1) Spyware: This malware is installed on the 
victim's computer without the victim's 
knowledge and is used to track and gather 
information about the user. Anti-spyware 
tools can be used to prevent spyware [5].

2) Adware: Software that displays ads to 
users and collects information about users' 
marketing preferences. It analyzes users' 
behavior on the Internet to display ads. 
Adware enters the computer through 
freeware, shareware, and infected 
websites [5].

3) Viruses: Viruses are self-replicating 
malware that infects other computers 
without human intervention. Their main 
goal is to damage the network by using the 
bandwidth and increasing the load. There 
are different viruses such as email worms, 
Internet browsing worms and mobile 
worms that are transmitted via Bluetooth 
or mobile communication applications 
[5].

Table 1 Major Malware attacks and their 
impact 

3  Challenges In The Age Of 
Ransomware Analysis

Ransomware has emerged as a formidable 
cybersecurity threat, constantly evolving in 
complexity and sophistication. Malware 
analysts face unique challenges in the age of 
ransomware analysis, necessitating innovative 
approaches to combat this growing menace. 

3.1  Encryption and Obfuscation Tech-
niques
Ransomware strains employ advanced encryp-
tion and obfuscation techniques to evade 
detection and analysis. These techniques make 
it difficult for analysts to analyze the underly-
ing code, hampering efforts to understand the 
ransomware's behavior and develop effective 
countermeasures [6].

3.2  Rapidly Evolving Variants
Ransomware variants evolve at a rapid pace, 
with new strains and families constantly 
emerging. This rapid evolution challenges 
analysts to keep up with the latest techniques 
and develop timely detection and analysis 
methods [7]

3.3  Anti-Analysis Mechanisms
Ransomware incorporates anti-analysis mech
anisms that actively detect and evade virtual 
environments, sandboxes, and debugging 
tools. These mechanisms hinder analysts' 
ability to observe the ransomware's behavior in 
controlled environments [8].

3.4  Stealthy Delivery and Execution
Ransomware employs various stealthy delivery 
and execution techniques, such as fileless 
attacks and exploit kits. These techniques allow 

the malware to infiltrate systems undetected 
and hinder traditional analysis methods [9].

3.5  Data Integrity Risks
Ransomware poses risks to data integrity, as 
decrypting files without the proper decryption 
key may result in permanent loss or corruption 
of data. Analysts must carefully handle ransom-
ware samples to prevent unintended damage 
[10].

4  Best Practices For Ransom-
ware Analysis

To address the challenges posed by ransomware 
analysis, analysts can adopt best practices that 
enhance their effectiveness in detecting, analyz-
ing, and mitigating ransomware threats.

4.1  Dynamic Analysis
Employ dynamic analysis techniques to observe 
the ransomware's behavior in a controlled 
environment, allowing for better understanding 
of its execution flow and potential impact [11].

4.2  Automated Analysis Frameworks
Develop automated analysis frameworks 
that combine behavior-based analysis, static 
analysis, and machine learning techniques 
to expedite detection and classification of 
ransomware strains [12].

4.3 Collaboration and Information Sharing
Foster collaboration among analysts and 
organizations to share insights, indicators of 
compromise (IOCs), and mitigation strategies. 
Collective knowledge can strengthen defenses 
against ransomware attacks [13].

4.4  Threat Intelligence Feeds
Leverage threat intelligence feeds to stay 

c) The use of remote command execution to 
communicate with the attacker.

d) The use of obfuscation techniques to make 
the malware more difficult to analyze.

We will explore static analysis techniques for 
ransomware analysis: file and code analysis 
methods, signature-based detection, code 
deobfuscation and unpacking techniques, and 
malicious document analysis and exploit 
detection.

6  File And Code Analysis 
Methods To Identify 
Ransomware Characteristics

Static analysis involves the examination of 
files and code without executing them. This 
technique allows analysts to uncover vital 
insights about ransomware and its underlying 
characteristics. By scrutinizing file headers, 
metadata, and code structure, researchers can 
identify suspicious activities such as file 
encryption routines, command and control 
communication, or attempts to modify system 
settings. Analyzing ransomware behavior 
patterns is crucial for building detection mech-
anisms and developing effective mitigation 
strategies. This can be done using a tool file, 
which will display the file type and other 
characteristics of the file. For example, the 
following output from the file command shows 
that the file ransomware.exe is a Windows 
executable file:

$ file ransomware.exeransomware.exe: 
PE32 executable for MS Windows (GUI) 
Intel 80386, for MS Windows

Once the file type has been identified, the next 

step is to disassemble the malware code. This 
can be done using a tool like IDA Pro, which 
will display the assembly code for the 
malware. The assembly code can be used to 
identify ransomware characteristics, such as 
the use of encryption algorithms, the presence 
of ransom demands, and the use of remote 
command execution.

7  Signature-based Detection 
And Pattern Matching

Ransomware can also be detected using signa-
ture-based detection and pattern matching. 
Signature-based detection relies on predefined 
patterns or signatures to identify known 
ransomware variants. Analysts create signa-
tures based on unique characteristics or behav-
iors exhibited by specific ransomware 
families. These signatures are then matched 
against files or code samples to detect potential 
infections. Commercial antivirus scanners 
often look for signatures, which are sequences 
of bytes in the malware code, declaring that the 
scanned program is malicious. 
There are three types of malware: simple 
malware, polymorphic malware, and metamor-
phic malware. In simple malware, the 
program's entry points are changed to transfer 
control to the malicious payload. Diagnosis is 
relative if the signature of the virus code is 
visible[26]. While signature-based detection is 
effective against known ransomware strains, it 
may struggle with new or modified variants. 
Continuous updates and expansion of signature 
databases are necessary to combat emerging 
threats effectively. Pattern matching 
techniques analyze the structure, behavior, and 
code of ransomware samples to identify 
common patterns or characteristics associated 
with specific ransomware families. YARA is 

an efficient and optimized tool for pattern 
matching . Signature-based detection and 
pattern matching are both effective methods 
for detecting ransomware. However, they 
canbe defeated by ransomware authors who 
use obfuscation techniques to make their 
malware more difficult to analyze [26].
 
8  Unpacking Techniques

Ransomware authors often employ obfusca-
tion and packing techniques to evade detection 
and analysis. Obfuscation hides information so 
others cannot find the true meaning. Software 
vendors use obfuscation techniques to make 
software harder to reverse. Malware is better to 
write this down and uses many modifications 
to confuse malicious programs, making it 
difficult to reverse engineer the malware so 
that it cannot recognize its malicious intent 
[27]. 

Unpacking, on the other hand, refers to the 
process of extracting and reconstructing the 
original code from its packed form. Code 
deobfuscation is a technique for reversing the 
effects of obfuscation. This can be done using 
a variety of tools and techniques, including 
manual deobfuscation, automated deobfusca-
tion tools, and dynamic analysis. Static analy-
sis techniques include identifying and deobfus-
cating these code transformations, allowing 
researchers to gain insight into the ransom-
ware's inner workings, encryption algorithms, 
and communication protocols. Deobfuscation 
improves when static and dynamic analyses 
are combined [28].

