
Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 
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ABSTRACT
Mobile devices have been the target of malicious software since their beginnings. Two known types 
of malware threats can intrude into mobile, independently injected applications and fraudulent 
applications that are developed to breach the security of mobile devices. Mostly these fraudulent 
applications access data using API calls and permission requests. API calls and permission requests 
are important for smooth conversation between mobile devices and database servers. This research 
proposes an efficient classification model that concatenates API calls and permission requests to 
detect malicious applications. We have used a dataset that contained more than 15 thousand Android 
devices’ malware. We have divided data into three groups to differentiate between the malicious 
permission requests and malicious API calls with normal permission requests and normal API calls. 
To increase the probability of recognizing Android malware applications, we develop three distinct 
grouping strategies for selecting the most valuable API calls that are obscure, critical, and obstreper-
ous and are chosen because Android apps extensively use several application programming interfac-
es (APIs). According to the results, malware applications require authorizations to access confiden-
tial information very frequently than normal Android applications do. Also, malicious Android 
applications raise a diverse set of API calls to access sensitive data, evidenced by malware applica-
tions making a distinct set of API calls. Our proposed method attains an F-score of 94.04%, which 
suggests that it is efficient at discovering mobile malware applications. Our model can be of signifi-
cant assistance in conducting mobile application analysis and forensic investigations into malware.
Keywords: Permission, Genetic Algorithm, Mobile, Hybrid analysis, Dynamic analysis, Deep 
learning, intent, API calls 
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1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 



Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 
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malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 



Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 
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many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 



Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 
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research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

 

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 



Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.

REFERENCES

[1]  R. Husnain, A. Nauman, A. Muhammad, 
I. Biju and R. Hamid, "AndroMalPack: 
enhancing the ML-based malware 
classification by detection and removal 
of repacked apps for Android systems," 
Scientific Reports, vol. 12, no. 1, pp. 
19-34, 2022. 

[2]  F. Faezeh, H. M. Sayad J. Alireza and A. 
Mamoun, "Artificial intelligence for 
detection, estimation, and compensation 
of malicious attacks in nonlinear 
cyber-physical systems and industrial 
IoT," IEEE transactions on industrial 
informatics, vol. 16, no. 4, pp. 
2716-2725, 2019. 

[3]  A. M. Taleby, L. Qianmu, R. Mahdi and 
R.  A. Raza, "A survey on smartphones 
security: software vulnerabilities, 
malware, and attacks," arXiv preprint 
arXiv: 2001.09406, 2020. 

[4]  M. Anjali, Permissions Ranking With 
Statistical Techniques for Android 
Malware Detection, “Doctoral disserta-
tion, 2022.

[5]  M. Sreenath and S. Anuradha, “The 
political economy of digital automation: 
measuring its impact on productivity, 
economic growth, and consumption, 
“Routledge, 2020. 

[6]  Z. Jason, "Machine learning with feature 
selection using principal component 
analysis for malware detection: a case 
study," arXiv preprint arXiv: 
1902.03639, 2019. 

[7]  A. Saba, S. M. Ali, A. Khan and A. 
Mansoor, "Android malware detection 
\& protection: a survey," International 
Journal of Advanced Computer Science 
and Applications, vol. 7, no. 2, 2016. 

[8]  P. Faruki, B. Ammar, V. Laxmi, 
Ganmoor, Vijay and Gaur, Manoj Singh 
and Conti, Mauro and Rajarajan, 
Muttukrishnan, "Android security: a 
survey of issues, malware penetration, 
and defenses," IEEE communications 
surveys \& tutorials, vol. 17, no. 2, pp. 
998-1022, 2014. 

[9]  Z. Yajin and J. Xuxian, "Dissecting 
android malware: Characterization and 
evolution," in 2012 IEEE symposium on 
security and privacy, IEEE, pp. 95-109, 
2012.

[10]  R. Vaibhav, C. Yan and J. Xuxian, 
"Droidchameleon: evaluating android 
anti-malware against transformation 
attacks," in Proceedings of the 8th ACM 
SIGSAC symposium on Information, 
computer and communications security, 
pp. 329-334, 2013.

[11] I. Mülhem, B. Issa, and M. B. Jasser., "A 
Method for Automatic Android Malware 
Detection Based on Static Analysis and 
Deep Learning," IEEE Access, vol. 10, 
pp. 117334-117352, 2022. 

[12] B. Shikha, and S. Muttoo, "Evading 
android anti-malware by hiding 
malicious application inside images," 
International Journal of System Assur-
ance Engineering and Management, vol. 
9, pp. 482-493, 2018. 

[13]  I. Rejwana, S. M. Islam, S. Sajal, H. M. 
Jamal and M. Md Abdul, "Android 
malware classification using optimum 
feature selection and ensemble machine 
learning," Internet of Things and 
Cyber-Physical Systems, vol. 3, pp. 
100-111, 2023. 

[14]  W. Chao, X. Qingzhen, L. Xiuli and L. 
Shouqiang, "Research on data mining of 
permissions mode for Android malware 
detection," Cluster Computing, vol. 22, 
pp. 13337-13350, 2019. 

[15]  D. Shuaifu, W. Tao and Z. Wei, "Droid-
Logger: Reveal suspicious behavior of 
Android applications via instrumenta-
tion," in 2012 7th international confer-
ence on computing and convergence 
technology (ICCCT), IEEE, pp. 
550-555, 2012.

[16]  S. A. Kumar, C. D. Jaidhar, and K. MA 
Ajay, "Experimental analysis of Android 
malware detection based on combina-
tions of permissions and API-calls," 
Journal of Computer Virology and 
Hacking Techniques, vol. 15, pp. 
209-218, 2019. 

[17]  Tao, Guanhong, Zibin Zheng, Ziying 
Guo, and Michael R. Lyu, "MalPat: 
Mining patterns of malicious and benign 
Android apps via permission-related 
APIs," IEEE Transactions on Reliability, 
vol. 67, no. 1, pp. 355-369, Dec. 2017. 

[18]  A. Abdelfattah, R. Jean-Marc and T.  
Chamseddine, "Enhancing malware 
detection for Android systems using a 
system call filtering and abstraction 
process," Security and Communication 
networks, vol. 8, no. 7, pp. 1179-1192, 
2015. 

[19] P. Vinod, Z. Akka and C. Mauro, "A 
machine learning based approach to 
detect malicious android apps using 
discriminant system calls," Future 
Generation Computer Systems, vol. 94, 
pp. 333-350, 2019. 

[20]  Z. Aqil, H. I. Rahmi, S. Wahidah Md and 
A. Zubaile, "Android malware detection 
based on network traffic using decision 
tree algorithm," in Recent Advances on 
Soft Computing and Data Mining: 
Proceedings of the Third International 
Conference on Soft Computing and Data 
Mining (SCDM 2018), Johor, Malaysia, 
Springer, pp. 485-494, 2018.

[21]  W. Shanshan, Y. Qiben, C. Zhenxiang, 
Y. Bo, Z. Chuan and C. Mauro, "Detect-
ing android malware leveraging text 
semantics of network flows," IEEE 
Transactions on Information Forensics 
and Security, vol. 13, no. 5, pp. 
1096-1109, 2017. 

[22] W. Ping, C. W. Jie, C. Kuo-Ming and L. 
Chi-Chun, "Using taint analysis for 
threat risk of cloud applications," in 
2014 IEEE 11th International Confer-
ence on e-Business Engineering, IEEE, 
pp. 185-190, 2014.

[23] B. James, A. Mohd and D. Gerry, 
"Detection of mobile malware: an artifi-
cial immunity approach," in 2016 IEEE 
Security and Privacy Workshops (SPW), 
IEEE, pp. 74-80, 2016.

[24] K. Pallavi and J.  Amit, "Malware detec-
tion techniques in android," Internation-
al Journal of Computer Applications, 
vol. 122, no. 17, 2015. 

[25] W. Ahsan, I. Azhar, L. Jahanzaib, N. 
Ahsan and B. Anas, "A novel approach 
of unprivileged keylogger detection," in 
2019 2nd International Conference on 
Computing, Mathematics and Engineer-
ing Technologies (iCoMET), IEEE, pp. 
1-6, 2019.

[26] Z. Hanqing, L. Senlin, Z. Yifei and P. 
Limin, "An efficient Android malware 
detection system based on method-level 
behavioral semantic analysis," IEEE 
Access, vol. 7, pp. 69246-69256,  2019. 

[27]  F. Hossein, M. Veelasha, C. Mauro and 
B. Lejla, "Efficient classification of 
android malware in the wild using robust 
static features," Protecting mobile 
networks and devices: challenges and 
solutions, vol. 1, pp. 181-209, 2016. 

[28] K. ElMouatez Billah, D. Mourad, D. 
Abdelouahid and M. Djedjiga, "Mal-
Dozer: Automatic framework for 
android malware detection using deep 
learning," Digital Investigation, vol. 24, 
pp. S48-S59, 2018. 

[29] Q. Mengyu, S. Andrew and L. Qing-
zhong, "Merging permission and api 
features for android malware detection," 
in 2016 5th IIAI international congress 
on advanced applied informatics 
(IIAI-AAI), IEEE, pp. 566-571, 2016.

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

07Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023)

 

3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 
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Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

Mobile Apps Number 
Malware 5,560 
Benign  9,470 

Total 15,036 

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 



Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
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methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

 

,

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 



Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).
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This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 



Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 
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let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 

 

 

 
 

 
 

 

 

 

 

 

 

 
 

 

 

 



Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls
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illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

                    

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 



Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.
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potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

API Calls Name  Meaning  

Android/Telephony/
Telephonymanager;.
Getnetworkoperator

 

To gain access to 
sensitive data  

Java/Util/Gregoria
ncalendar;.  Set  

To gain access to sensitive
data (Current Time) 

 
Java/Io/Bytearrayo
utputstream; Reset  

To gain access to 
se nsitive data  

Java/Lang/Stringb
uffer;.Insert.  

For obfuscation 
purposes  

Cipher. Getinstance () For obfuscation purposes 
Sendtextmessage ()  
Smsmanager ()  
Setmessage ()  

 in order to send and 
receive SMS messages

 
Setwifienabled ()  
Exechttprequest ()  

For communicating
over the network   

Getdeviceid ()  
Getsubscriberid ()  

To  gain  access  to 
sensitive data (phone’s  
unique device ID) 

RuntimeException ()
 

For the execution of 
external commands  

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 



Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 
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(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 



Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 
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Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

, 

  

Precision You can figure out the percentage of 
correctly identified data by doing the following 
calculation.  

 

Recall You can figure out the percentage of 
correctly identified malicious data by doing the 
following calculation. 

 

F-Measure The following formula can be used 
to calculate the precision and recall combined 

 

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 



Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

16 Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023)

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 



solutions for a wide range of applications. By 
integrating cloud-based resources with wear-
able devices, it is possible to provide users 
with a more seamless, efficient, and effective 
computing experience. For example, 
cloud-connected wearable devices can provide 
users with real-time access to their health and 
fitness data, entertainment, and other applica-
tions, without the need for a separate computer 
or smart phone. The integration of cloud 
technology and wearable computing also has 
the potential to create new solutions for big 
data analysis, with the ability to process and 
store large amounts of data generated by wear-
able devices. This can lead to new insights and 
breakthroughs in a range of fields, such as 
healthcare, sports, and entertainment [2].

However, the integration of cloud technology 
and wearable computing also presents a 
number of challenges and technical issues that 
must be addressed. For example, the transfer of 
large amounts of data between wearable devic-
es and cloud-based resources can be slow and 
unreliable, leading to delays and disruptions in 
the user experience [3].In addition, the security 
of sensitive personal data stored and processed 
in the cloud is a major concern, and must be 
addressed to ensure user privacy and data 
protection. Despite these challenges, the future 
of cloud technology and wearable computing 
interaction is bright, with ongoing research and 
development in this field poised to deliver new 
innovations and breakthroughs in the years to 
come [4]. This research is exploring new 
approaches and solutions for integrating cloud 
technology and wearable computing, including 
new hardware and software designs, improved 
communication protocols, and enhanced 
security mechanisms. The goal is to create 

wearable devices that are better connected to 
cloud-based resources and provide users with a 
more integrated and personalized computing 
experience [5].

