Zohaib et al. (IJECI) 2023 (|JEC|)
ISSN: 2522-3429 (Print)

International Journal for BB IS (e i)

Electronic Crime Investigation
DOI: https://doi.org/10.54692/ijeci.2023.0704163
Research Article Vol. 7 issue 4 Oct-Dec 2023

A Comparative Analysis of Malware Detection Methods
Traditional vs. Machine Learning

Zohaib Ahmad', Muhammad Salman Pathan?, and Ahsan Wajahat®
'College of Electronics and Information Engineering, Beijing University of Technology, Beijing, China
2School of Computer Science, National University of Ireland, Maynooth
3Faculty of Information Technology, Beijing University of Technology, Beijing, China
Corresponding author: ahmedzohaib03@gmail.com
Received: September 20, 2023; Accepted: November 08,2023; Published: December 22, 2023

ABSTRACT

Mobile devices have been the target of malicious software since their beginnings. Two known types
of malware threats can intrude into mobile, independently injected applications and fraudulent
applications that are developed to breach the security of mobile devices. Mostly these fraudulent
applications access data using API calls and permission requests. API calls and permission requests
are important for smooth conversation between mobile devices and database servers. This research
proposes an efficient classification model that concatenates API calls and permission requests to
detect malicious applications. We have used a dataset that contained more than 15 thousand Android
devices’ malware. We have divided data into three groups to differentiate between the malicious
permission requests and malicious API calls with normal permission requests and normal API calls.
To increase the probability of recognizing Android malware applications, we develop three distinct
grouping strategies for selecting the most valuable API calls that are obscure, critical, and obstreper-
ous and are chosen because Android apps extensively use several application programming interfac-
es (APIs). According to the results, malware applications require authorizations to access confiden-
tial information very frequently than normal Android applications do. Also, malicious Android
applications raise a diverse set of API calls to access sensitive data, evidenced by malware applica-
tions making a distinct set of API calls. Our proposed method attains an F-score of 94.04%, which
suggests that it is efficient at discovering mobile malware applications. Our model can be of signifi-
cant assistance in conducting mobile application analysis and forensic investigations into malware.

Keywords: Permission, Genetic Algorithm, Mobile, Hybrid analysis, Dynamic analysis, Deep
learning, intent, API calls

1. INTRODUCTION via mobile devices. The Internet's explosive
growth, combined with recent increases in

There are many ways to access the automation via intelligent applications, creates a

internet today, and the most common method is favorable environment for attackers using

Int.J. Elect.Crime Investigation 7(4):1JECI MS.ID- 02 (2023)

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

malicious software. Malware threats have
increased due to the global adoption of cloud
computing and Internet of Things (IoT) [1].
Such malicious actions have the potential to
compromise the integrity, confidentiality, or
availability of mobile systems [2]. The people
who make mobile malware have taken PC
malware and added new features to it to make
new threats to mobile platforms. Putting in
place forensic identification security controls
will make it less likely that digital systems will
be broken into [3]. Mobile malware are virulent
software that
considered to attack mobile devices, e.g.,

explicitly developed and

Smartphones and other devices [4]. Mobile
malware refers to any form of harmful code or
software that compromises the safety and
performance of a mobile device without the
knowledge or permission of the device's owner.
Ransomware, Trojan horses, worms, spyware,
rootkits, and botnets are all examples of
different types of malware. Mobile malware is
becoming more sophisticated and dangerous
because it collects user data, sends premium text
messages, makes calls, etc. Mobile platforms
are now the primary target for cybercriminals
that create malicious software, resulting in a
1,800% spike in mobile malware in 2016.
Check Point did an international survey of 850
businesses and found that all of them had been
attacked by mobile malware. According to
Kaspersky, the number of users who have been
infected with Android malware has more than
tripled to 1.7 million worldwide in 2019. As can
be seen in Fig. 1, the number of mobile
malicious installation packages that Kaspersky
found in 2021 was 3,464,756, which decreased
of 2,218,938 from the previous year. The total
number of mobile malware installation
packages has decreased to levels roughly

equivalent to those seen in 2019. The number of

attacks continued to go down steadily
throughout the reporting period, and in the
second half of 2021 they reached their lowest
monthly average in the previous two years can
be seen in Fig. 2.