9  Malicious Document Analysis 
And Exploit Detection

Portable Document Format (PDF) is one of the 
most popular file formats for data exchange. 
The origin of the PDF format has made PDF 
files the primary vector for malware distribu-
tion, as the targets of attackers have recently 
changed from server-side attacks to client-side 
attacks [29].  Basically, the corrupt PDF file 
can be thought of as the reincarnation of the 
macro virus that infected Microsoft Office and 
other products from the mid-1990s to the early 
2000s [30]. Static analysis techniques play a 
vital role in analyzing these documents to 
detect potential exploits or malicious macros. 
By dissecting the document's structure, exam-
ining embedded objects, and analyzing script 
or macro code, analysts can uncover the 
ransomware's delivery mechanisms, payloads, 
and potential vulnerabilities that attackers 
exploit. After reading the input data, MDScan 
analyzes its structure and removes all recog-
nized objects placed in hierarchies. The 
complexity and ambiguity of the PDF specifi-
cation makes this process a daunting task. 
Also, most PDF viewers (like Adobe Reader) 
even try to render the document incorrectly 
and often do not conform to the PDF specifica-
tion. This gives attackers more room to 
compromise data analysis, and they can use 
this complexity to uncover patterns of 
malicious PDF files. Exploit detection is a 
technique for identifying malicious documents 
that contain embedded macros or scripts that 
can be executed when the document is opened. 
Exploit detection can be done using a variety 
of tools and techniques, including signa-
ture-based detection, pattern matching, and 
dynamic analysis [31].

10 Dynamic Analysis 
Techniques For Ransomware 
Analysis

Ransomware analysis is essential for investi-
gating ransomware attacks and understanding 
the actions and behavior of malicious 
campaigns. It includes three main categories: 
static analysis, dynamic analysis, and hybrid 
analysis. The analysis seems to focus on 
analyzing the ransomware's code and features 
without success. Dynamic analysis involves 
running the ransomware in a controlled 
environment to monitor its behavior in a timely 
manner. Hybrid analysis combines static and 
dynamic analysis techniques. Dynamic analy-
sis is a great way to achieve success by writing 
bad code. Malicious code written in a 
controlled environment and exposed to 
features captured by the controlled environ-
ment [32,33]. 

A system called EldeRan uses dynamic analy-
sis to monitor what the application is doing. It 
captures API calls and strings at runtime to 
monitor the malicious behavior of ransomware 
applications. Applications are monitored 
during installation to identify ransomware 
signatures [34].

11  Research On Dynamic 
Analysis Of Ransomware Using 
Machine Learning

The system aims to perform an in-depth analy-
sis by recording system calls. Introduce 
optimization techniques to minimize API calls 
and train machine learning classes on data to 
optimize system calls [35].

A multi-layered ransomware detection system 

based on machine learning works in three 
phases: identification, learning, and discovery. 
Perform behavioral analysis to identify 
unknown ransomware variants [36].

Build a real-time ransomware detection system 
integrated with the Integrated Clinical 
Environment (ICE) to protect a hospital 
network. The system detected and isolated 
victim devices to prevent the spread of the 
attack [37].

12 Conclusion

It is concluded that ransomware analysis faces 
different challenges due to its tactics and 
challenging nature employed by cyber crimi-
nals. The key challenges are evasion 
techniques, advanced encryption, dynamic 
behavior, zero-day exploits, anti-analysis 
mechanism and most importantly lack of 
resources to follow up the latest track. Security 
researchers have been continuously finding out 
AI solutions, relating with software vendors 
and produce effective measures against 
ransomware attacks. Sometimes it is difficult 
for individuals and organizations to stay 
vigilant and use robust measures and update 
their defense to reduce the risk of falling victim 
to ransomware. 

In addition to this, the constantly updation of 
nature of ransomware requires security 
researchers to stay updated and work on 
adaption of latest techniques to fight against 
new strains strongly. Thus, these new changes 
require collaboration, continuous research, 
huge investments and proper planning to stay 
one step ahead of cyber criminals. Effective 
Ransomware Analysis is about behavior analy-
sis, combination of segmentation and isolation 

skills, reverse engineering and high intelli-
gence. By analyzing these ransomware 
samples in controlled environments such as 
sandboxes, virtual machines can prevent 
malwaring from infecting the systems. Behav-
ior analysis can detect malicious pursuit and 
alleviate ransomware campaigns. 

Furthermore, to apply security measures in 
organizations prevent them from ransomware 
attacks. Regular upgradation, backup plan and 
strong passwords can help the organizations on 
how to analyze ransomware and reduce its 
impact. Static analysis techniques serve as a 
fundamental pillar in the fight against ransom-
ware attacks. By employing file and code 
analysis methods, signature-based detection, 
code deobfuscation and unpacking techniques, 
and malicious document analysis, security 
analysts can effectively identify ransomware 
characteristics, detect infections, and under-
stand the underlying mechanisms used by 
attackers. As ransomware continues to evolve, 
it is imperative to stay abreast of the latest 
static analysis techniques and continuously 
enhance detection mechanisms to mitigate the 
impact of these malicious threats. 

Dynamic analysis techniques are essential for 
analyzing and understanding the behavior of 
ransomware. Through sandboxing, behavior 
monitoring, traffic analysis, memory analysis, 
dynamic code analysis, and runtime environ-
ment analysis, analysts can gain valuable 
insights into a ransomware's capabilities, 
evasion techniques, communication patterns, 
and potential impact on a system. These 
techniques allow for a comprehensive under-
standing of the ransomware's functionalities 
and aid in the development of effective 
countermeasures and mitigation strategies.
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updated on the latest ransomware variants, 
their associated indicators, and attack patterns. 
This information can enhance the accuracy and 
efficacy of analysis efforts [14].

4.5 Network and Endpoint Monitoring
Implement robust network and endpoint 
monitoring solutions to detect and respond to 
ransomware activities promptly. Early detection 
can mitigate the impact of an attack and aid in 
subsequent analysis [15].

4.6 Regular Backup and Recovery
Establish a good backup strategy to regularly 
recover important data, enabling rapid recovery 
in the event of a ransomware attack. This 
practice minimizes the potential impact of 
ransomware on data integrity[16].

4.7 Security Awareness and Training
Provide security awareness and regular training 
to educate employees about ransomware 
threats, phishing techniques, and security prac-
tices. This will help create a safe environment 
[17].

4.8  Incident Response Planning
Have an incident response plan that outlines 
the steps to take in the event of a ransomware 
incident. This allows for quick coordination 
to resolve the issue and facilitates follow-up. 
[18].

4.9 Reverse Engineering and Code Analysis
Utilize reverse engineering and code analysis 
techniques to dissect ransomware samples, 
understand their underlying functionalities, and 
identify vulnerabilities that can be exploited for 
analysis and mitigation [19].

4.10 Continuous Learning and Research

Stay abreast of the latest advancements in 
ransomware analysis techniques and actively 
participate in ongoing research and knowledge 
sharing forums. Continuous learning ensures 
analysts remain equipped to tackle emerging 
ransomware challenges [20].