The technological advancements in the past 
few decades have given rise to a new era of 
innovative devices and systems. One such 
domain that has greatly benefited from these 
advancements is healthcare. Wearable devices, 
combined with cloud computing, have created 
a revolution in the healthcare industry. Wear-
able Devices: Wearable devices are small, 
portable, and convenient devices that can be 
worn on the body to monitor various health 
parameters. These devices are equipped with 
sensors that collect and transmit data about the 
user's physical activity, heart rate, sleep 
patterns, and other health metrics [6]. Some 
examples of wearable devices include fitness 
trackers, smartwatches, and sleep monitors. 
Cloud Computing: Cloud computing is a 
technology that enables users to store and 
access data and applications over the internet. 
This technology provides the capability to 
store, process, and analyze vast amounts of 
data, which can be used for various purposes, 
including healthcare [7].

Benefits of Wearable Devices and Cloud Com-
puting in Healthcare: Personalized Healthcare: 
Wearable devices and cloud computing 
provide patients with personalized healthcare 
services. By collecting and analyzing data 
from wearable devices, healthcare providers 
can create customized treatment plans that are 
tailored to the individual's specific needs. 
Continuous Monitoring: Wearable devices 
allow for continuous monitoring of a patient's 
health status. This enables healthcare providers 

Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

tion can be used to create a more comprehen-
sive picture of the user's health and wellness. 
User Interface: The wearable device provides 
users with a simple and intuitive interface for 
accessing and managing their health data. This 
can include features such as touch screens, 
voice commands, and button controls.  User 
Experience: The user terminal layer plays a 
crucial role in shaping the user's overall experi-
ence with the wearable device. By providing a 
seamless and intuitive interface, users are more 
likely to use the device regularly and receive 
the maximum benefits from it [6].

In conclusion, the User Terminal Layer is a 
critical component in the interaction between 
cloud technology and wearable computing. By 
providing users with a simple and intuitive 
interface, this layer enables them to easily 
access and manage their health data and 
receive real-time feedback and insights about 
their health and wellness.The Communication 
Layer is a crucial component in the interaction 
between cloud technology and wearable 
computing. It refers to the mechanism through 
which data is transmitted between wearable 
devices and the cloud server [17]. Key 
functions of this layer include Data Transmis-
sion: The communication layer is responsible 
for transmitting data from wearable devices to 
the cloud server. This data can include infor-
mation such as heart rate, physical activity, 
sleep patterns, and other health metrics.Data 
Transfer Protocols: The communication layer 
uses various data transfer protocols to transmit 
data between wearable devices and the cloud 
server. These protocols can include Bluetooth, 
Wi-Fi, and cellular networks, depending on the 
device's connectivity and security require-
ments.Data Synchronization: The communica-

tion layer ensures that data is synchronized 
between the wearable device and the cloud 
server. This allows users to access their health 
data from any device connected to the cloud, 
such as their smartphone or computer.Data 
Security: The communication layer imple-
ments security measures such as encryption 
and access control to protect the confidentiality 
and integrity of the data transmitted between 
wearable devices and the cloud server [7].

In conclusion, the Communication Layer plays 
a critical role in the interaction between cloud 
technology and wearable computing. By 
providing a reliable and secure mechanism for 
transmitting data, this layer enables wearable 
devices to effectively communicate with the 
cloud server and provide users with real-time 
feedback and insights about their health and 
wellness.The core of AIWAC, which provides 
physiological and psychological information 
evaluation through a statistics center on the 
cloud platform, is the cloud-based carrier layer 
[9]. The data center is primarily in charge of 
data storage, function extraction and classifica-
tion, as well as person emotion modeling. 
utilizing the powerful computational power of 
gadgets. While the transmission module is in 
charge of transferring collected data to the sink 
node and receiving control signals, the acquisi-
tion module is utilized to gather physiological 
information. Only a few devices are active to 
gather the crucial physiological data and moni-
tor emotional changes in a person while they 
are mentally secure. When a user's emotions 
change, In order to increase the accuracy of 
sentiment evaluation, the emotional weak 
deduction receiving layer sends a control 
signal to the wearable tool layer, which 
activates relevant devices or deactivates 

1.  INTRODUCTION

 Cloud technology and wearable 
computing are two important areas of comput-
ing that are rapidly advancing and changing 
the way we interact with technology. Cloud 
technology refers to the delivery of computing 
resources, such as data storage and processing, 
over the internet. This allows users to access 

and use these resources from anywhere, at any 
time, and on any device. Wearable computing, 
on the other hand, refers to the use of comput-
ing devices that can be worn on the body, such 
as smartwatches, fitness trackers, and smart 
glasses [1]. The interaction between cloud 
technology and wearable computing is of 
growing interest and importance, as it offers 
the potential to create new and innovative 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.
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contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

The evaluation of the Hybrid Big Emotion 
Data Layer is a crucial step in understanding 
the interaction between cloud technology and 
wearable computing. This layer refers to the 
combination of data from wearable devices 
and other sources, such as social media, to 
create a comprehensive profile of the user's 
emotional state. Key evaluation metrics for 
this layer include Accuracy: The accuracy of 
the data collected from wearable devices and 
other sources is a key evaluation metric. This 
includes the accuracy of the algorithms used to 
detect and interpret the user's emotional 
state.Privacy: The privacy measures imple-
mented by the cloud server to protect the confi-
dentiality and security of the data collected 
from wearable devices is a key evaluation 
metric. This includes encryption, access 
control, and data anonymization.Personaliza-
tion: The level of personalization provided by 
the cloud server is a key evaluation metric. 
This includes the ability of the cloud server to 
provide personalized feedback and recommen-
dations based on the user's emotional state.Us-
er Satisfaction: The level of user satisfaction 
with the services provided by the cloud server 
is a key evaluation metric. This includes the 
user's perception of the usefulness, ease of use, 
and effectiveness of the services provided [13].
In conclusion, evaluating the Hybrid Big 
Emotion Data Layer is crucial for understand-
ing the interaction between cloud technology 
and wearable computing. By combining data 
from wearable devices and other sources, this 
layer enables wearable devices to deliver 
personalized and cost-effective emotional 
health services to users. The evaluation of this 
layer should consider factors such as accuracy, 
privacy, personalization, and user satisfac-

tion.The Emotion Multidimensional Data 
Aggregation and Preprocessing Layer is a 
critical component in the interaction between 
cloud technology and wearable computing. 
This layer refers to the aggregation of data 
from wearable devices and other sources, such 
as social media, and the preprocessing of this 
data to prepare it for analysis. Key functions of 
this layer include Data Aggregation: The cloud 
server collects data from wearable devices and 
other sources and aggregates it into a compre-
hensive profile of the user's emotional state. 
This data may include heart rate, skin conduc-
tance, physical activity, and social media activ-
ity.Data Preprocessing: The cloud server 
applies preprocessing techniques such as 
cleaning, normalization, and feature extraction 
to the aggregated data. This helps to improve 
the accuracy and reliability of the data and 
prepare it for analysis.Privacy: The cloud 
server implements privacy measures to protect 
the confidentiality and security of the data 
collected from wearable devices and other 
sources. This includes encryption, access 
control, and data anonymization [14].

In conclusion, the Emotion Multidimensional 
Data Aggregation and Preprocessing Layer is a 
critical component in the interaction between 
cloud technology and wearable computing. By 
aggregating data from wearable devices and 
other sources and preprocessing this data, this 
layer enables wearable devices to deliver 
personalized and cost-effective emotional 
health services to users. The privacy measures 
implemented by this layer help to protect the 
confidentiality and security of the user's data.

 

devices to deliver personalized and cost-effec-
tive emotional health services to users. The 
Multidimensional Affective Data Layer is a 
key component in the interaction between 
cloud technology and wearable computing. It 
refers to the collection and analysis of data 
related to the user's emotions, moods, and 
affective states. Key functions of this layer 
include Data Collection: The cloud server 
collects data from wearable devices such as 
heart rate, skin conductance, and physical 
activity to create a comprehensive profile of 
the user's emotional state. Data Analysis: The 
cloud server applies machine learning 
algorithms and statistical models to analyze the 
collected data to detect patterns and trends in 
the user's emotional state. This information can 
be used to generate insights and predictions 
about the user's emotional health.  Personaliza-

tion: The cloud server provides personalized 
feedback and recommendations to users based 
on their emotional state. This can include 
information such as stress-relieving activities, 
mindfulness exercises, and lifestyle modifica-
tions. Privacy: The cloud server implements 
privacy measures to protect the confidentiality 
and security of the data collected from wear-
able devices. This includes encryption, access 
control, and data anonymization [11].

In conclusion, the Multidimensional Affective 
Data Layer is a critical component in the 
interaction between cloud technology and 
wearable computing. By collecting and analyz-
ing data related to the user's emotions, moods, 
and affective states, this layer enables wearable 
devices to deliver personalized and cost-effec-
tive emotional health services to users [12].

unrelated ones if you wish to conserve energy 
[8].

The Cloud-based Service Layer is a key 
component in the interaction between cloud 
technology and wearable computing. It refers 
to the services and applications provided by 
the cloud server to support wearable devices. 
Key functions of this layer include Data 
Storage: The cloud server stores the data 
collected from wearable devices, allowing 
users to access their health data from any 
device connected to the cloud.Data Processing: 
The cloud server uses powerful computing 
resources to process the data collected from 
wearable devices. This includes applying 
machine learning algorithms and statistical 
models to generate insights and predictions 
about the user's health and wellness.Data 
Analysis: The cloud server provides data 
analytics services to generate insights and 
predictions about the user's health and wellness 
[19].This can include information such as the 
number of steps taken, calories burned, and 
hours of sleep.Application Development: The 
cloud server provides a platform for develop-
ers to create applications that interact with 
wearable devices. These applications can 
provide users with real-time feedback, alerts, 
and insights about their health and 
wellness.Scalability: The cloud server 
provides a scalable infrastructure that can 
handle an increasing volume of data from 
wearable devices. This allows wearable devic-
es to scale up or down as needed, depending on 
the user's needs [9].
In conclusion, the Cloud-based Service Layer 
is a critical component in the interaction 
between cloud technology and wearable 
computing. By providing a platform for 

storing, processing, and analyzing data from 
wearable devices, this layer enables wearable 
devices to deliver personalized and cost-effec-
tive healthcare services to users.The Emotional 
Sensitive Deduction Receiving Layer is an 
important component in the interaction 
between cloud technology and wearable 
computing. It refers to the ability of the cloud 
server to use data from wearable devices to 
detect and interpret emotional states of users. 
Key functions of this layer include Emotion 
Detection: The cloud server uses data from 
wearable devices such as heart rate, skin 
conductance, and physical activity to detect the 
emotional state of users. This information can 
be used to infer emotions such as stress, 
anxiety, and happiness.Emotion Analysis: The 
cloud server applies machine learning 
algorithms and statistical models to analyze the 
data collected from wearable devices and infer 
the emotional state of users. This can provide 
users with real-time feedback about their 
emotional state and suggest ways to manage 
their emotions.Personalization: The cloud 
server provides personalized feedback and 
recommendations to users based on their 
emotional state. This can include information 
such as stress-relieving activities, mindfulness 
exercises, and lifestyle modifications.  Privacy: 
The cloud server implements privacy measures 
to protect the confidentiality and security of 
the data collected from wearable devices. This 
includes encryption, access control, and data 
anonymization [10].
In conclusion, the Emotional Sensitive Deduc-
tion Receiving Layer is a critical component in 
the interaction between cloud technology and 
wearable computing. By using data from wear-
able devices to detect and interpret emotional 
states of users, this layer enables wearable 

A testbed architecture refers to the hardware 
and software components used to test and 
evaluate the interaction between cloud 
technology and wearable computing. A typical 
testbed architecture for evaluating the interac-
tion between these two technologies includes 
the following components Wearable Devices: 
This includes a range of wearable devices, 
such as smartwatches and fitness trackers, that 
are capable of collecting data about the user's 
emotional state. Cloud Server: This includes a 
cloud-based server that aggregates and prepro-
cesses the data collected from wearable devic-
es and other sources. User Terminal: This 
includes a user interface that allows users to 
interact with the cloud server and access their 
emotional health data. This may include a 

web-based interface, mobile app, or wearable 
device. Emotion Detection and Analysis Algo-
rithms: This includes algorithms that are used 
to detect and interpret the user's emotional 
state [5]. These algorithms may be implement-
ed on the wearable devices or on the cloud 
server. Data Storage and Management System: 
This includes a system for storing and manag-
ing the data collected from wearable devices 
and other sources. This system may include a 
database management system, data warehous-
ing system, or cloud storage system.