In the last quarter of 2017, McAfee Labs
discovered 16M mobile malware [5], and
Juniper reported a 400\% increase in Android
malware. Over 1.05 million Android malware
apps have been detected by Sophos Labs since
2010 [6]. Smartphone malware is always busy
updating new features, e.g. always looking for
new ways to shift into new distribution,
methods and avoid detection techniques, such as
obfuscation technique stealth methods, and
repacking methods [7]. An old Study [8] shows
that most of the Android malware used a
repackaged technique they merged codes in
other legitimate known applications to avoid
security checkpoints.

Google Play Store is used by malware
developer to download popular Android
applications. Then decompile the applications,
insert malicious code into the apps, and then
reupload the applications with the malignant
content to third-party markets for user adoption
[9]. Existing mobile anti-malware applications
were found to be unable to detect malware apps
that have been obfuscated or repackaged.

Using ten malicious apps from six different
families, researchers were able to test the
effectiveness of mobile anti-malware scanners
using a variety of obfuscation tactics [10]. It was
then tested versus 10 reputable anti-malware
scanners using these new obfuscated binaries.
As per the results, there is not a single
antimalware that was able to detect any
malicious applications. Because there are so

04 Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023)

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

many mobile apps out there, it's vital to assess
and check what’s available in marketplaces
swiftly and intelligently [11]. An automated
system that can identify and remove harmful
programs from both official and unofficial
markets must be established to prevent them
from being downloaded. As part of [12]
malicious content was introduced in Android
apps resources to assess if ten anti-malware
scanners can detect it. While the remainder of
the anti-malware scanners were unable to
discover any dangerous information in their
results, just one anti-malware scanner detected
two hiding tactics [13].

2. RELATED WORKS

In the last ten years, substantial advancement
has been made in the study and discovery of
malware in mobile devices. This section in total
investigates challenges associated with the
detection of mobile malware and investigates
expressively related methods that have been
suggested by a body of previous research. The
issues surrounding mobile malware are
discussed in this section identification and
explores the literature's substantially related
approaches. Three techniques used by security
companies and researchers for extracting
features from mobile applications are static,

dynamic and hybrid

2.1. Static analysis

Static analysis is the name given to the study of
computer programs that do not include the
actual running of the program's code. Static
analysis techniques and processes include those
that employ analytic approaches to examine
computer programs. According to the most
recent findings of the research that has been
conducted, it was found that there exists a

variety of attributes that are utilized for the
purpose of static analysis of applications in
order to identify malicious applications. The
primary purpose of permissions is to store all
the information on the permissions necessary to
execute an app in the system/mobile. Therefore,
developers can investigate the behavior or intent
of an application based on the permissions
requested. The detecting mechanism makes use
of the regularity of approvals utilized by
malevolent and benign programs. It may be
used alone or in conjunction with one or more
additional features. Any application's .apk file's
manifest file is where permissions are extracted
[14]. It has contrasted the usage of regular and
malicious applications using both unique
requested permissions (URP) and unique
utilized permissions (UUP). API calls are the
utilized functionality. The
application's class.dex file may be used to
extract these API calls. The application's API
calls may be examined during the investigation
process. Skeptical, and potentially harmful API
calls are recognized, and apps are categorized

second-most

based on this information. Droidlogger [15]
employed API call blocks, which is a collection
of APIs used for a certain purpose and
operation, and outperformed that single API call
analysis. Permissions and API are often used in
combination with one another [16]. The core
components of the program, like the manifest
file and class.dex file, are covered by both of
these. Metadata information, string searches,
call graphs, hardware elements, and other
aspects are made use of also, nonetheless less
often than permissions and APIs.

2.2. Dynamic analysis

The term "dynamic analysis" makes mention of
a set of methods and procedures that are used
when analytical techniques are applied to the

Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023) 05

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

research of any software in which program
implementation is involved with monitoring
and parallel outcomes. In dynamic analysis, the
two primary approaches are in-box analysis and
out-of-box analysis. To utilize such strategies,
an isolated atmosphere is required in order to
execute the program and see the data in
real-time [17]. Vibrant analysis is more difficult
than static examination, and it requires a variety
of tools and expertise to observe and draw
conclusions. In [18] employs system call
patterns for any inquiry process. A distinctive
strategy that researchers have conducted is a
filtering mechanism that calls for abstraction
and improved results; moreover, it substitutes
mechanism calls with aliases, and created a
method to detect malicious program activity
based on how often system calls occur. The
entire dissimilarity between weighted system
calls (ADWSC) and ranked system calls
utilizing a large population test are the two
methods used to assess system calls (RSLPT)
[19]. The analysis of numerous parameters,
including average packet size, total count of
packets transmitted and acquired, duration
in-between packets, ratio of incoming and
outgoing packets, etc., is done in order to
identify malicious activity in network traffic
[20]. In [21], the authors examined the HTTP
flow request by making use of natural language
processing for string analysis while treating the
HTPP flow as a document. Other attributes
Hardware resources including CPU, memory,
battery, and other hardware resources are also
employed as features for behavior analysis,
however, they are less effective than system call
and network traffic. In general, authorizations as
well as APIs are utilized for static analysis,
however, sometimes, they are also examined
during execution. In article [22] and [23], the
researchers performed a taint analysis, which is