5  Static Analysis Techniques 
For Ransomware Analysis

Over the last few years, malware has continued 
to evolve in terms of the complexity of 
malware cloaking and the variety of attack 
vectors [21]. Ransomware is one of the biggest 
and fastest growing threats facing the digital 
world [22]. Ransomware usually works by 
locking a desktop computer or accessing, 
overwriting, or deleting the user's data to 
prevent the user from accessing the computer 
[23]. To counter changing cyber threats, securi-
ty researchers and analysts are turning to static 
analysis techniques as a powerful tool for 
ransomware detection and analysis. Static 
testing is the process of analysing program 
code without running the code. We analysed 
the ransomware samples using the PEView 
program and the PE parser. PEFile analysis is 
an essential part of static analysis [24]. This 
can be done by disassembling the malware 
code, examining the file header, and searching 
for strings and other indicators of malicious 
activity. Static analysis is the analysis of code 
that is not executed at write time. [25]. Static 
analysis can be used to identify ransomware 
characteristics, such as:

a) The use of encryption algorithms to 
encrypt victim files.

b) The presence of ransom demands.

1.  Introduction

 Short exon detection is a formidable 
issue for bioinformatics and becomes more 
complicated as becomes more complicated 
side of short intron. To categorize these exonic 
regions accurately, it’s essential to create 
computer methods that are both more efficient 
and dependable. This is necessary because 
many of the existing methods do not handle the 

small exons separated by brief introns effec-
tively. The methods for identifying exons are 
based on the quest for material, signal or 
resemblance. For classification of exon 
disunited by short intron has been divided into 
two methods; Model independent and model 
dependent [1]. The DNA coding model 
frequently relies on probability, enabling the 
measurement of the likelihood of a DNA 
sequence because it encodes the sequence. 

Although the values (scores) of a specific data 
code statist are calculable in a variety of differ-
ent ways in reality, we will measure scores 
based on this probability for model-based 
coding statistics. In fact, provided the query 
sequence, under the coding model and an 
alternate model or DNA non coding we can 
determine the likelihood of the sequence. The 
model-based coding statistics may catch more 
of the particular DNA-coding characteristics, 
more as the model is more complex i.e. more 
parameters dependent. Model based coding 
statistics can also be more effective in distin-
guishing against non-coding DNA coding. 
However, model based coding statistics 
involve a representative DNA coding sample 
from the species included in the estimation of 
model parameters (probabilities). The more 
intricate the model, the more susceptible it is to 
sample distortion and dimension. Model 
independent coding statistics, however, 
capture only the "universal" characteristics of 
DNA coding, as no sample is needed and 
where coding regions of the species being 
considered are not identified, they may be 
used[2]. In [3], they have used Markov Chain 
to identify the sequences in DNA. Markov 
chain models of DNA and its use for Bayesian 
gene recognition algorithms for protein coding 
sequences. Gene Scout is the other method for 
detecting DNA sequences that used Markov 
Chain. In recent work, the local spectrum of 
the first intrinsic mode feature was determined 
to detect short exons. A technique focused on 
filters was also documented in order to detect 
short exons [4]. However, this method is based 
on the model by evaluating the fictitious EIIP 
values the fictitious EIIP values the fictitious 
EIIP values optimised and the weights for the 
four filtered binary sequences. Depending on 
the study of the windows form and scale, the 

efficiency of DSP bases that DFT can be used 
to analyse the spectral properties of DNA 
sequence depends [5]. 

2  Literature Review 

A more concise timeframe can detect short 
exons, but not long exon scan lead to further 
false alarm. On the other side, wide windows 
can lead to fewer fake detections, however 
short exons are lacking. Multiscale analysis 
was conducted by MGWT-based approach [6]. 
Marhon & Kremer recently suggested the 
Broad Range Wavelet Window (WRWW) 
approach to the forecasting of protein coding 
areas in a recent work [7].  In order to deal with 
the problem of window size. A technique to fix 
the issue of window size selection was also 
introduced to adapt the window length [8]. The 
WRWW approach has been shown to operate 
effectively over a number of exon lengths 
through simulation experiments. The effective-
ness of the methods used for detecting exons 
has not yet been assessed when there is a brief 
intron separating two adjacent short exons. 
Furthermore, no computer model to identify 
alternate splicing that could occur due to intron 
retention has been investigated for implemen-
tation of the annotation of certain regions in 
eukaryotic DNA (IR)[9]. In IR, part of the gene 
is not encrypted and can join premature stop 
codons in the center of a mature transcription. 
In an IR, numerous factors such as weak splice 
sites, short introns within genes, elevated 
levels of exonic splicing silencing, and lower 
density can contribute to the occurrence of IR 
[10].

Additionally, the IR is linked to short introns 
(274 nucleotides) and, if retention takes place, 
all neighboring exons, which are about 135 nt 

long, are linked to the exon retained, creating 
an exon retention intron (EIE) exon that is 544 
nt long. In order to find IR-likely sites, short 
exons separated by short introns can be identi-
fied using computer-based methods.

3  Dna Mapping Scheme 

"Deoxyribonucleic acid (DNA)" sequences are 
important for the understanding of living 
organisms, and in these macromolecules, much 
of the knowledge concerning heritable evolu-
tion and species growth is stored. Prokaryotes 
and eukaryotes are possible for organisms. 
DNA is free inside the cell in prokaryotes 
while DNA is retained within the nucleus in 
eukaryotes and is disassociated by a nuclear 
memebrane from the rest of the cell. Four 
major chemicals, thymine (T), cytosine(C) 
guanine (G) and adenine (A)  form the DNA 
chain . The determination of protein coating 
regions (exons) in eucaryotic gene structures is 
one of the present problems in studying the 
DNA sequences. Both probabilistic and deter-
ministic approaches are employed to catego-
rize protein coding regions or exons in eukary-
otic cells. Probabilistic methods have high 
precision, but rely on model and require 
adequate prediction training data. In the other 
hand, predictability of detergent methods is 
comparatively lower but model-independent 
and best suited for study of uncharacterized 
genomic sequences, where prior details of the 
studied species does not exist. 

The base-coding region contains a pronounced 
period-3 segment attributed to the codon struc-
ture utilized in the translation of the base 

sequence into amino acids. Most deterrent 
techniques use the "Discrete Fourier Trans-
form" to classify the period-3 portion by 
spectral analysis of the DNA sequences. A 
variety of algorithms were designed to classify 
protein-coding regions based on the period-3 
property. DFT-based approaches efficiency 
depends on the duration of the window[11]. In 
order to classify protein-coding areas, a system 
based on "Modified Gabor-wavelet transform" 
(MGWT) was implemented. Depending on 
window length, the efficiency of the MGWT is 
higher than the DFT based approaches[6].

There are four significant shortcomings in the 
present method for representing and aligning 
new input genomes with the reference genome. 
To begin, even though several algorithmic 
implementations are widely used, there is no 
established standard method for aligning DNA 
bases from a newly sequenced input genome 
with positions in the reference genome [12].

Secondly, various mapping procedures 
encounter a challenge when there are (almost) 
equally valid mappings to multiple separate 
positions within the reference genome, a 
situation often referred to as the "multi-map-
ping problem." This arises because of the 
inherent repetition of larger subsequences in 
the reference genome. 

Thirdly, the GRC reference genome encom-
passes only a limited portion of common 
segregating genome variations, with the 
remainder scattered across various formats and 
data sources like the Single Nucleotide 
Polymorphism Database (dbSNP) and the 

1000 Genomes Project. Consequently, there is 
presently no singular, all-encompassing 
resource for common human genome varia-
tions, and there is a lack of consistent naming 
or identification conventions [13].