In conclusion, a testbed architecture is a crucial 
component in evaluating the interaction 
between cloud technology and wearable 
computing. The components of a testbed archi-

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

tecture, such as wearable devices, cloud server, 
user terminal, emotion detection and analysis 
algorithms, and data storage and management 
system, work together to provide a comprehen-
sive evaluation of the interaction between 
these two technologies. The interaction 
between cloud technology and wearable 
computing involves the exchange of data and 
information between wearable devices and 
cloud-based servers. The technical information 
involved in this interaction includes: Data 
Format: Wearable devices and cloud servers 
must use a common data format for exchang-
ing information. Common data formats include 
JSON, XML, and CSV. Data Transfer Proto-
cols: The communication between wearable 
devices and cloud servers must be secure and 
efficient. Common data transfer protocols used 
for this interaction include HTTPS, MQTT, 
and WebSockets. Data Processing: The cloud 
server must have the capability to process and 
analyze large amounts of data. This includes 
data preprocessing techniques such as clean-
ing, normalization, and feature extraction, and 
machine learning algorithms for data analysis.  
Data Security: Wearable devices and cloud 
servers must implement security measures to 
protect the confidentiality and privacy of the 
user's data. This includes data encryption, 
access control, and data anonymization. Data 
Visualization: The cloud server must have the 
capability to visualize and display the analyzed 
data in a user-friendly format. This may 
include charts, graphs, and reports [16].

In conclusion, the technical information 
involved in the interaction between cloud 
technology and wearable computing includes 
data format, data transfer protocols, data 
processing, data security, and data visualiza-

tion. These technical elements work together to 
ensure efficient and secure communication 
between wearable devices and cloud servers 
and enable wearable devices to deliver person-
alized and cost-effective emotional health 
services to users.The interaction between 
cloud technology and wearable computing is a 
rapidly evolving field with many open issues 
and prospective directions. Some of the key 
open issues and prospective directions 
include:Data Privacy and Security: Ensuring 
the privacy and security of user data is a major 
concern in the interaction between cloud 
technology and wearable computing. This 
includes protecting users' personal informa-
tion, health data, and emotional states.Data 
Integration and Management: The integration 
and management of data collected from multi-
ple wearable devices and other sources is a 
major challenge. This includes developing 
efficient methods for aggregating, preprocess-
ing, and analyzing large amounts of data.Emo-
tion Detection Accuracy: Improving the 
accuracy of emotion detection algorithms is a 
key challenge in the interaction between cloud 
technology and wearable computing. This 
includes developing algorithms that can 
accurately detect and interpret subtle emotion-
al changes.User Interaction and Experience: 
Enhancing the user interaction and experience 
with wearable devices and cloud-based 
services is an important prospective direction. 
This includes developing user-friendly 
interfaces, wearable devices with improved 
ergonomics and aesthetics, and cloud-based 
services that provide personalized and cost-ef-
fective emotional health services.Interopera-
bility and Standardization: Interoperability and 
standardization of data formats, data transfer 
protocols, and data processing methods are key 

issues in the interaction between cloud 
technology and wearable computing. This 
includes developing standards for data 
exchange and processing that ensure seamless 
interaction between wearable devices and 
cloud-based services.In conclusion, the 
interaction between cloud technology and 
wearable computing is a complex and dynamic 
field with many open issues and prospective 
directions. Addressing these issues and explor-
ing new directions is crucial in delivering 
personalized and cost-effective emotional 
health services to users through wearable 
devices and cloud-based services [17].

2. RELATED WORK

The integration of cloud technology and wear-
able computing has been an active area of 
research and development in recent years, and 
there has been a growing body of literature 
exploring various aspects of these interactions 
[3]. Some of the key areas of focus include 
Cloud-based wearable applications: Research-
ers have been exploring the use of cloud 
technology to support various applications on 
wearable devices, such as health monitoring, 
fitness tracking, and entertainment.Wear-
able-cloud integration: Researchers have been 
investigating ways to optimize the interaction 
between wearable devices and cloud-based 
services, such as improving data transfer and 
synchronization, reducing latency, and enhanc-
ing security [4]. Big data analysis for wearable 
devices: Researchers are exploring how to use 
cloud technology to process, store, and analyze 
the large amounts of data generated by wear-
able devices [6]. Wearable-cloud security: 
With the increasing amount of sensitive 
personal data being stored and processed in the 

cloud, researchers have been investigating 
various security issues associated with wear-
able-cloud integration, such as data privacy, 
data protection, and user authentication.Wear-
able-cloud architecture: Researchers have been 
proposing and evaluating various architectures 
for integrating wearable devices and 
cloud-based services, such as edge computing, 
fog computing, and hybrid architectures 
[12].These are some of the key areas of focus 
in the related work on cloud technology and 
wearable computing interaction. The literature 
in this field is rapidly evolving, and new devel-
opments and advances are being reported 
regularly [15].

3. PROPOSED METHODOLOGY 

The proposed methodology for investigating 
the interaction between cloud technology and 
wearable computing can vary depending on the 
specific research question and objectives. 
However, some common steps that can be 
included in the methodology Problem defini-
tion: Clearly defining the problem that is being 
addressed and the goals of the research is an 
important first step in developing a methodolo-
gy [18]. Literature review: Conducting a 
thorough review of the existing literature in the 
field of cloud technology and wearable 
computing interaction is important to under-
stand the current state of the art and identify 
gaps in the existing knowledge.  System 
design: Designing an appropriate system archi-
tecture for integrating wearable devices and 
cloud-based services is a critical step in the 
methodology. This can include selecting 
appropriate hardware and software compo-
nents, defining communication protocols, and 
identifying data storage and processing needs. 

The results and simulations of cloud technolo-
gy and wearable computing interaction can 
vary greatly depending on the specific research 
question and objectives. However, some 
common results that may be obtained from 
such research include Improved performance: 
Simulations or experiments may show that 
integrating cloud technology and wearable 
computing can result in improved performance 
in terms of data transfer speed, processing 
power, and energy consumption. Enhanced 
user experience: Results may demonstrate that 
the integration of cloud technology and wear-
able computing can provide a more seamless 
and integrated user experience, with wearable 
devices that are better connected to 
cloud-based services and provide more 
advanced functionality. Increased efficiency: 
Research results may show that cloud technol-

ogy and wearable computing interaction can 
lead to more efficient data processing and 
storage, with larger amounts of data being 
handled more quickly and effectively. Better 
security: Simulations or experiments may 
demonstrate that the integration of cloud 
technology and wearable computing can result 
in improved security for sensitive personal 
data, with better encryption and authentication 
mechanisms being employed. These are some 
of the results that may be obtained from 
research on cloud technology and wearable 
computing interaction. The specific results will 
depend on the research question and goals, and 
may vary widely based on the methods and 
simulations used [21].

to detect and respond to health problems in 
real-time, reducing the risk of complications 
and improving patient outcomes. Improved 
Data Management: Cloud computing provides 
a secure and efficient way to manage and 
analyze large amounts of health data. This 
helps healthcare providers make better-in-
formed decisions about patient care and 
improve the overall quality of care. Cost-effec-
tive: By leveraging the power of cloud 
computing, healthcare providers can reduce 
the costs associated with data storage and 
analysis. This, in turn, helps to lower health-
care costs for patients and improve access to 
quality care [4]. 

The AIWAC (Artificial Intelligence in Wear-
able and Cloud) Architecture is a framework 
that outlines the interaction between cloud 
technology and wearable computing. It 
consists of the following components: Wear-
able Devices: These are the physical devices 
worn on the body that collect and transmit data 
to the cloud. Examples include fitness trackers, 
smartwatches, and sleep monitors.Cloud 
Server: The cloud server is responsible for 
storing, processing, and analyzing the data 
collected from wearable devices [9]. This 
server can be a public cloud, private cloud, or 
hybrid cloud, depending on the security and 
privacy requirements of the data. Data Analyt-
ics: This component uses machine learning 
algorithms and statistical models to analyze the 
data collected from wearable devices. The 
insights generated from this analysis can be 
used to improve the health and wellness of the 
wearer. Application Layer: This layer consists 
of applications that run on the cloud server and 
interact with wearable devices. These applica-
tions can provide users with real-time 

feedback, alerts, and insights about their health 
and wellness. Networking: The networking 
component is responsible for establishing and 
maintaining communication between wearable 
devices and the cloud server. This component 
can use various communication protocols, 
including Bluetooth, Wi-Fi, and cellular 
networks. Security: This component ensures 
the confidentiality, integrity, and availability of 
data transmitted between wearable devices and 
the cloud server. It implements security 
measures such as encryption, access control, 
and data backups to protect the data [5].

In conclusion, the AIWAC Architecture 
provides a comprehensive framework for the 
interaction between cloud technology and 
wearable computing. By leveraging the power 
of cloud computing and wearable devices, this 
architecture has the potential to revolutionize 
the healthcare industry by providing patients 
with personalized and cost-effective healthcare 
services. The User Terminal Layer is an 
important component in the interaction 
between cloud technology and wearable 
computing. It refers to the interface between 
the wearable device and the user [10]. The key 
functions of this layer include Data Collection: 
The wearable device collects data from various 
sensors and transmits it to the cloud server. 
This data can include information such as heart 
rate, physical activity, sleep patterns, and other 
health metrics. User Feedback: The wearable 
device provides users with real-time feedback 
and insights about their health and wellness. 
This can include information such as the 
number of steps taken, calories burned, and 
hours of sleep. User Input: The wearable 
device allows users to input information, such 
as their diet, exercise, and mood. This informa-

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 

Implementation and evaluation: Implementing 
the proposed system and evaluating its perfor-
mance and effectiveness is an important step in 
the methodology. This can include conducting 
experiments or simulations, analyzing data, 
and comparing results with existing solutions. 
Discussion and conclusion: Finally, it is 
important to discuss the results of the research, 
draw conclusions, and make recommendations 
for future work in the field of cloud technology 
and wearable computing interaction. This is a 
general outline of the steps that can be included 
in the proposed methodology for investigating 
the interaction between cloud technology and 
wearable computing. The specific methodolo-
gy will depend on the research question and 
goals, and may be adapted as needed based on 
the results of the research [19].

 
Fig 3: Flow chart of smart farm system

The Fig 3 showed the flowchart for a smart 
farm system. Here is a step-by-step description 
based on the provided image:
Start: The process begins.
Sensor Activated: A sensor in the system 

becomes active, likely due to a certain condi-
tion or threshold being met.
Arduino Receive Signals: The activated sensor 
sends signals to an Arduino board, which is a 
microcontroller used for processing the 
signals.