Lastly, whenever a new reference genome 
assembly is issued, updates are made to the 
reference genome's coordinates, necessitating 
the remapping of all associated data. This 
remapping process is often the most computa-
tionally intensive stage in a genome analysis 
pipeline. It can be a time-consuming task, 
taking weeks to complete and consuming 
substantial computational resources, particu-
larly when dealing with a large set of genomes.

4  Representation Of DNA

The following five representation methods 
were used to numerically represent the 
sequences of the selected genes DNA:

4.1 Genetic Code Context (GCC)
The following triple codons are found in the 
various reading frameworks for a particular 
DNA sequence Y= ACGATTCAGGT: The 
initial reading phrase is ACG ATT CAG, 
followed by CGA TTC AGG and finally by 
GAT TCA GGT.The corresponding encoded 
amino acids for the first frame are [T, I, Q], [R, 
F, R], and [D, S, G] for the second and third 
frames, respectively. Each amino acid is 
described by a unique complex number, as 
shown in Table 1.

4.2 Frequency of Nucleotide Occurrence

According to Table 2 given below, A real value 
is assigned to each nucleotide in the DNA 
sequence Y= ACGATTCAGGT from two 
different datasets. As a result, the correspond-
ing DNA numerical sequence from the 
HMR195 dataset is [0.22750, 0.28312, 
0.27600, 0.22750, 0.21336, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336].

4.3 Atomic Number 
The molecular signature pattern constants over 
a certain DNA sequence Y= ACGATTCAGGT 
are: A=70, G=78, C=58, T=66. As a conse-
quence, the numerical sequence of DNA is [70, 
58, 78, 70, 66, 66, 58, 70, 78, 66, 58, 70, 78, 66, 
58, 70, 78, 66, 58, 70, 78, 66, 58, 70, 78, 66, 58, 
70, 78, 66, 58, 70, 78, 66].

4.4 Electron Ion Interaction Potential (EIIP)
The EIIP indicator sequence values for the 
specific DNA sequence Y= ACGATTCAGGT 
are A= 0.1260, G= 0.0806, C= 0.1340, and T= 
0.1335.As a result, [0.1260, 0.1340, 0.0806, 
0.1260, 0.1335, 0.1335, 0.1340, 0.1260, 
0.0806, 0.0806, 0] is the numerical sequence 
for DNA .1335]

4.5 2-bit Binary
The values of the DNA the 2-bit digital sign 
sequencesY= ACGATTCAGGT are A=00, 
G=10, T=01, C=11 for the DNA sequence Y= 
ACGATTCAGGT.

5  Results 

The detection technique was applied using the 
IIR inverse Chepyshev electronic filter on 20 
human testing genes with single and multiple 
exons downloaded from the HMR195 
dataset.in order to achieve our goal. The acces-
sion numbers, gene descriptions, sequence 
lengths, and true exon locations of the genes 
are all displayed in Table 3.
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5.1 Single Exon Gene 
 Both the frequency of nucleotide occurrence 
in exons (FNO) and the 2-bit binary represen-
tation schemes showed a distinct and promi-
nent peak at the precise location of true exons 
(964-1938), without any misleading peaks at 
the individual exon level, when compared to 
EIIP, GCC, and atomic number schemes. Addi-
tionally, the FNO and 2-bit binary representa-
tion schemes demonstrated the highest levels 
of sensitivity, specificity, and correlation 
coefficient for various single exon genes, 
achieving 100 percent, 75.228 percent, and 
0.4994, respectively. Notably, the 2-bit binary 
representation scheme clocked in at 7.38ms, 
which was the quickest processing time when 
compared to the other representation methods.

5.2 Two Exonic Region Gene 
Different genes with two exonic regions were 
used to test the predictive accuracy of different 
representation techniques. Surprisingly, nucle-
otide location identification and sensitivity for 
the FNO and 2-bit binary techniques were 
identical, as shown in Fig. 6. These two 
techniques successfully located the two 
authentic exons (at locations 115–482 and 
1867–2662) within the (GALNR2) gene.

The FNO and 2-bit binary methods fared better 
than other schemes, with specificity scores of 
56.012 percent and 65.02 percent, respectively, 
despite having almost half the specificity of 
single exonic region prediction. Interestingly, 
among all the representation techniques, the 
2-bit binary representation approach had the 
highest correlation coefficient (0.6838) and the 
fastest processing speed.

5.3 Three Exonic and Four Exonic Region 
Gene 
When applying five various recognition 
algorithms to genes with three and four exonic 

regions, the 2-bit binary representation method 
consistently beat other representation methods 
in terms of accuracy. The number of incorrect 
exons was reduced by this method's accurate 
detection of actual nucleotide locations in the 
proper order. As a result, in this particular 
situation, it achieved the highest levels of 
sensitivity, correlation, specificity, and CPU 
run time.

6  Conclusion

The findings demonstrated that the 2-bit binary 
representation method, when compared to 
other representation schemes, significantly 
improved true nucleotide position identifica-
tion accuracy regardless of the number of 
exonic regions in the sequences tested, with 
high levels of sensitivity, correlation coeffi-
cient, specificity, and minimal processing time. 
These results are consistent with other studies 
that applied the 2-bit binary technique in a 
different setting. When applied to human DNA 
sequences for promoter prediction using neural 
networks, it was found that the 2-bit binary 
scheme outperformed the 4-bit binary and 
integer representation methods.

Intriguingly, the 2-bit binary and FNO repre-
sentation schemes both displayed comparable 
high levels of sensitivity, correlation coeffi-
cient, and specificity when compared to other 
schemes, especially at the one and two exonic 
region detection levels, despite using different 
numerical representation techniques. Notably, 
the FNO system is based on statistically 
derived measurements while the 2-bit binary 
scheme relies on the arbitrary assignment of 
nucleotide numbers.

The FNO was outperformed by the 2-bit binary 
representation approach for the detection of 
three and four exonic areas. These results 

corroborate a previous study that found that the 
protein coding region prediction accuracy 
could be improved by using the DFT base 
technique by increasing the frequency of 
nucleotide occurrence and matching numeric 
recognition schemes.
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1.  Introduction

 Malicious software or malware are 
designed to harm or cause trouble with the 

purpose of gaining unauthorized access to 
computer systems and networks, disrupt 
computer operations, and collect personal 
information without the owner's permission. 
This poses a threat to Internet use, the integrity 

of computer systems, and the privacy of users 
[1]. 

2 Types Of Malwares 

There are many types of malware such as 
viruses, worms, Trojan horses, rootkits, 
backdoors, botnets, spyware, and adware. It's 
important to note that a single malware can 
exhibit characteristics of multiple types simul-
taneously [1]. 