Data Sent to Cloud: The processed data from 
the Arduino is then transmitted to cloud 
storage or cloud-based services for further use.
Data Mining Tools: In the cloud, data mining 
tools are applied to the data. This might 
involve analyzing the data to extract useful 
information [20].

User Checks the Sensors Values: Simultane-
ously, there is a provision for users to directly 
check the sensor values. This could be via a 
dashboard or interface that displays the data.
Decision: Based on the output from the data 
mining tools and the user's assessment of the 
sensor values, a decision is made. This 
decision could relate to actions or changes in 
the smart farm system.

End: The process concludes following the 
decision.

This flowchart outlines a typical IoT-enabled 
smart farming operation where sensors collect 
data, which is then processed and analyzed in 
real-time, allowing for informed 
decision-making. The use of cloud technology 
enables data processing and storage at scale, 
and the incorporation of data mining tools 
suggests that the system is capable of support-
ing complex data analysis tasks for enhanced 
decision-making in smart agriculture.
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5.  CONCLUSION

In conclusion, cloud technology and wearable 
computing interaction is a rapidly growing 
field that offers significant potential for 
improving the way we use and interact with 
technology. The integration of these two areas 
of computing has created new possibilities for 
more seamless, efficient, and effective 
computing, with cloud-connected wearable 
devices offering users a more integrated and 
personalized experience. However, there are 
also many challenges that must be overcome in 
order to fully realize the potential of cloud 
technology and wearable computing interac-
tion. These challenges include optimizing data 
transfer and processing, enhancing security, 
and improving the user experience. Despite 
these challenges, the future of cloud technolo-
gy and wearable computing interaction is 
bright, with ongoing research and development 
in this field poised to deliver new innovations 
and breakthroughs in the years to come.
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solutions for a wide range of applications. By 
integrating cloud-based resources with wear-
able devices, it is possible to provide users 
with a more seamless, efficient, and effective 
computing experience. For example, 
cloud-connected wearable devices can provide 
users with real-time access to their health and 
fitness data, entertainment, and other applica-
tions, without the need for a separate computer 
or smart phone. The integration of cloud 
technology and wearable computing also has 
the potential to create new solutions for big 
data analysis, with the ability to process and 
store large amounts of data generated by wear-
able devices. This can lead to new insights and 
breakthroughs in a range of fields, such as 
healthcare, sports, and entertainment [2].

However, the integration of cloud technology 
and wearable computing also presents a 
number of challenges and technical issues that 
must be addressed. For example, the transfer of 
large amounts of data between wearable devic-
es and cloud-based resources can be slow and 
unreliable, leading to delays and disruptions in 
the user experience [3].In addition, the security 
of sensitive personal data stored and processed 
in the cloud is a major concern, and must be 
addressed to ensure user privacy and data 
protection. Despite these challenges, the future 
of cloud technology and wearable computing 
interaction is bright, with ongoing research and 
development in this field poised to deliver new 
innovations and breakthroughs in the years to 
come [4]. This research is exploring new 
approaches and solutions for integrating cloud 
technology and wearable computing, including 
new hardware and software designs, improved 
communication protocols, and enhanced 
security mechanisms. The goal is to create 

wearable devices that are better connected to 
cloud-based resources and provide users with a 
more integrated and personalized computing 
experience [5].

The technological advancements in the past 
few decades have given rise to a new era of 
innovative devices and systems. One such 
domain that has greatly benefited from these 
advancements is healthcare. Wearable devices, 
combined with cloud computing, have created 
a revolution in the healthcare industry. Wear-
able Devices: Wearable devices are small, 
portable, and convenient devices that can be 
worn on the body to monitor various health 
parameters. These devices are equipped with 
sensors that collect and transmit data about the 
user's physical activity, heart rate, sleep 
patterns, and other health metrics [6]. Some 
examples of wearable devices include fitness 
trackers, smartwatches, and sleep monitors. 
Cloud Computing: Cloud computing is a 
technology that enables users to store and 
access data and applications over the internet. 
This technology provides the capability to 
store, process, and analyze vast amounts of 
data, which can be used for various purposes, 
including healthcare [7].

Benefits of Wearable Devices and Cloud Com-
puting in Healthcare: Personalized Healthcare: 
Wearable devices and cloud computing 
provide patients with personalized healthcare 
services. By collecting and analyzing data 
from wearable devices, healthcare providers 
can create customized treatment plans that are 
tailored to the individual's specific needs. 
Continuous Monitoring: Wearable devices 
allow for continuous monitoring of a patient's 
health status. This enables healthcare providers 

Fig 1: Architecture for ranking the API calls

 TABLE 1: DATASET DESCRIPTION

5.  METHODOLOGY

It is possible to extract and correlate the 
behavior of permission requests and API calls 
displayed by malicious programs in order to 
improve the preciseness of mobile malware 
detection. To increase possibility of discovering 
malicious apps, we make use of permissions 
analysis and analysis of the frequency of API 
calls. Applying the framework that we have 
suggested, it is possible for us to determine 
which API calls made by malicious Android 
software are the most important by using a 
scoring and categorizing method. Finding 
repackaging apps by comparing their names, 
hash values, or entry in a blacklist database is a 
fruitless endeavor. Instead, we propose a system 
that compares the regularity of the API calls and 
permissions across two programs in order to 
detect comparable repackaged applications. We 
created a three-stage analysis model for our 

suggested mobile malware analysis method for 
research purposes. Pre-processing stage, 
Extraction stage, and Grouping stage.

5.1. Pre-processing stage
The Java programming language is used to 
write Android apps, which are then converted 
into Java bytecode and then converted to Dalvik 
executable bytecode using the Dalvik virtual 
machine. Many files with the .class extension 
are created when the Java code is built. The Java 
source code, when compiled, results in the 
creation of many files along with the extension 
.class. The dx tool is used to combine all of the 
separate class files into one.dex file. An Android 
app's binary data is stored in the APK file. It's 
critical to decompile the Android app first 
before doing any more investigation. Android 
apps can be disassembled or decompiled using a 
variety of reverse engineering tools, including 
dex2jar, Apktool, Android Multitool, and the 
JADX. During this stage, we make use of 
Androguard, a tool for static analysis reverse 
engineering that is open source.

5.2. Extractions stage
Android SDK (software development kit) offers 
programmers a combination of API calls 
(comprising of a fundamental collection of 
package constructors, classes, fields, and 

malicious software. Malware threats have 
increased due to the global adoption of cloud 
computing and Internet of Things (IoT) [1]. 
Such malicious actions have the potential to 
compromise the integrity, confidentiality, or 
availability of mobile systems [2]. The people 
who make mobile malware have taken PC 
malware and added new features to it to make 
new threats to mobile platforms. Putting in 
place forensic identification security controls 
will make it less likely that digital systems will 
be broken into [3]. Mobile malware are virulent 
software that explicitly developed and 
considered to attack mobile devices, e.g., 
Smartphones and other devices [4]. Mobile 
malware refers to any form of harmful code or 
software that compromises the safety and 
performance of a mobile device without the 
knowledge or permission of the device's owner. 
Ransomware, Trojan horses, worms, spyware, 
rootkits, and botnets are all examples of 
different types of malware. Mobile malware is 
becoming more sophisticated and dangerous 
because it collects user data, sends premium text 
messages, makes calls, etc. Mobile platforms 
are now the primary target for cybercriminals 
that create malicious software, resulting in a 
1,800% spike in mobile malware in 2016. 
Check Point did an international survey of 850 
businesses and found that all of them had been 
attacked by mobile malware. According to 
Kaspersky, the number of users who have been 
infected with Android malware has more than 
tripled to 1.7 million worldwide in 2019. As can 
be seen in Fig. 1, the number of mobile 
malicious installation packages that Kaspersky 
found in 2021 was 3,464,756, which decreased 
of 2,218,938 from the previous year. The total 
number of mobile malware installation 
packages has decreased to levels roughly 
equivalent to those seen in 2019. The number of 

attacks continued to go down steadily 
throughout the reporting period, and in the 
second half of 2021 they reached their lowest 
monthly average in the previous two years can 
be seen in Fig. 2. 

In the last quarter of 2017, McAfee Labs 
discovered 16M mobile malware [5], and 
Juniper reported a 400\% increase in Android 
malware. Over 1.05 million Android malware 
apps have been detected by Sophos Labs since 
2010 [6]. Smartphone malware is always busy 
updating new features, e.g. always looking for 
new ways to shift into new distribution, 
methods and avoid detection techniques, such as 
obfuscation technique stealth methods, and 
repacking methods [7]. An old Study [8] shows 
that most of the Android malware used a 
repackaged technique they merged codes in 
other legitimate known applications to avoid 
security checkpoints.

Google Play Store is used by malware 
developer to download popular Android 
applications. Then decompile the applications, 
insert malicious code into the apps, and then 
reupload the applications with the malignant 
content to third-party markets for user adoption 
[9]. Existing mobile anti-malware applications 
were found to be unable to detect malware apps 
that have been obfuscated or repackaged.

Using ten malicious apps from six different 
families, researchers were able to test the 
effectiveness of mobile anti-malware scanners 
using a variety of obfuscation tactics [10]. It was 
then tested versus 10 reputable anti-malware 
scanners using these new obfuscated binaries. 
As per the results, there is not a single 
antimalware that was able to detect any 
malicious applications. Because there are so 

tion can be used to create a more comprehen-
sive picture of the user's health and wellness. 
User Interface: The wearable device provides 
users with a simple and intuitive interface for 
accessing and managing their health data. This 
can include features such as touch screens, 
voice commands, and button controls.  User 
Experience: The user terminal layer plays a 
crucial role in shaping the user's overall experi-
ence with the wearable device. By providing a 
seamless and intuitive interface, users are more 
likely to use the device regularly and receive 
the maximum benefits from it [6].

In conclusion, the User Terminal Layer is a 
critical component in the interaction between 
cloud technology and wearable computing. By 
providing users with a simple and intuitive 
interface, this layer enables them to easily 
access and manage their health data and 
receive real-time feedback and insights about 
their health and wellness.The Communication 
Layer is a crucial component in the interaction 
between cloud technology and wearable 
computing. It refers to the mechanism through 
which data is transmitted between wearable 
devices and the cloud server [17]. Key 
functions of this layer include Data Transmis-
sion: The communication layer is responsible 
for transmitting data from wearable devices to 
the cloud server. This data can include infor-
mation such as heart rate, physical activity, 
sleep patterns, and other health metrics.Data 
Transfer Protocols: The communication layer 
uses various data transfer protocols to transmit 
data between wearable devices and the cloud 
server. These protocols can include Bluetooth, 
Wi-Fi, and cellular networks, depending on the 
device's connectivity and security require-
ments.Data Synchronization: The communica-

tion layer ensures that data is synchronized 
between the wearable device and the cloud 
server. This allows users to access their health 
data from any device connected to the cloud, 
such as their smartphone or computer.Data 
Security: The communication layer imple-
ments security measures such as encryption 
and access control to protect the confidentiality 
and integrity of the data transmitted between 
wearable devices and the cloud server [7].

In conclusion, the Communication Layer plays 
a critical role in the interaction between cloud 
technology and wearable computing. By 
providing a reliable and secure mechanism for 
transmitting data, this layer enables wearable 
devices to effectively communicate with the 
cloud server and provide users with real-time 
feedback and insights about their health and 
wellness.The core of AIWAC, which provides 
physiological and psychological information 
evaluation through a statistics center on the 
cloud platform, is the cloud-based carrier layer 
[9]. The data center is primarily in charge of 
data storage, function extraction and classifica-
tion, as well as person emotion modeling. 
utilizing the powerful computational power of 
gadgets. While the transmission module is in 
charge of transferring collected data to the sink 
node and receiving control signals, the acquisi-
tion module is utilized to gather physiological 
information. Only a few devices are active to 
gather the crucial physiological data and moni-
tor emotional changes in a person while they 
are mentally secure. When a user's emotions 
change, In order to increase the accuracy of 
sentiment evaluation, the emotional weak 
deduction receiving layer sends a control 
signal to the wearable tool layer, which 
activates relevant devices or deactivates 

1.  INTRODUCTION

 Cloud technology and wearable 
computing are two important areas of comput-
ing that are rapidly advancing and changing 
the way we interact with technology. Cloud 
technology refers to the delivery of computing 
resources, such as data storage and processing, 
over the internet. This allows users to access 

and use these resources from anywhere, at any 
time, and on any device. Wearable computing, 
on the other hand, refers to the use of comput-
ing devices that can be worn on the body, such 
as smartwatches, fitness trackers, and smart 
glasses [1]. The interaction between cloud 
technology and wearable computing is of 
growing interest and importance, as it offers 
the potential to create new and innovative 

many mobile apps out there, it's vital to assess 
and check what’s available in marketplaces 
swiftly and intelligently [11]. An automated 
system that can identify and remove harmful 
programs from both official and unofficial 
markets must be established to prevent them 
from being downloaded. As part of [12] 
malicious content was introduced in Android 
apps resources to assess if ten anti-malware 
scanners can detect it. While the remainder of 
the anti-malware scanners were unable to 
discover any dangerous information in their 
results, just one anti-malware scanner detected 
two hiding tactics [13].

2.  RELATED WORKS

In the last ten years, substantial advancement 
has been made in the study and discovery of 
malware in mobile devices. This section in total 
investigates challenges associated with the 
detection of mobile malware and investigates 
expressively related methods that have been 
suggested by a body of previous research. The 
issues surrounding mobile malware are 
discussed in this section identification and 
explores the literature's substantially related 
approaches. Three techniques used by security 
companies and researchers for extracting 
features from mobile applications are static, 
dynamic and hybrid

2.1.  Static analysis
Static analysis is the name given to the study of 
computer programs that do not include the 
actual running of the program's code. Static 
analysis techniques and processes include those 
that employ analytic approaches to examine 
computer programs. According to the most 
recent findings of the research that has been 
conducted, it was found that there exists a 

variety of attributes that are utilized for the 
purpose of static analysis of applications in 
order to identify malicious applications. The 
primary purpose of permissions is to store all 
the information on the permissions necessary to 
execute an app in the system/mobile. Therefore, 
developers can investigate the behavior or intent 
of an application based on the permissions 
requested. The detecting mechanism makes use 
of the regularity of approvals utilized by 
malevolent and benign programs. It may be 
used alone or in conjunction with one or more 
additional features. Any application's .apk file's 
manifest file is where permissions are extracted 
[14]. It has contrasted the usage of regular and 
malicious applications using both unique 
requested permissions (URP) and unique 
utilized permissions (UUP). API calls are the 
second-most utilized functionality. The 
application's class.dex file may be used to 
extract these API calls. The application's API 
calls may be examined during the investigation 
process. Skeptical, and potentially harmful API 
calls are recognized, and apps are categorized 
based on this information. Droidlogger [15] 
employed API call blocks, which is a collection 
of APIs used for a certain purpose and 
operation, and outperformed that single API call 
analysis. Permissions and API are often used in 
combination with one another [16]. The core 
components of the program, like the manifest 
file and class.dex file, are covered by both of 
these. Metadata information, string searches, 
call graphs, hardware elements, and other 
aspects are made use of also, nonetheless less 
often than permissions and APIs.

2.2. Dynamic analysis
The term "dynamic analysis" makes mention of 
a set of methods and procedures that are used 
when analytical techniques are applied to the 

research of any software in which program 
implementation is involved with monitoring 
and parallel outcomes. In dynamic analysis, the 
two primary approaches are in-box analysis and 
out-of-box analysis. To utilize such strategies, 
an isolated atmosphere is required in order to 
execute the program and see the data in 
real-time [17]. Vibrant analysis is more difficult 
than static examination, and it requires a variety 
of tools and expertise to observe and draw 
conclusions. In [18] employs system call 
patterns for any inquiry process. A distinctive 
strategy that researchers have conducted is a 
filtering mechanism that calls for abstraction 
and improved results; moreover, it substitutes 
mechanism calls with aliases, and created a 
method to detect malicious program activity 
based on how often system calls occur. The 
entire dissimilarity between weighted system 
calls (ADWSC) and ranked system calls 
utilizing a large population test are the two 
methods used to assess system calls (RSLPT) 
[19]. The analysis of numerous parameters, 
including average packet size, total count of 
packets transmitted and acquired, duration 
in-between packets, ratio of incoming and 
outgoing packets, etc., is done in order to 
identify malicious activity in network traffic 
[20]. In [21], the authors examined the HTTP 
flow request by making use of natural language 
processing for string analysis while treating the 
HTPP flow as a document. Other attributes 
Hardware resources including CPU, memory, 
battery, and other hardware resources are also 
employed as features for behavior analysis, 
however, they are less effective than system call 
and network traffic. In general, authorizations as 
well as APIs are utilized for static analysis, 
however, sometimes, they are also examined 
during execution. In article [22] and [23], the 
researchers performed a taint analysis, which is 

a sort of behavioral analysis that makes use of 
the source and sink paradigms for data flow. 
Finally, it has been seen that most researchers 
prefer network traffic and system calls as 
features in their dynamic analysis.

2.3. Hybrid analysis
Static and dynamic analysis are combined in the 
ensemble analysis. Using AAPT (Android asset 
packaging tool), researchers [24] used static 
analysis in order to acquire permission requests 
from the manifest file. In addition to that, they 
made advantage of dynamic analysis when 
tracing system calls with the Strace tool. One 
hundred and eighty-eight benign applications 
and one hundred and eleven malicious ones 
were gathered by the researchers. Static and 
dynamic analysis aspects were merged by the 
authors. For the aim of evaluating their 
technology, they used four different ML 
algorithms, with the best detection accuracy 
being 70.31 percent. Static analysis using the 
APK tool yielded 135 permissions. The top 87 
permissions were retrieved by utilizing IG as a 
search engine. The system calls were 
dynamically recorded by combining an Android 
emulator with the Strace program. System calls 
were examined to see if a certain call was 
invoked more frequently in malignant code than 
in benign code. They used six different ML 
algorithms to see how well their approach 
worked. Static analysis accuracy was 0.972, and 
dynamic analysis accuracy was 0.884, thanks to 
the random forest they used. The researcher 
concludes that a permission-based static feature 
is substantially more informative than a 
system-based dynamic feature [25]. As a result, 
in this work, we decide to employ static analysis 
in conjunction with permissions-based features 
to study API calls.

contribute in malware forensic investigation and 
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is 
narrowed down, and the TF is then utilized to 
reduce the dimensionality of the 
narrowed-down set. The J48, k-NN, RT, RF, and 
NB algorithms are among the ML approaches 
we use in our research. The findings of the 
experiments show that our model is capable of 
reaching an F-measure of 94.03%.
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3.  MACHINE LEARNING

Some researchers have tried applying deep 
learning and ML based on API call relationships 
to find behavioral patterns in benign and 
malicious applications to develop a detection 
system. These efforts failed. It was reported that 
the authors of the paper [26] had obtained an 
accuracy of 96 percent on Drebin (beneficial 
5.09K) dataset and AMD (benign 20.05K and 
malware 20.08K). UniPDroid, developed by 
[27], combines static analysis as well as ML 
methods to classify malicious software families. 
Throughout all, they found 15,884 harmful 
programs in their research. They gathered 560 
features through static analysis. 
Meta-transformer and extra-trees classifiers 
were used by the authors to narrow the list of 
candidates. They tested their technique on 78 
different malware families, using the XGBoost 
classifier, and got an average classification 
accuracy of 92%. MalDozer, a program 
developed by [28], studied the efficiency of API 
call raw sequences and deep learning algorithms 
in detecting malicious software. A total of 
33,000 malicious programs from Drebin, 
MalDozer, and Malgenome as well as 38000 
benign apps from Google Play Store were 
analyzed for API method call sequences using 
Dexdump by the researchers. MalDozer uses 
two-word embedding algorithms, GloVe and 
word2vec, to normalize the feature vector. The 
detection accuracy was between 96% and 
99.6%, with a false positive rate between 0.06% 
and 2%. Permission requests were not 
considered when writing the article. We looked 
at permissions and the frequency with which 
Android platform APIs, such as classes, 
packages, methods, and constructors were 
utilized in our research. The authors conducted 
an extensive research on Android malware 

recognition using a deep learning approach. The 
authors used a mobile security framework to 
extract permissions, intent filters, incorrect 
certificates, and API calls from the asset folder 
that contained APK files (MobSF). After that, 
all five features were transformed into vector 
space. They used a neural network to test their 
technique on both benign and malicious 
software to see how well it worked. They used 
80\% for training and 20% for testing, and their 
detection accuracy was 96.81 percent.

4.  DATASETS

We use two different kinds of datasets for the 
evaluation experiments a benign dataset and a 
malicious dataset. A benign dataset contains an 
application that is well-intentioned, and 
harmless while a malware dataset contains an 
application that is malicious and harmful, as 
indicated in Fig. 5. We do the assessment tests 
under both data sets to see which one performs 
better. We use reference datasets like Contagio, 
VirusShare, MalShare, AndroZoo, and 
VirusTotal for the malware dataset. There are 
5,560 malware programs in this dataset, and at 
least ten anti-malware products have scanned 
and identified them such as VirusTotal. We were 
unable to locate a standard benign dataset, so we 
decided to develop our own and run it through 
VirusTotal to ensure that it was complete and 
accurate. AndroZoo was used to gather useful 
apps from the PlayStore. There are 9,476 benign 
applications in this dataset. Since the 
application’s data gathered in June 2021 were 
tested by utilizing VirusTotal, the app categories 
reflect this. In case all anti-malware vendors in 
the database found a program to be safe, we 
consider it to be safe as well. To remedy the 
issue of class imbalance, we utilized SMOTE 
(synthetic minority over-sampling technique).

This allowed us to present a high-cost coverage 
of the detection performances. We could create 
API call groups that were quite effective in 
spotting fraudulent apps. We designated as 
irrelevant API calls those calls that were in 
benign apps but were deemed insignificant. We 
concentrated on the APIs utilized by the 
malicious applications the most. Some of the 
aspects we looked at were prevalent in 
malicious applications. By using complement-
ing techniques that avoid fingerprinting 
malware, this system aimed to classify API calls 
into three distinct levels and then classify them 
according to the level of hazard they posed. For 
the investigation, we used a full set of 15,036 
API calls, each of which might be used by 
malicious programmers to carry out a variety of 
tasks throughout the system. Our research 
identified three distinct types of API requests 
founding malicious apps: Obscure (A3), Critical 
(A2), and Obstreperous (A1). We figured out 
which API methods were used more frequently 
in malware as compared to benign applications 
and then took the intersection of those two 
numbers. The ' critical API calls' category is 
what we term it because malicious apps 
frequently use these APIs rather than benign 
apps. 