2.1 Virus

A virus is a harmful program that enters a 
computer and causes damage by changing 

data or information. It needs people to open up. 
It can access the system via links, images, 
acquisition or internet download [2]. There are 
many types of viruses:

a) Boot sector virus: Infects the boot of the 
computer. disk (floppy, CD, or hard disk) 
by changing its contents with its own 
harmful code. However, recent advance-
ments in threat detection have helped 
mitigate this virus [3]. 

b) File Virus: This virus infects executable 
files and stays in the computer's memory. 
It tries to infect all programs that load into 
Bad memory by adding viruses to execut-
able files [3].

c) Internal virus: This virus is stored in the 
computer's memory and is opened when 
the operating system starts or something is 
done.

d) Virus not here: This virus is not in 

memory, it has spread to the target and 
transfers control to the infected applica-
tion. It has a search module to find new 
targets and patterns to disseminate new 
knowledge.

e) Macro Virus: This virus, written in macro 
language, spreads through phishing 
e-mails containing malicious information. 
It can also spread by sharing infected files.

f) Polymorphic virus: This virus changes 
its behavior every time it infects new 
information so that it can detect malware 
scanners. Its changing nature or hiding 
process makes it difficult to detect [4].

g) Virus metamorphosis: This virus chang-
es its properties and rules with each virus, 
making search and analysis very difficult.

h) Stealth virus: This virus uses various 
methods to hide in memory, files and boot 
to avoid detection. It affects boot sectors 
and tries to hide changes in data or boot 
sectors. Antivirus software should be able 
to identify hidden viruses by looking at 
memory evidence.

2.2 Trojan

This is a malicious program designed to steal 
sensitive information from the victim's 
computer. It disguises itself as a non-malicious 
program and does not copy or forward other 
files. It survived undetected by antivirus 
software. Trojans can create backdoors, spy, 
send messages, access remote computers, and 
create bot networks for DDoS attacks [3].

1) Spyware: This malware is installed on the 
victim's computer without the victim's 
knowledge and is used to track and gather 
information about the user. Anti-spyware 
tools can be used to prevent spyware [5].

2) Adware: Software that displays ads to 
users and collects information about users' 
marketing preferences. It analyzes users' 
behavior on the Internet to display ads. 
Adware enters the computer through 
freeware, shareware, and infected 
websites [5].

3) Viruses: Viruses are self-replicating 
malware that infects other computers 
without human intervention. Their main 
goal is to damage the network by using the 
bandwidth and increasing the load. There 
are different viruses such as email worms, 
Internet browsing worms and mobile 
worms that are transmitted via Bluetooth 
or mobile communication applications 
[5].

Table 1 Major Malware attacks and their 
impact 

3  Challenges In The Age Of 
Ransomware Analysis

Ransomware has emerged as a formidable 
cybersecurity threat, constantly evolving in 
complexity and sophistication. Malware 
analysts face unique challenges in the age of 
ransomware analysis, necessitating innovative 
approaches to combat this growing menace. 

3.1  Encryption and Obfuscation Tech-
niques
Ransomware strains employ advanced encryp-
tion and obfuscation techniques to evade 
detection and analysis. These techniques make 
it difficult for analysts to analyze the underly-
ing code, hampering efforts to understand the 
ransomware's behavior and develop effective 
countermeasures [6].

3.2  Rapidly Evolving Variants
Ransomware variants evolve at a rapid pace, 
with new strains and families constantly 
emerging. This rapid evolution challenges 
analysts to keep up with the latest techniques 
and develop timely detection and analysis 
methods [7]

3.3  Anti-Analysis Mechanisms
Ransomware incorporates anti-analysis mech
anisms that actively detect and evade virtual 
environments, sandboxes, and debugging 
tools. These mechanisms hinder analysts' 
ability to observe the ransomware's behavior in 
controlled environments [8].

3.4  Stealthy Delivery and Execution
Ransomware employs various stealthy delivery 
and execution techniques, such as fileless 
attacks and exploit kits. These techniques allow 

the malware to infiltrate systems undetected 
and hinder traditional analysis methods [9].

3.5  Data Integrity Risks
Ransomware poses risks to data integrity, as 
decrypting files without the proper decryption 
key may result in permanent loss or corruption 
of data. Analysts must carefully handle ransom-
ware samples to prevent unintended damage 
[10].

4  Best Practices For Ransom-
ware Analysis

To address the challenges posed by ransomware 
analysis, analysts can adopt best practices that 
enhance their effectiveness in detecting, analyz-
ing, and mitigating ransomware threats.

4.1  Dynamic Analysis
Employ dynamic analysis techniques to observe 
the ransomware's behavior in a controlled 
environment, allowing for better understanding 
of its execution flow and potential impact [11].

4.2  Automated Analysis Frameworks
Develop automated analysis frameworks 
that combine behavior-based analysis, static 
analysis, and machine learning techniques 
to expedite detection and classification of 
ransomware strains [12].

4.3 Collaboration and Information Sharing
Foster collaboration among analysts and 
organizations to share insights, indicators of 
compromise (IOCs), and mitigation strategies. 
Collective knowledge can strengthen defenses 
against ransomware attacks [13].

4.4  Threat Intelligence Feeds
Leverage threat intelligence feeds to stay 

c) The use of remote command execution to 
communicate with the attacker.

d) The use of obfuscation techniques to make 
the malware more difficult to analyze.

We will explore static analysis techniques for 
ransomware analysis: file and code analysis 
methods, signature-based detection, code 
deobfuscation and unpacking techniques, and 
malicious document analysis and exploit 
detection.

6  File And Code Analysis 
Methods To Identify 
Ransomware Characteristics

Static analysis involves the examination of 
files and code without executing them. This 
technique allows analysts to uncover vital 
insights about ransomware and its underlying 
characteristics. By scrutinizing file headers, 
metadata, and code structure, researchers can 
identify suspicious activities such as file 
encryption routines, command and control 
communication, or attempts to modify system 
settings. Analyzing ransomware behavior 
patterns is crucial for building detection mech-
anisms and developing effective mitigation 
strategies. This can be done using a tool file, 
which will display the file type and other 
characteristics of the file. For example, the 
following output from the file command shows 
that the file ransomware.exe is a Windows 
executable file:

$ file ransomware.exeransomware.exe: 
PE32 executable for MS Windows (GUI) 
Intel 80386, for MS Windows

Once the file type has been identified, the next 

step is to disassemble the malware code. This 
can be done using a tool like IDA Pro, which 
will display the assembly code for the 
malware. The assembly code can be used to 
identify ransomware characteristics, such as 
the use of encryption algorithms, the presence 
of ransom demands, and the use of remote 
command execution.

7  Signature-based Detection 
And Pattern Matching

Ransomware can also be detected using signa-
ture-based detection and pattern matching. 
Signature-based detection relies on predefined 
patterns or signatures to identify known 
ransomware variants. Analysts create signa-
tures based on unique characteristics or behav-
iors exhibited by specific ransomware 
families. These signatures are then matched 
against files or code samples to detect potential 
infections. Commercial antivirus scanners 
often look for signatures, which are sequences 
of bytes in the malware code, declaring that the 
scanned program is malicious. 
There are three types of malware: simple 
malware, polymorphic malware, and metamor-
phic malware. In simple malware, the 
program's entry points are changed to transfer 
control to the malicious payload. Diagnosis is 
relative if the signature of the virus code is 
visible[26]. While signature-based detection is 
effective against known ransomware strains, it 
may struggle with new or modified variants. 
Continuous updates and expansion of signature 
databases are necessary to combat emerging 
threats effectively. Pattern matching 
techniques analyze the structure, behavior, and 
code of ransomware samples to identify 
common patterns or characteristics associated 
with specific ransomware families. YARA is 

an efficient and optimized tool for pattern 
matching . Signature-based detection and 
pattern matching are both effective methods 
for detecting ransomware. However, they 
canbe defeated by ransomware authors who 
use obfuscation techniques to make their 
malware more difficult to analyze [26].
 
8  Unpacking Techniques

Ransomware authors often employ obfusca-
tion and packing techniques to evade detection 
and analysis. Obfuscation hides information so 
others cannot find the true meaning. Software 
vendors use obfuscation techniques to make 
software harder to reverse. Malware is better to 
write this down and uses many modifications 
to confuse malicious programs, making it 
difficult to reverse engineer the malware so 
that it cannot recognize its malicious intent 
[27]. 

Unpacking, on the other hand, refers to the 
process of extracting and reconstructing the 
original code from its packed form. Code 
deobfuscation is a technique for reversing the 
effects of obfuscation. This can be done using 
a variety of tools and techniques, including 
manual deobfuscation, automated deobfusca-
tion tools, and dynamic analysis. Static analy-
sis techniques include identifying and deobfus-
cating these code transformations, allowing 
researchers to gain insight into the ransom-
ware's inner workings, encryption algorithms, 
and communication protocols. Deobfuscation 
improves when static and dynamic analyses 
are combined [28].

9  Malicious Document Analysis 
And Exploit Detection

Portable Document Format (PDF) is one of the 
most popular file formats for data exchange. 
The origin of the PDF format has made PDF 
files the primary vector for malware distribu-
tion, as the targets of attackers have recently 
changed from server-side attacks to client-side 
attacks [29].  Basically, the corrupt PDF file 
can be thought of as the reincarnation of the 
macro virus that infected Microsoft Office and 
other products from the mid-1990s to the early 
2000s [30]. Static analysis techniques play a 
vital role in analyzing these documents to 
detect potential exploits or malicious macros. 
By dissecting the document's structure, exam-
ining embedded objects, and analyzing script 
or macro code, analysts can uncover the 
ransomware's delivery mechanisms, payloads, 
and potential vulnerabilities that attackers 
exploit. After reading the input data, MDScan 
analyzes its structure and removes all recog-
nized objects placed in hierarchies. The 
complexity and ambiguity of the PDF specifi-
cation makes this process a daunting task. 
Also, most PDF viewers (like Adobe Reader) 
even try to render the document incorrectly 
and often do not conform to the PDF specifica-
tion. This gives attackers more room to 
compromise data analysis, and they can use 
this complexity to uncover patterns of 
malicious PDF files. Exploit detection is a 
technique for identifying malicious documents 
that contain embedded macros or scripts that 
can be executed when the document is opened. 
Exploit detection can be done using a variety 
of tools and techniques, including signa-
ture-based detection, pattern matching, and 
dynamic analysis [31].

10 Dynamic Analysis 
Techniques For Ransomware 
Analysis

Ransomware analysis is essential for investi-
gating ransomware attacks and understanding 
the actions and behavior of malicious 
campaigns. It includes three main categories: 
static analysis, dynamic analysis, and hybrid 
analysis. The analysis seems to focus on 
analyzing the ransomware's code and features 
without success. Dynamic analysis involves 
running the ransomware in a controlled 
environment to monitor its behavior in a timely 
manner. Hybrid analysis combines static and 
dynamic analysis techniques. Dynamic analy-
sis is a great way to achieve success by writing 
bad code. Malicious code written in a 
controlled environment and exposed to 
features captured by the controlled environ-
ment [32,33]. 

A system called EldeRan uses dynamic analy-
sis to monitor what the application is doing. It 
captures API calls and strings at runtime to 
monitor the malicious behavior of ransomware 
applications. Applications are monitored 
during installation to identify ransomware 
signatures [34].

11  Research On Dynamic 
Analysis Of Ransomware Using 
Machine Learning

The system aims to perform an in-depth analy-
sis by recording system calls. Introduce 
optimization techniques to minimize API calls 
and train machine learning classes on data to 
optimize system calls [35].

A multi-layered ransomware detection system 

based on machine learning works in three 
phases: identification, learning, and discovery. 
Perform behavioral analysis to identify 
unknown ransomware variants [36].

Build a real-time ransomware detection system 
integrated with the Integrated Clinical 
Environment (ICE) to protect a hospital 
network. The system detected and isolated 
victim devices to prevent the spread of the 
attack [37].

12 Conclusion

It is concluded that ransomware analysis faces 
different challenges due to its tactics and 
challenging nature employed by cyber crimi-
nals. The key challenges are evasion 
techniques, advanced encryption, dynamic 
behavior, zero-day exploits, anti-analysis 
mechanism and most importantly lack of 
resources to follow up the latest track. Security 
researchers have been continuously finding out 
AI solutions, relating with software vendors 
and produce effective measures against 
ransomware attacks. Sometimes it is difficult 
for individuals and organizations to stay 
vigilant and use robust measures and update 
their defense to reduce the risk of falling victim 
to ransomware. 

In addition to this, the constantly updation of 
nature of ransomware requires security 
researchers to stay updated and work on 
adaption of latest techniques to fight against 
new strains strongly. Thus, these new changes 
require collaboration, continuous research, 
huge investments and proper planning to stay 
one step ahead of cyber criminals. Effective 
Ransomware Analysis is about behavior analy-
sis, combination of segmentation and isolation 

skills, reverse engineering and high intelli-
gence. By analyzing these ransomware 
samples in controlled environments such as 
sandboxes, virtual machines can prevent 
malwaring from infecting the systems. Behav-
ior analysis can detect malicious pursuit and 
alleviate ransomware campaigns. 

Furthermore, to apply security measures in 
organizations prevent them from ransomware 
attacks. Regular upgradation, backup plan and 
strong passwords can help the organizations on 
how to analyze ransomware and reduce its 
impact. Static analysis techniques serve as a 
fundamental pillar in the fight against ransom-
ware attacks. By employing file and code 
analysis methods, signature-based detection, 
code deobfuscation and unpacking techniques, 
and malicious document analysis, security 
analysts can effectively identify ransomware 
characteristics, detect infections, and under-
stand the underlying mechanisms used by 
attackers. As ransomware continues to evolve, 
it is imperative to stay abreast of the latest 
static analysis techniques and continuously 
enhance detection mechanisms to mitigate the 
impact of these malicious threats. 

Dynamic analysis techniques are essential for 
analyzing and understanding the behavior of 
ransomware. Through sandboxing, behavior 
monitoring, traffic analysis, memory analysis, 
dynamic code analysis, and runtime environ-
ment analysis, analysts can gain valuable 
insights into a ransomware's capabilities, 
evasion techniques, communication patterns, 
and potential impact on a system. These 
techniques allow for a comprehensive under-
standing of the ransomware's functionalities 
and aid in the development of effective 
countermeasures and mitigation strategies.
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updated on the latest ransomware variants, 
their associated indicators, and attack patterns. 
This information can enhance the accuracy and 
efficacy of analysis efforts [14].

4.5 Network and Endpoint Monitoring
Implement robust network and endpoint 
monitoring solutions to detect and respond to 
ransomware activities promptly. Early detection 
can mitigate the impact of an attack and aid in 
subsequent analysis [15].

4.6 Regular Backup and Recovery
Establish a good backup strategy to regularly 
recover important data, enabling rapid recovery 
in the event of a ransomware attack. This 
practice minimizes the potential impact of 
ransomware on data integrity[16].

4.7 Security Awareness and Training
Provide security awareness and regular training 
to educate employees about ransomware 
threats, phishing techniques, and security prac-
tices. This will help create a safe environment 
[17].