8.  OBSCURE GROUP (A3) 

We found intersections between API calls used 
by both malicious and benign applications and 
discovered that the total count of API calls in 
both benign and malicious apps was about 
equal. When looking at the API calls made by 
both malware and benign applications, the 
frequency with which each API request is made 
is also considered. For the sake of clarity, we 
took into consideration the frequency with 
which each API call is utilized by the benign 

applications. When it came to potentially 
harmful calls, we followed the same line of 
thinking. Thus let  represent a collection of API 
calls which are used by malicious applications 
and their frequency and  represent a collection 
of API calls which are used by benign 
applications and their corresponding frequency. 
Thus let M={M1,M2,…,Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 
C={C1,C2,…,Ci} represent a collection of API 
calls which are used by benign applications and 
their corresponding frequency. Thus, we 
isolated the obscure combination by extraction 
of API calls that appeared approximately 
equally in benign and malicious applications. In 
Area 3 (see Fig. 5), the calls are obscure (A3). 
We took a set theory method and made use of 
the intersection process in order to differentiate 
between benign and malware combinations. 
This process detects API requests which are 
frequent and similar to one another. However, a 
threshold value was added as a result of a shift 
in the frequency of API calls; because of this 
threshold constant, the classification of API 
calls as either malicious or benign and therefore 
belonging to obscure or critical groups is 
unstable. Out of a total of 15,036 calls, only 
1,687 were placed in the obscure group.

9.  CRITICAL GROUP (A2)

We were able to obtain the intersection of the 
API calls that were present in malicious applica-
tions more frequently than they were in benign 
applications by using our data. Since harmful 
apps often use these API calls rather than benign 
apps, we label this group "the critical API calls 
group. Thus let M={M1,M2,…Mj} represent a 
collection of API calls which are used by 
malicious applications and their frequency and 

methods) that they can use to communicate with 
the operating system, software, or hardware as 
shown in Fig. 4. The SDK offers a wide range of 
APIs for developers to choose from when 
building an app. Malware writers can use these 
API calls to exploit mobile devices illegally. 
The same API call, for instance, may be 
requested by a benign or malicious program to 
access and receive particular data from an OS. 
There are several libraries included with the 
Android SDK as depicted in Fig. 4, including 
Android, Junit, and Org. The "android.jar" file 
in the Android SDK contains a reference to 
these libraries. API call features and Permission 
features are assigned to each Android app 
individually. We used the following method to 
extract permission requests and API calls from 
APK files.

A script developed in Python programming 
language which automatically runs and 
decompiles the complete dataset as follows:  

1. Androguard can be used to generate all 
the different packages called from within 
an APK.

2. You can get the API call details and 
package level information from the entire 
package if it contains important methods 
and classes (like Java, and Android). 
More crucially, a few delicate API calls 
are shielded by Android's permission 
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described 
by the authors [29], and we defined the set 
of all requested API calls, and all Android 
permissions in the following way.

                                                                     (1)

4. Each application should be represented in 
a form of a binary vector of API calls, 

Where  

If   API is utilized in the application and if the 
corresponding application does not use 
API.

5. The association map is defined as follows 
Di to map API calls to permissions Pi

                                                                     (2)

Where P is controlling the D.

6. For each permission, calculate the 
number of API calls and the numerical 
count for each API request, as follows:

                                                                     (3)

Where

6.  GROUPING STAGE

We used a grouping method to better highlight 
the complexities of utilization of the API calls in 
malignant applications in order to give 
comprehensive coverage of the detection 
performances..

7.  OBSCUR

Fig 2: Architecture for ranking the API calls

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency 
displayed details regarding such characteristics 
which were present within several malware 
applications. When compared to the count of 
presence within benign applications, value 
combination of API calls used among the malig-
nant applications has a higher total count. To 
demonstrate this idea, let's say that a particular 
API call was required 10 times by the concerned 
malware combination, but the benign set only 
asked it twice. As a result, given that the sample 
API call was found to occur more frequently in 
the malicious dataset, we have reason to believe 
that it is connected to a malicious dataset. In 
addition, there were only 737 potentially critical 
calls out of 15,036 total calls. While comparing 
it to the benign dataset, we see that the 
malicious dataset makes a significantly higher 
number of API calls in order to communicate 
with the system. For instance, the collected 
malware apps use the APIs for telephone 
controller, short message service manager, 
storage, system service, logs, databases, and 
device details often more than benign applica-
tion does. This is because malware applications 
are designed to exploit vulnerabilities in mobile 
operating systems. The differential ranking of 
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API 
calls that were in this set and which are utilized 
much regularly among malicious applications 
than they are in benign applications. This was 
necessary because of the limited amount of 
space available. The characteristics that 
malicious application employ requires critical 
API calls to get access to the system, according 
to our investigation. Examples include "detDe-
viceId" and "getSubscriberId" methods for 

stealing sensitive data such as (IMEI) and 
Identity (IMSI) numbers and sending them 
through the network using setWifiEnabled or 
execHtpRequest. Malware programs can be 
affected from techniques linked to sending 
messages and receiving messages (such as 
"sendTextMessage," "getDefault,", and “. 
SetMessage") according to the findings. The 
malware dataset, it turns out, affects obfuscation 
and other static analysis elimination strategies 
(e.g., Cipher.getInstance).For this reason, we 
hypothesized that classes like "Getdeviceid" and 
"TelephonyManager" could have needed 
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and 
"SmsMessage".Some API requests, such as 
"Getdeviceid,","Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google 
permissions.

10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in 
malicious apps and were absent from benign 
ones. Illustrated in Fig. 7. C={C1,C2,…,Ci } Let 
C be a product of the collection of API requests 
which happen most frequently among benign 
applications is Ci while M={M1,M2,…,Mj } is 
defined as API calls that appear frequently in 
malware programs. We compute the following 
to find the Obstreperous calls:

                                       (4)
In relation to the equation shown above, the 
characteristics of obstreperous calls are more 
obviously geared toward harmful applications. 
Concerning Fig. 7, in contrast to the other two 
categories, no explicit criterion was found for 
the frequency of API calls because this set is 
unquestionably more skewed from malignancy. 
Because no single particular frequency term 
must be met, and because there is a greater 

(Lorg/w3c/dom/DOMException;<init>.(SJa-
va/lang/String;)V) .This method appears to be 
used by much of Android Steek group.

Open Connection: This method is belonging to 
Android. Generisk group. The group establishes 
linking to predetermined distant server, loads it, 
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both 
the “critical calls" as well as the “Obstreperous 
calls" groups that we considered in our experi-
ment.

Fig 3: Distribution of Features across the 
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications 
of API calls can be made with reasonable ease 
using the primary categories. There is a variety 
of APIs available for each type of group. The 
following criteria will be used to assign a value 
to each feature: ‘very important’, ‘important’, 
‘normal’, or ‘unimportant’.

Figure.4 demonstrates that the IG has been 
implemented in each feature. The score 
indicates the importance, in the opinion of the 
IG, of each of the best 12 characteristics found 

within the risky set. It approves that in mobile 
malware detection, the features chosen are very 
much important. In order to determine the 
significance of each feature to the data set that 
has been provided, the procedure calculates the 
splitting conditions regarding decision trees. 
Each permission's IG is determined by the 
formula below.
gain (c,r_i )=entropy (c)-entropy (c|r_i) C 
refers to the class value (i.e., malignant or 
benign) and   is the  attribute. The entropy (c) is 
the information entropy. The ideal collection of 
features depends on the classifier and is fewer 
than the total number of available features. We 
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick 
the attributes for evaluation from either the 
critical calls or Obstreperous calls.

Fig 4: Information gain for the top features 
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization
Before using ML algorithms, it is critical to 
normalize the data. Now that we have compiled 
the essential characteristics (critical and 
Obstreperous attributes set), weights need to be 
assigned for those attributes and express them 
using a vector space.

potential for malicious API calls in most of 
these conditions, a previously implemented 
threshold is rendered meaningless, and its 
function is rendered moot within the context of 
this scenario. API generation technology such 
as the one described here was employed to 
create API requests that were then incorporated 
into the malicious dataset in their entirety. The 
outcomes of the experiments demonstrate 
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,) 
(Android/content/Context;.deleteFile,) 
(Android/database/sqlite/SQLiteDatabase;que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager;get-
Line1Number) are specifically discovered in 
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are 
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

Get Last Known Location: it communicates 
the device's location information to a remote site 
and returns the device's last known location 
from the specified provider. This technique is 
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server 
as a string; we've seen this on nearly all Android 
devices. This is how the Fokonge family do 
things.

Set Context Class Loader: It can be used to 
dynamically load harmful software since it 
loads exterior classes or sources from certain 
repositories. Malware applications could use the 
Class Loader class to replace the corresponding 
software with malicious software to get around 
current countermeasures. It is quite likely that 
the malicious code is concealed either under-
neath the next route (/assets) or within the safe 
digital (SD) card. This strategy appears to be 
used by most members of Android. Steek 
family. Malicious software only requested 
permission for full Internet access once 
throughout the installation. It might appear as a 
smaller threat to possible sufferers if this 
malicious software just asks for permission 
during installation. Installing the malware on a 
smartphone triggers it to open and show 
information about any fraudulent apps that have 
been installed. The set Context Class Loader 
technique is called a similar amount of times by 
malicious applications that belong to the Steek 
family.

DOM Exception: It is possible to use it when 
certain events take place. In our research, we 
discovered that malicious apps used
Lorg/w3c/dom/DOMException) 

collected from either the critical or 
Obstreperous categories. 6 ML algorithms J48, 
random forest (RF), k-nearest neighbors 
(k-NN), random tree (RT), naive Bayes (NB), 
Support vector machine (SVM) were used in 
10- fold cross-validation for each group (critical 
group and Obstreperous group). The empirical 
findings imply that the proposed method is 
effective at recognizing mobile malware, as 
evidenced by the fact that it attained an 
F-measure of 94.04\%, as displayed in Fig. 8. In 
the process of conducting mobile application 
analysis and forensic investigations into 
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the 
fastest when it comes to training and testing a 
classifier; both require 200 milliseconds. J48 is 
the most time-consuming, requiring 920 
milliseconds. SVM takes 980 milliseconds in 
order to complete the training and testing, and 
for a random forest, an average of 0.73 seconds 
is required. Overall, the system is predictable 
and dependable in real-time applications, with a 
speed that is suitable for all five classifiers.

Fig 5: F Measure Score

15.  CONCLUSION

The development of a secure mobile computing 
environment, the protection of sensitive data, 
and the detection of malicious software all need 

the identification of the most prevalent features 
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions 
and important API calls that the program makes. 
To identify malicious programs, we present a 
classification approach that includes the consid-
eration of authorizations and API requests. This 
was provoked by the growing count of applica-
tions and the absence of efficient malware 
recognition technologies. There are three stages 
to our analysis: preprocessing, extraction, and 
grouping stage. With so many APIs used by 
Android apps, we devised a grouping method in 
order to target only the top important ones to 
increase the chances of finding Android 
malware.

Obscure set (common API calls in both 
malicious and normal applications).

Critical set (common API calls in a malicious 
application which are less like those in normal 
applications).

Obstreperous set (API calls that are present in 
the malicious applications and absent in normal 
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a 
frequency examination is run on the important 
groups. As a result of the findings, it's clear that 
malicious Android apps make a distinct set of 
API calls and request permissions more 
frequently than normal Android applications to 
access user data than benign apps. For instance, 
the API requests for the SMS manager, storage, 
telephone manager, system service, device 
information, logs, and database are substantially 
more prevalent in malware applications. 
According to our suggested method's empirical 
results, which used an actual malware dataset of 
15,036 Android applications, it is successful at 
recognizing mobile malware and can greatly 

Normalization of the term frequency (TF) was 
used in order to minimize situations in which 
the classifier has varying weights when making 
decisions. The  represents the extracted 
dictionary, where the dictionary was drawn 
from both groups of data (critical and 
Obstreperous groups). A weighted vector space,
                                         {0, 1} shows the presence 
or absence of a precise attribute in an app in the 
form of a (TF) representation. This word 
denotes the regularity with which the 
functionality can be accessed within the 
application. The (TF) can be scaled to values by 
the division of the frequency of an appearance 
by the amount of features within the application 
(0, 1). The following is a formula for calculating 

the                            (TF) the normalization of the 

dataset provides for a matrix-like view of the 
vector representation where rows indicate 
application vectors and columns represent 
features. Performing this action enables the 
application of a variety of ML algorithms, and it 
also enables us to identify areas of similarity 
and difference by employing similarity- 
measuring algorithms.