4.8  Incident Response Planning
Have an incident response plan that outlines 
the steps to take in the event of a ransomware 
incident. This allows for quick coordination 
to resolve the issue and facilitates follow-up. 
[18].

4.9 Reverse Engineering and Code Analysis
Utilize reverse engineering and code analysis 
techniques to dissect ransomware samples, 
understand their underlying functionalities, and 
identify vulnerabilities that can be exploited for 
analysis and mitigation [19].

4.10 Continuous Learning and Research

Stay abreast of the latest advancements in 
ransomware analysis techniques and actively 
participate in ongoing research and knowledge 
sharing forums. Continuous learning ensures 
analysts remain equipped to tackle emerging 
ransomware challenges [20].

5  Static Analysis Techniques 
For Ransomware Analysis

Over the last few years, malware has continued 
to evolve in terms of the complexity of 
malware cloaking and the variety of attack 
vectors [21]. Ransomware is one of the biggest 
and fastest growing threats facing the digital 
world [22]. Ransomware usually works by 
locking a desktop computer or accessing, 
overwriting, or deleting the user's data to 
prevent the user from accessing the computer 
[23]. To counter changing cyber threats, securi-
ty researchers and analysts are turning to static 
analysis techniques as a powerful tool for 
ransomware detection and analysis. Static 
testing is the process of analysing program 
code without running the code. We analysed 
the ransomware samples using the PEView 
program and the PE parser. PEFile analysis is 
an essential part of static analysis [24]. This 
can be done by disassembling the malware 
code, examining the file header, and searching 
for strings and other indicators of malicious 
activity. Static analysis is the analysis of code 
that is not executed at write time. [25]. Static 
analysis can be used to identify ransomware 
characteristics, such as:

a) The use of encryption algorithms to 
encrypt victim files.

b) The presence of ransom demands.

1.  Introduction

 Short exon detection is a formidable 
issue for bioinformatics and becomes more 
complicated as becomes more complicated 
side of short intron. To categorize these exonic 
regions accurately, it’s essential to create 
computer methods that are both more efficient 
and dependable. This is necessary because 
many of the existing methods do not handle the 

small exons separated by brief introns effec-
tively. The methods for identifying exons are 
based on the quest for material, signal or 
resemblance. For classification of exon 
disunited by short intron has been divided into 
two methods; Model independent and model 
dependent [1]. The DNA coding model 
frequently relies on probability, enabling the 
measurement of the likelihood of a DNA 
sequence because it encodes the sequence. 

Although the values (scores) of a specific data 
code statist are calculable in a variety of differ-
ent ways in reality, we will measure scores 
based on this probability for model-based 
coding statistics. In fact, provided the query 
sequence, under the coding model and an 
alternate model or DNA non coding we can 
determine the likelihood of the sequence. The 
model-based coding statistics may catch more 
of the particular DNA-coding characteristics, 
more as the model is more complex i.e. more 
parameters dependent. Model based coding 
statistics can also be more effective in distin-
guishing against non-coding DNA coding. 
However, model based coding statistics 
involve a representative DNA coding sample 
from the species included in the estimation of 
model parameters (probabilities). The more 
intricate the model, the more susceptible it is to 
sample distortion and dimension. Model 
independent coding statistics, however, 
capture only the "universal" characteristics of 
DNA coding, as no sample is needed and 
where coding regions of the species being 
considered are not identified, they may be 
used[2]. In [3], they have used Markov Chain 
to identify the sequences in DNA. Markov 
chain models of DNA and its use for Bayesian 
gene recognition algorithms for protein coding 
sequences. Gene Scout is the other method for 
detecting DNA sequences that used Markov 
Chain. In recent work, the local spectrum of 
the first intrinsic mode feature was determined 
to detect short exons. A technique focused on 
filters was also documented in order to detect 
short exons [4]. However, this method is based 
on the model by evaluating the fictitious EIIP 
values the fictitious EIIP values the fictitious 
EIIP values optimised and the weights for the 
four filtered binary sequences. Depending on 
the study of the windows form and scale, the 

efficiency of DSP bases that DFT can be used 
to analyse the spectral properties of DNA 
sequence depends [5]. 

2  Literature Review 

A more concise timeframe can detect short 
exons, but not long exon scan lead to further 
false alarm. On the other side, wide windows 
can lead to fewer fake detections, however 
short exons are lacking. Multiscale analysis 
was conducted by MGWT-based approach [6]. 
Marhon & Kremer recently suggested the 
Broad Range Wavelet Window (WRWW) 
approach to the forecasting of protein coding 
areas in a recent work [7].  In order to deal with 
the problem of window size. A technique to fix 
the issue of window size selection was also 
introduced to adapt the window length [8]. The 
WRWW approach has been shown to operate 
effectively over a number of exon lengths 
through simulation experiments. The effective-
ness of the methods used for detecting exons 
has not yet been assessed when there is a brief 
intron separating two adjacent short exons. 
Furthermore, no computer model to identify 
alternate splicing that could occur due to intron 
retention has been investigated for implemen-
tation of the annotation of certain regions in 
eukaryotic DNA (IR)[9]. In IR, part of the gene 
is not encrypted and can join premature stop 
codons in the center of a mature transcription. 
In an IR, numerous factors such as weak splice 
sites, short introns within genes, elevated 
levels of exonic splicing silencing, and lower 
density can contribute to the occurrence of IR 
[10].

Additionally, the IR is linked to short introns 
(274 nucleotides) and, if retention takes place, 
all neighboring exons, which are about 135 nt 

long, are linked to the exon retained, creating 
an exon retention intron (EIE) exon that is 544 
nt long. In order to find IR-likely sites, short 
exons separated by short introns can be identi-
fied using computer-based methods.

3  Dna Mapping Scheme 

"Deoxyribonucleic acid (DNA)" sequences are 
important for the understanding of living 
organisms, and in these macromolecules, much 
of the knowledge concerning heritable evolu-
tion and species growth is stored. Prokaryotes 
and eukaryotes are possible for organisms. 
DNA is free inside the cell in prokaryotes 
while DNA is retained within the nucleus in 
eukaryotes and is disassociated by a nuclear 
memebrane from the rest of the cell. Four 
major chemicals, thymine (T), cytosine(C) 
guanine (G) and adenine (A)  form the DNA 
chain . The determination of protein coating 
regions (exons) in eucaryotic gene structures is 
one of the present problems in studying the 
DNA sequences. Both probabilistic and deter-
ministic approaches are employed to catego-
rize protein coding regions or exons in eukary-
otic cells. Probabilistic methods have high 
precision, but rely on model and require 
adequate prediction training data. In the other 
hand, predictability of detergent methods is 
comparatively lower but model-independent 
and best suited for study of uncharacterized 
genomic sequences, where prior details of the 
studied species does not exist. 

The base-coding region contains a pronounced 
period-3 segment attributed to the codon struc-
ture utilized in the translation of the base 

sequence into amino acids. Most deterrent 
techniques use the "Discrete Fourier Trans-
form" to classify the period-3 portion by 
spectral analysis of the DNA sequences. A 
variety of algorithms were designed to classify 
protein-coding regions based on the period-3 
property. DFT-based approaches efficiency 
depends on the duration of the window[11]. In 
order to classify protein-coding areas, a system 
based on "Modified Gabor-wavelet transform" 
(MGWT) was implemented. Depending on 
window length, the efficiency of the MGWT is 
higher than the DFT based approaches[6].