13.  EVALUATION METRICS

In order to determine the effectiveness of 
classification models, we have selected the 
following: accuracy, precision, recall, and the 
F-measure standard metrics. Estimates for these 
measures are derived from values of true 
positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN).

• TP: The count of correctly discovered 
malware applications is represented.

• TN: The count of correctly discovered 
benign applications is represented.

• FP: Count of benign apps mistakenly 
categorized as malware applications. 

• FN: Count of malware an application 
mistakenly categorized as benign 
applications.

Accuracy It calculates an estimate of the 
proportion of successfully detected connection 
records relative to the total test dataset. When 
there is a higher level of accuracy, the ML 
model is considered to be superior. The 
accuracy is a useful measurement for the test 
dataset since it consists of classes that are evenly 
distributed, and it is explained in following 
manner:

14.  RESULTS AND ANALYSIS

The primary objective is to investigate whether 
the considered attributes from the critical set 
and Obstreperous calls can be utilized to 
construct complicated classifiers that can 
forecast the classes of mobile malware, or the 
risk factors associated with it. After ignoring the 
features of the dataset that were deemed to be 
insignificant, all 741 different features were 

The evaluation of the Hybrid Big Emotion 
Data Layer is a crucial step in understanding 
the interaction between cloud technology and 
wearable computing. This layer refers to the 
combination of data from wearable devices 
and other sources, such as social media, to 
create a comprehensive profile of the user's 
emotional state. Key evaluation metrics for 
this layer include Accuracy: The accuracy of 
the data collected from wearable devices and 
other sources is a key evaluation metric. This 
includes the accuracy of the algorithms used to 
detect and interpret the user's emotional 
state.Privacy: The privacy measures imple-
mented by the cloud server to protect the confi-
dentiality and security of the data collected 
from wearable devices is a key evaluation 
metric. This includes encryption, access 
control, and data anonymization.Personaliza-
tion: The level of personalization provided by 
the cloud server is a key evaluation metric. 
This includes the ability of the cloud server to 
provide personalized feedback and recommen-
dations based on the user's emotional state.Us-
er Satisfaction: The level of user satisfaction 
with the services provided by the cloud server 
is a key evaluation metric. This includes the 
user's perception of the usefulness, ease of use, 
and effectiveness of the services provided [13].
In conclusion, evaluating the Hybrid Big 
Emotion Data Layer is crucial for understand-
ing the interaction between cloud technology 
and wearable computing. By combining data 
from wearable devices and other sources, this 
layer enables wearable devices to deliver 
personalized and cost-effective emotional 
health services to users. The evaluation of this 
layer should consider factors such as accuracy, 
privacy, personalization, and user satisfac-

tion.The Emotion Multidimensional Data 
Aggregation and Preprocessing Layer is a 
critical component in the interaction between 
cloud technology and wearable computing. 
This layer refers to the aggregation of data 
from wearable devices and other sources, such 
as social media, and the preprocessing of this 
data to prepare it for analysis. Key functions of 
this layer include Data Aggregation: The cloud 
server collects data from wearable devices and 
other sources and aggregates it into a compre-
hensive profile of the user's emotional state. 
This data may include heart rate, skin conduc-
tance, physical activity, and social media activ-
ity.Data Preprocessing: The cloud server 
applies preprocessing techniques such as 
cleaning, normalization, and feature extraction 
to the aggregated data. This helps to improve 
the accuracy and reliability of the data and 
prepare it for analysis.Privacy: The cloud 
server implements privacy measures to protect 
the confidentiality and security of the data 
collected from wearable devices and other 
sources. This includes encryption, access 
control, and data anonymization [14].

In conclusion, the Emotion Multidimensional 
Data Aggregation and Preprocessing Layer is a 
critical component in the interaction between 
cloud technology and wearable computing. By 
aggregating data from wearable devices and 
other sources and preprocessing this data, this 
layer enables wearable devices to deliver 
personalized and cost-effective emotional 
health services to users. The privacy measures 
implemented by this layer help to protect the 
confidentiality and security of the user's data.

 

devices to deliver personalized and cost-effec-
tive emotional health services to users. The 
Multidimensional Affective Data Layer is a 
key component in the interaction between 
cloud technology and wearable computing. It 
refers to the collection and analysis of data 
related to the user's emotions, moods, and 
affective states. Key functions of this layer 
include Data Collection: The cloud server 
collects data from wearable devices such as 
heart rate, skin conductance, and physical 
activity to create a comprehensive profile of 
the user's emotional state. Data Analysis: The 
cloud server applies machine learning 
algorithms and statistical models to analyze the 
collected data to detect patterns and trends in 
the user's emotional state. This information can 
be used to generate insights and predictions 
about the user's emotional health.  Personaliza-

tion: The cloud server provides personalized 
feedback and recommendations to users based 
on their emotional state. This can include 
information such as stress-relieving activities, 
mindfulness exercises, and lifestyle modifica-
tions. Privacy: The cloud server implements 
privacy measures to protect the confidentiality 
and security of the data collected from wear-
able devices. This includes encryption, access 
control, and data anonymization [11].

In conclusion, the Multidimensional Affective 
Data Layer is a critical component in the 
interaction between cloud technology and 
wearable computing. By collecting and analyz-
ing data related to the user's emotions, moods, 
and affective states, this layer enables wearable 
devices to deliver personalized and cost-effec-
tive emotional health services to users [12].

unrelated ones if you wish to conserve energy 
[8].

The Cloud-based Service Layer is a key 
component in the interaction between cloud 
technology and wearable computing. It refers 
to the services and applications provided by 
the cloud server to support wearable devices. 
Key functions of this layer include Data 
Storage: The cloud server stores the data 
collected from wearable devices, allowing 
users to access their health data from any 
device connected to the cloud.Data Processing: 
The cloud server uses powerful computing 
resources to process the data collected from 
wearable devices. This includes applying 
machine learning algorithms and statistical 
models to generate insights and predictions 
about the user's health and wellness.Data 
Analysis: The cloud server provides data 
analytics services to generate insights and 
predictions about the user's health and wellness 
[19].This can include information such as the 
number of steps taken, calories burned, and 
hours of sleep.Application Development: The 
cloud server provides a platform for develop-
ers to create applications that interact with 
wearable devices. These applications can 
provide users with real-time feedback, alerts, 
and insights about their health and 
wellness.Scalability: The cloud server 
provides a scalable infrastructure that can 
handle an increasing volume of data from 
wearable devices. This allows wearable devic-
es to scale up or down as needed, depending on 
the user's needs [9].
In conclusion, the Cloud-based Service Layer 
is a critical component in the interaction 
between cloud technology and wearable 
computing. By providing a platform for 

storing, processing, and analyzing data from 
wearable devices, this layer enables wearable 
devices to deliver personalized and cost-effec-
tive healthcare services to users.The Emotional 
Sensitive Deduction Receiving Layer is an 
important component in the interaction 
between cloud technology and wearable 
computing. It refers to the ability of the cloud 
server to use data from wearable devices to 
detect and interpret emotional states of users. 
Key functions of this layer include Emotion 
Detection: The cloud server uses data from 
wearable devices such as heart rate, skin 
conductance, and physical activity to detect the 
emotional state of users. This information can 
be used to infer emotions such as stress, 
anxiety, and happiness.Emotion Analysis: The 
cloud server applies machine learning 
algorithms and statistical models to analyze the 
data collected from wearable devices and infer 
the emotional state of users. This can provide 
users with real-time feedback about their 
emotional state and suggest ways to manage 
their emotions.Personalization: The cloud 
server provides personalized feedback and 
recommendations to users based on their 
emotional state. This can include information 
such as stress-relieving activities, mindfulness 
exercises, and lifestyle modifications.  Privacy: 
The cloud server implements privacy measures 
to protect the confidentiality and security of 
the data collected from wearable devices. This 
includes encryption, access control, and data 
anonymization [10].
In conclusion, the Emotional Sensitive Deduc-
tion Receiving Layer is a critical component in 
the interaction between cloud technology and 
wearable computing. By using data from wear-
able devices to detect and interpret emotional 
states of users, this layer enables wearable 

A testbed architecture refers to the hardware 
and software components used to test and 
evaluate the interaction between cloud 
technology and wearable computing. A typical 
testbed architecture for evaluating the interac-
tion between these two technologies includes 
the following components Wearable Devices: 
This includes a range of wearable devices, 
such as smartwatches and fitness trackers, that 
are capable of collecting data about the user's 
emotional state. Cloud Server: This includes a 
cloud-based server that aggregates and prepro-
cesses the data collected from wearable devic-
es and other sources. User Terminal: This 
includes a user interface that allows users to 
interact with the cloud server and access their 
emotional health data. This may include a 

web-based interface, mobile app, or wearable 
device. Emotion Detection and Analysis Algo-
rithms: This includes algorithms that are used 
to detect and interpret the user's emotional 
state [5]. These algorithms may be implement-
ed on the wearable devices or on the cloud 
server. Data Storage and Management System: 
This includes a system for storing and manag-
ing the data collected from wearable devices 
and other sources. This system may include a 
database management system, data warehous-
ing system, or cloud storage system.

In conclusion, a testbed architecture is a crucial 
component in evaluating the interaction 
between cloud technology and wearable 
computing. The components of a testbed archi-

1.  INTRODUCTION

 There are many ways to access the 
internet today, and the most common method is 

via mobile devices. The Internet's explosive 
growth, combined with recent increases in 
automation via intelligent applications, creates a 
favorable environment for attackers using 

tecture, such as wearable devices, cloud server, 
user terminal, emotion detection and analysis 
algorithms, and data storage and management 
system, work together to provide a comprehen-
sive evaluation of the interaction between 
these two technologies. The interaction 
between cloud technology and wearable 
computing involves the exchange of data and 
information between wearable devices and 
cloud-based servers. The technical information 
involved in this interaction includes: Data 
Format: Wearable devices and cloud servers 
must use a common data format for exchang-
ing information. Common data formats include 
JSON, XML, and CSV. Data Transfer Proto-
cols: The communication between wearable 
devices and cloud servers must be secure and 
efficient. Common data transfer protocols used 
for this interaction include HTTPS, MQTT, 
and WebSockets. Data Processing: The cloud 
server must have the capability to process and 
analyze large amounts of data. This includes 
data preprocessing techniques such as clean-
ing, normalization, and feature extraction, and 
machine learning algorithms for data analysis.  
Data Security: Wearable devices and cloud 
servers must implement security measures to 
protect the confidentiality and privacy of the 
user's data. This includes data encryption, 
access control, and data anonymization. Data 
Visualization: The cloud server must have the 
capability to visualize and display the analyzed 
data in a user-friendly format. This may 
include charts, graphs, and reports [16].