There are four significant shortcomings in the 
present method for representing and aligning 
new input genomes with the reference genome. 
To begin, even though several algorithmic 
implementations are widely used, there is no 
established standard method for aligning DNA 
bases from a newly sequenced input genome 
with positions in the reference genome [12].

Secondly, various mapping procedures 
encounter a challenge when there are (almost) 
equally valid mappings to multiple separate 
positions within the reference genome, a 
situation often referred to as the "multi-map-
ping problem." This arises because of the 
inherent repetition of larger subsequences in 
the reference genome. 

Thirdly, the GRC reference genome encom-
passes only a limited portion of common 
segregating genome variations, with the 
remainder scattered across various formats and 
data sources like the Single Nucleotide 
Polymorphism Database (dbSNP) and the 

1000 Genomes Project. Consequently, there is 
presently no singular, all-encompassing 
resource for common human genome varia-
tions, and there is a lack of consistent naming 
or identification conventions [13].

Lastly, whenever a new reference genome 
assembly is issued, updates are made to the 
reference genome's coordinates, necessitating 
the remapping of all associated data. This 
remapping process is often the most computa-
tionally intensive stage in a genome analysis 
pipeline. It can be a time-consuming task, 
taking weeks to complete and consuming 
substantial computational resources, particu-
larly when dealing with a large set of genomes.

4  Representation Of DNA

The following five representation methods 
were used to numerically represent the 
sequences of the selected genes DNA:

4.1 Genetic Code Context (GCC)
The following triple codons are found in the 
various reading frameworks for a particular 
DNA sequence Y= ACGATTCAGGT: The 
initial reading phrase is ACG ATT CAG, 
followed by CGA TTC AGG and finally by 
GAT TCA GGT.The corresponding encoded 
amino acids for the first frame are [T, I, Q], [R, 
F, R], and [D, S, G] for the second and third 
frames, respectively. Each amino acid is 
described by a unique complex number, as 
shown in Table 1.

4.2 Frequency of Nucleotide Occurrence

According to Table 2 given below, A real value 
is assigned to each nucleotide in the DNA 
sequence Y= ACGATTCAGGT from two 
different datasets. As a result, the correspond-
ing DNA numerical sequence from the 
HMR195 dataset is [0.22750, 0.28312, 
0.27600, 0.22750, 0.21336, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336, 0.28312, 
0.22750, 0.27600, 0.27600, 0.21336].

4.3 Atomic Number 
The molecular signature pattern constants over 
a certain DNA sequence Y= ACGATTCAGGT 
are: A=70, G=78, C=58, T=66. As a conse-
quence, the numerical sequence of DNA is [70, 
58, 78, 70, 66, 66, 58, 70, 78, 66, 58, 70, 78, 66, 
58, 70, 78, 66, 58, 70, 78, 66, 58, 70, 78, 66, 58, 
70, 78, 66, 58, 70, 78, 66].

4.4 Electron Ion Interaction Potential (EIIP)
The EIIP indicator sequence values for the 
specific DNA sequence Y= ACGATTCAGGT 
are A= 0.1260, G= 0.0806, C= 0.1340, and T= 
0.1335.As a result, [0.1260, 0.1340, 0.0806, 
0.1260, 0.1335, 0.1335, 0.1340, 0.1260, 
0.0806, 0.0806, 0] is the numerical sequence 
for DNA .1335]

4.5 2-bit Binary
The values of the DNA the 2-bit digital sign 
sequencesY= ACGATTCAGGT are A=00, 
G=10, T=01, C=11 for the DNA sequence Y= 
ACGATTCAGGT.

5  Results 

The detection technique was applied using the 
IIR inverse Chepyshev electronic filter on 20 
human testing genes with single and multiple 
exons downloaded from the HMR195 
dataset.in order to achieve our goal. The acces-
sion numbers, gene descriptions, sequence 
lengths, and true exon locations of the genes 
are all displayed in Table 3.

5.1 Single Exon Gene 
 Both the frequency of nucleotide occurrence 
in exons (FNO) and the 2-bit binary represen-
tation schemes showed a distinct and promi-
nent peak at the precise location of true exons 
(964-1938), without any misleading peaks at 
the individual exon level, when compared to 
EIIP, GCC, and atomic number schemes. Addi-
tionally, the FNO and 2-bit binary representa-
tion schemes demonstrated the highest levels 
of sensitivity, specificity, and correlation 
coefficient for various single exon genes, 
achieving 100 percent, 75.228 percent, and 
0.4994, respectively. Notably, the 2-bit binary 
representation scheme clocked in at 7.38ms, 
which was the quickest processing time when 
compared to the other representation methods.

5.2 Two Exonic Region Gene 
Different genes with two exonic regions were 
used to test the predictive accuracy of different 
representation techniques. Surprisingly, nucle-
otide location identification and sensitivity for 
the FNO and 2-bit binary techniques were 
identical, as shown in Fig. 6. These two 
techniques successfully located the two 
authentic exons (at locations 115–482 and 
1867–2662) within the (GALNR2) gene.

The FNO and 2-bit binary methods fared better 
than other schemes, with specificity scores of 
56.012 percent and 65.02 percent, respectively, 
despite having almost half the specificity of 
single exonic region prediction. Interestingly, 
among all the representation techniques, the 
2-bit binary representation approach had the 
highest correlation coefficient (0.6838) and the 
fastest processing speed.

5.3 Three Exonic and Four Exonic Region 
Gene 
When applying five various recognition 
algorithms to genes with three and four exonic 

regions, the 2-bit binary representation method 
consistently beat other representation methods 
in terms of accuracy. The number of incorrect 
exons was reduced by this method's accurate 
detection of actual nucleotide locations in the 
proper order. As a result, in this particular 
situation, it achieved the highest levels of 
sensitivity, correlation, specificity, and CPU 
run time.

6  Conclusion

The findings demonstrated that the 2-bit binary 
representation method, when compared to 
other representation schemes, significantly 
improved true nucleotide position identifica-
tion accuracy regardless of the number of 
exonic regions in the sequences tested, with 
high levels of sensitivity, correlation coeffi-
cient, specificity, and minimal processing time. 
These results are consistent with other studies 
that applied the 2-bit binary technique in a 
different setting. When applied to human DNA 
sequences for promoter prediction using neural 
networks, it was found that the 2-bit binary 
scheme outperformed the 4-bit binary and 
integer representation methods.

Intriguingly, the 2-bit binary and FNO repre-
sentation schemes both displayed comparable 
high levels of sensitivity, correlation coeffi-
cient, and specificity when compared to other 
schemes, especially at the one and two exonic 
region detection levels, despite using different 
numerical representation techniques. Notably, 
the FNO system is based on statistically 
derived measurements while the 2-bit binary 
scheme relies on the arbitrary assignment of 
nucleotide numbers.

The FNO was outperformed by the 2-bit binary 
representation approach for the detection of 
three and four exonic areas. These results 
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corroborate a previous study that found that the 
protein coding region prediction accuracy 
could be improved by using the DFT base 
technique by increasing the frequency of 
nucleotide occurrence and matching numeric 
recognition schemes.
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