In conclusion, the technical information 
involved in the interaction between cloud 
technology and wearable computing includes 
data format, data transfer protocols, data 
processing, data security, and data visualiza-

tion. These technical elements work together to 
ensure efficient and secure communication 
between wearable devices and cloud servers 
and enable wearable devices to deliver person-
alized and cost-effective emotional health 
services to users.The interaction between 
cloud technology and wearable computing is a 
rapidly evolving field with many open issues 
and prospective directions. Some of the key 
open issues and prospective directions 
include:Data Privacy and Security: Ensuring 
the privacy and security of user data is a major 
concern in the interaction between cloud 
technology and wearable computing. This 
includes protecting users' personal informa-
tion, health data, and emotional states.Data 
Integration and Management: The integration 
and management of data collected from multi-
ple wearable devices and other sources is a 
major challenge. This includes developing 
efficient methods for aggregating, preprocess-
ing, and analyzing large amounts of data.Emo-
tion Detection Accuracy: Improving the 
accuracy of emotion detection algorithms is a 
key challenge in the interaction between cloud 
technology and wearable computing. This 
includes developing algorithms that can 
accurately detect and interpret subtle emotion-
al changes.User Interaction and Experience: 
Enhancing the user interaction and experience 
with wearable devices and cloud-based 
services is an important prospective direction. 
This includes developing user-friendly 
interfaces, wearable devices with improved 
ergonomics and aesthetics, and cloud-based 
services that provide personalized and cost-ef-
fective emotional health services.Interopera-
bility and Standardization: Interoperability and 
standardization of data formats, data transfer 
protocols, and data processing methods are key 

issues in the interaction between cloud 
technology and wearable computing. This 
includes developing standards for data 
exchange and processing that ensure seamless 
interaction between wearable devices and 
cloud-based services.In conclusion, the 
interaction between cloud technology and 
wearable computing is a complex and dynamic 
field with many open issues and prospective 
directions. Addressing these issues and explor-
ing new directions is crucial in delivering 
personalized and cost-effective emotional 
health services to users through wearable 
devices and cloud-based services [17].

2. RELATED WORK

The integration of cloud technology and wear-
able computing has been an active area of 
research and development in recent years, and 
there has been a growing body of literature 
exploring various aspects of these interactions 
[3]. Some of the key areas of focus include 
Cloud-based wearable applications: Research-
ers have been exploring the use of cloud 
technology to support various applications on 
wearable devices, such as health monitoring, 
fitness tracking, and entertainment.Wear-
able-cloud integration: Researchers have been 
investigating ways to optimize the interaction 
between wearable devices and cloud-based 
services, such as improving data transfer and 
synchronization, reducing latency, and enhanc-
ing security [4]. Big data analysis for wearable 
devices: Researchers are exploring how to use 
cloud technology to process, store, and analyze 
the large amounts of data generated by wear-
able devices [6]. Wearable-cloud security: 
With the increasing amount of sensitive 
personal data being stored and processed in the 

cloud, researchers have been investigating 
various security issues associated with wear-
able-cloud integration, such as data privacy, 
data protection, and user authentication.Wear-
able-cloud architecture: Researchers have been 
proposing and evaluating various architectures 
for integrating wearable devices and 
cloud-based services, such as edge computing, 
fog computing, and hybrid architectures 
[12].These are some of the key areas of focus 
in the related work on cloud technology and 
wearable computing interaction. The literature 
in this field is rapidly evolving, and new devel-
opments and advances are being reported 
regularly [15].

3. PROPOSED METHODOLOGY 

The proposed methodology for investigating 
the interaction between cloud technology and 
wearable computing can vary depending on the 
specific research question and objectives. 
However, some common steps that can be 
included in the methodology Problem defini-
tion: Clearly defining the problem that is being 
addressed and the goals of the research is an 
important first step in developing a methodolo-
gy [18]. Literature review: Conducting a 
thorough review of the existing literature in the 
field of cloud technology and wearable 
computing interaction is important to under-
stand the current state of the art and identify 
gaps in the existing knowledge.  System 
design: Designing an appropriate system archi-
tecture for integrating wearable devices and 
cloud-based services is a critical step in the 
methodology. This can include selecting 
appropriate hardware and software compo-
nents, defining communication protocols, and 
identifying data storage and processing needs. 

The results and simulations of cloud technolo-
gy and wearable computing interaction can 
vary greatly depending on the specific research 
question and objectives. However, some 
common results that may be obtained from 
such research include Improved performance: 
Simulations or experiments may show that 
integrating cloud technology and wearable 
computing can result in improved performance 
in terms of data transfer speed, processing 
power, and energy consumption. Enhanced 
user experience: Results may demonstrate that 
the integration of cloud technology and wear-
able computing can provide a more seamless 
and integrated user experience, with wearable 
devices that are better connected to 
cloud-based services and provide more 
advanced functionality. Increased efficiency: 
Research results may show that cloud technol-

ogy and wearable computing interaction can 
lead to more efficient data processing and 
storage, with larger amounts of data being 
handled more quickly and effectively. Better 
security: Simulations or experiments may 
demonstrate that the integration of cloud 
technology and wearable computing can result 
in improved security for sensitive personal 
data, with better encryption and authentication 
mechanisms being employed. These are some 
of the results that may be obtained from 
research on cloud technology and wearable 
computing interaction. The specific results will 
depend on the research question and goals, and 
may vary widely based on the methods and 
simulations used [21].

to detect and respond to health problems in 
real-time, reducing the risk of complications 
and improving patient outcomes. Improved 
Data Management: Cloud computing provides 
a secure and efficient way to manage and 
analyze large amounts of health data. This 
helps healthcare providers make better-in-
formed decisions about patient care and 
improve the overall quality of care. Cost-effec-
tive: By leveraging the power of cloud 
computing, healthcare providers can reduce 
the costs associated with data storage and 
analysis. This, in turn, helps to lower health-
care costs for patients and improve access to 
quality care [4]. 

The AIWAC (Artificial Intelligence in Wear-
able and Cloud) Architecture is a framework 
that outlines the interaction between cloud 
technology and wearable computing. It 
consists of the following components: Wear-
able Devices: These are the physical devices 
worn on the body that collect and transmit data 
to the cloud. Examples include fitness trackers, 
smartwatches, and sleep monitors.Cloud 
Server: The cloud server is responsible for 
storing, processing, and analyzing the data 
collected from wearable devices [9]. This 
server can be a public cloud, private cloud, or 
hybrid cloud, depending on the security and 
privacy requirements of the data. Data Analyt-
ics: This component uses machine learning 
algorithms and statistical models to analyze the 
data collected from wearable devices. The 
insights generated from this analysis can be 
used to improve the health and wellness of the 
wearer. Application Layer: This layer consists 
of applications that run on the cloud server and 
interact with wearable devices. These applica-
tions can provide users with real-time 

feedback, alerts, and insights about their health 
and wellness. Networking: The networking 
component is responsible for establishing and 
maintaining communication between wearable 
devices and the cloud server. This component 
can use various communication protocols, 
including Bluetooth, Wi-Fi, and cellular 
networks. Security: This component ensures 
the confidentiality, integrity, and availability of 
data transmitted between wearable devices and 
the cloud server. It implements security 
measures such as encryption, access control, 
and data backups to protect the data [5].

In conclusion, the AIWAC Architecture 
provides a comprehensive framework for the 
interaction between cloud technology and 
wearable computing. By leveraging the power 
of cloud computing and wearable devices, this 
architecture has the potential to revolutionize 
the healthcare industry by providing patients 
with personalized and cost-effective healthcare 
services. The User Terminal Layer is an 
important component in the interaction 
between cloud technology and wearable 
computing. It refers to the interface between 
the wearable device and the user [10]. The key 
functions of this layer include Data Collection: 
The wearable device collects data from various 
sensors and transmits it to the cloud server. 
This data can include information such as heart 
rate, physical activity, sleep patterns, and other 
health metrics. User Feedback: The wearable 
device provides users with real-time feedback 
and insights about their health and wellness. 
This can include information such as the 
number of steps taken, calories burned, and 
hours of sleep. User Input: The wearable 
device allows users to input information, such 
as their diet, exercise, and mood. This informa-

let C={C1,C2,…Ci} represent a collection of 
API calls which are used by benign applications 
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by 
extracting the API calls which were used 
regularly in malicious files rather than in benign 
files since we know the exact time each API call 
appeared in both benign and harmful apps. The 
set-theoretic intersection process that takes 
place between the benign and malicious groups 
was implemented in the 'critical' group as we 
did in the first group. This was done in order to 
assess the level of danger posed by the 'risky' 
group. However, the characteristic that distin-
guished this group from others was that the 
frequency of these API calls for malicious appli-
cations was significantly higher than the 
frequency of API calls for clean apps. Because 
of this, a threshold value must be used when 
using the intersection operation to detect 
comparable API requests. API calls from benign 
apps are less likely to be considered active, 
specified, and notable even when the threshold 
is set at a high value. In other words, malicious 
API calls are increasingly common. C and D are 
the intersection points of the two circles (benign 
and malicious circles). Let A be center point of 
the benign circle (x0, y0) of radius r0 and B be the 
center point of the malware circle (x1 ,y1 )  of 
radius r1 . There are three subareas at the 
intersection part {A2,A3,…,A4} that need to be 
calculated (see Figure 7), {A2,A3,…,A4}  make 
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API 
calls.

Step 1: We may compute the intersection's total 
area by using Area {A2,A3,…,A4} 
Step 2:  {A2,A3,…,A4} In order to determine the 
three individual subareas

Step 3: Because the intersection is connected to 
the two circles, the area’s angle where the 
circles meet (area that looks like a pie) may be 
stated using the following relation

Step 4: Use the cosine rule to get the angles.

Step 5: We can compute distance AB using the 
coordinates of point A and point B:

Step 6: To get the triangles, we can compute the 
following: Knowing the distances and angles 
between two triangles

Step 7: We have reached at the final step where 
we can calculate the total area. 

Following that, extraction of the linked API 
calls with malicious applications is allowed, as 

Implementation and evaluation: Implementing 
the proposed system and evaluating its perfor-
mance and effectiveness is an important step in 
the methodology. This can include conducting 
experiments or simulations, analyzing data, 
and comparing results with existing solutions. 
Discussion and conclusion: Finally, it is 
important to discuss the results of the research, 
draw conclusions, and make recommendations 
for future work in the field of cloud technology 
and wearable computing interaction. This is a 
general outline of the steps that can be included 
in the proposed methodology for investigating 
the interaction between cloud technology and 
wearable computing. The specific methodolo-
gy will depend on the research question and 
goals, and may be adapted as needed based on 
the results of the research [19].

 
Fig 3: Flow chart of smart farm system

The Fig 3 showed the flowchart for a smart 
farm system. Here is a step-by-step description 
based on the provided image:
Start: The process begins.
Sensor Activated: A sensor in the system 

becomes active, likely due to a certain condi-
tion or threshold being met.
Arduino Receive Signals: The activated sensor 
sends signals to an Arduino board, which is a 
microcontroller used for processing the 
signals.

Data Sent to Cloud: The processed data from 
the Arduino is then transmitted to cloud 
storage or cloud-based services for further use.
Data Mining Tools: In the cloud, data mining 
tools are applied to the data. This might 
involve analyzing the data to extract useful 
information [20].

User Checks the Sensors Values: Simultane-
ously, there is a provision for users to directly 
check the sensor values. This could be via a 
dashboard or interface that displays the data.
Decision: Based on the output from the data 
mining tools and the user's assessment of the 
sensor values, a decision is made. This 
decision could relate to actions or changes in 
the smart farm system.

End: The process concludes following the 
decision.

This flowchart outlines a typical IoT-enabled 
smart farming operation where sensors collect 
data, which is then processed and analyzed in 
real-time, allowing for informed 
decision-making. The use of cloud technology 
enables data processing and storage at scale, 
and the incorporation of data mining tools 
suggests that the system is capable of support-
ing complex data analysis tasks for enhanced 
decision-making in smart agriculture.
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5.  CONCLUSION

In conclusion, cloud technology and wearable 
computing interaction is a rapidly growing 
field that offers significant potential for 
improving the way we use and interact with 
technology. The integration of these two areas 
of computing has created new possibilities for 
more seamless, efficient, and effective 
computing, with cloud-connected wearable 
devices offering users a more integrated and 
personalized experience. However, there are 
also many challenges that must be overcome in 
order to fully realize the potential of cloud 
technology and wearable computing interac-
tion. These challenges include optimizing data 
transfer and processing, enhancing security, 
and improving the user experience. Despite 
these challenges, the future of cloud technolo-
gy and wearable computing interaction is 
bright, with ongoing research and development 
in this field poised to deliver new innovations 
and breakthroughs in the years to come.
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