a sort of behavioral analysis that makes use of
the source and sink paradigms for data flow.
Finally, it has been seen that most researchers
prefer network traffic and system calls as
features in their dynamic analysis.

2.3. Hybrid analysis

Static and dynamic analysis are combined in the
ensemble analysis. Using AAPT (Android asset
packaging tool), researchers [24] used static
analysis in order to acquire permission requests
from the manifest file. In addition to that, they
made advantage of dynamic analysis when
tracing system calls with the Strace tool. One
hundred and eighty-eight benign applications
and one hundred and eleven malicious ones
were gathered by the researchers. Static and
dynamic analysis aspects were merged by the
authors. For the aim of evaluating their
technology, they used four different ML
algorithms, with the best detection accuracy
being 70.31 percent. Static analysis using the
APK tool yielded 135 permissions. The top 87
permissions were retrieved by utilizing IG as a
search engine. The system calls were
dynamically recorded by combining an Android
emulator with the Strace program. System calls
were examined to see if a certain call was
invoked more frequently in malignant code than
in benign code. They used six different ML
algorithms to see how well their approach
worked. Static analysis accuracy was 0.972, and
dynamic analysis accuracy was 0.884, thanks to
the random forest they used. The researcher
concludes that a permission-based static feature
is substantially more informative than a
system-based dynamic feature [25]. As a result,
in this work, we decide to employ static analysis
in conjunction with permissions-based features
to study API calls.

06 Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023)

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

3. MACHINE LEARNING

Some researchers have tried applying deep
learning and ML based on API call relationships
to find behavioral patterns in benign and
malicious applications to develop a detection
system. These efforts failed. It was reported that
the authors of the paper [26] had obtained an
accuracy of 96 percent on Drebin (beneficial
5.09K) dataset and AMD (benign 20.05K and
malware 20.08K). UniPDroid, developed by
[27], combines static analysis as well as ML
methods to classify malicious software families.
Throughout all, they found 15,884 harmful
programs in their research. They gathered 560
features through static
Meta-transformer and extra-trees classifiers

analysis.

were used by the authors to narrow the list of
candidates. They tested their technique on 78
different malware families, using the XGBoost

classifier, and got an average classification

accuracy of 92%. MalDozer, a program
developed by [28], studied the efficiency of API
call raw sequences and deep learning algorithms
in detecting malicious software. A total of
33,000 malicious programs from Drebin,
MalDozer, and Malgenome as well as 38000
benign apps from Google Play Store were
analyzed for API method call sequences using
Dexdump by the researchers. MalDozer uses
two-word embedding algorithms, GloVe and
word2vec, to normalize the feature vector. The
detection accuracy was between 96% and
99.6%, with a false positive rate between 0.06%
and 2%.
considered when writing the article. We looked

Permission requests were not

at permissions and the frequency with which
Android platform APIs, such as classes,
packages, methods, and constructors were
utilized in our research. The authors conducted
an extensive research on Android malware

recognition using a deep learning approach. The
authors used a mobile security framework to
extract permissions, intent filters, incorrect
certificates, and API calls from the asset folder
that contained APK files (MobSF). After that,
all five features were transformed into vector
space. They used a neural network to test their
technique on both benign and malicious
software to see how well it worked. They used
80\% for training and 20% for testing, and their
detection accuracy was 96.81 percent.

4. DATASETS

We use two different kinds of datasets for the
evaluation experiments a benign dataset and a
malicious dataset. A benign dataset contains an
application that is well-intentioned, and
harmless while a malware dataset contains an
application that is malicious and harmful, as
indicated in Fig. 5. We do the assessment tests
under both data sets to see which one performs
better. We use reference datasets like Contagio,
VirusShare, = MalShare, AndroZoo, and
VirusTotal for the malware dataset. There are
5,560 malware programs in this dataset, and at
least ten anti-malware products have scanned
and identified them such as VirusTotal. We were
unable to locate a standard benign dataset, so we
decided to develop our own and run it through
VirusTotal to ensure that it was complete and
accurate. AndroZoo was used to gather useful
apps from the PlayStore. There are 9,476 benign
applications in this dataset. Since the
application’s data gathered in June 2021 were
tested by utilizing VirusTotal, the app categories
reflect this. In case all anti-malware vendors in
the database found a program to be safe, we
consider it to be safe as well. To remedy the
issue of class imbalance, we utilized SMOTE
(synthetic minority over-sampling technique).

Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023)

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

Package Name

java

android com Dalvik

Annotation byte

Google Classes
code and system

Fig 1: Architecture for ranking the API calls

TABLE 1: DATASET DESCRIPTION

Number
5,560
9,470
15,036

Mobile Apps
Malware
Benign

Total

5. METHODOLOGY

It is possible to extract and correlate the
behavior of permission requests and API calls
displayed by malicious programs in order to
improve the preciseness of mobile malware
detection. To increase possibility of discovering
malicious apps, we make use of permissions
analysis and analysis of the frequency of API
calls. Applying the framework that we have
suggested, it is possible for us to determine
which API calls made by malicious Android
software are the most important by using a
scoring and categorizing method. Finding

repackaging apps by comparing their names,
hash values, or entry in a blacklist database is a
fruitless endeavor. Instead, we propose a system

that compares the regularity of the API calls and
permissions across two programs in order to
detect comparable repackaged applications. We
created a three-stage analysis model for our

awt,beans,lo,lang,
math,net,nio,security,
sqltext and untill

javax

Apache,json,
w3c xml and
xmlpull

crypto, microediton,
net,dgl and xml

framework
and runner

suggested mobile malware analysis method for
research purposes. stage,
Extraction stage, and Grouping stage.

Pre-processing

5.1
The Java programming language is used to

Pre-processing stage

write Android apps, which are then converted
into Java bytecode and then converted to Dalvik
executable bytecode using the Dalvik virtual
machine. Many files with the .class extension
are created when the Java code is built. The Java
source code, when compiled, results in the
creation of many files along with the extension
.class. The dx tool is used to combine all of the
separate class files into one.dex file. An Android
app's binary data is stored in the APK file. It's
critical to decompile the Android app first
before doing any more investigation. Android
apps can be disassembled or decompiled using a
variety of reverse engineering tools, including
dex2jar, Apktool, Android Multitool, and the
JADX. During this stage, we make use of
Androguard, a tool for static analysis reverse
engineering that is open source.

5.2. Extractions stage

Android SDK (software development kit) offers
programmers a combination of API calls
(comprising of a fundamental collection of
fields, and

package constructors, classes,

Int.J. Elect.Crime Investigation 7(4):1JECI MS.ID- 02 (2023)

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

methods) that they can use to communicate with
the operating system, software, or hardware as
shown in Fig. 4. The SDK offers a wide range of
APIs for developers to choose from when
building an app. Malware writers can use these
API calls to exploit mobile devices illegally.
The same API call, for instance, may be
requested by a benign or malicious program to
access and receive particular data from an OS.
There are several libraries included with the
Android SDK as depicted in Fig. 4, including
Android, Junit, and Org. The "android.jar" file
in the Android SDK contains a reference to
these libraries. API call features and Permission
features are assigned to each Android app
individually. We used the following method to
extract permission requests and API calls from
APK files.

A script developed in Python programming
language which
decompiles the complete dataset as follows:

automatically runs and

1. Androguard can be used to generate all
the different packages called from within
an APK.

2. You can get the API call details and
package level information from the entire
package if it contains important methods
and classes (like Java, and Android).
More crucially, a few delicate API calls
are shielded by Android's permission
system, making them critical.

3. To extract the apps' requested permis-
sions we used the methodology described
by the authors [29], and we defined the set
of all requested API calls, and all Android
PeemfiBsidys.in Bpp following way.

Di = {Dl,Dz,---:DTL} (1)

4. Each application should be represented in
a form of a binary vector of API calls,

1
0

If API is utilized in the application and if the
corresponding application does not use
APL.

Where App; = {

5. The association map is defined as follows
D; to map API calls to permissions P;

A ={(P,D|PeP,DeD} 2
Where P is controlling the D.

6. For
number of API calls and the numerical

each permission, calculate the

count for each API request, as follows:

MP = (MPy, MP,, ..., MP,}, 3)
_ (1,ifaD;
Where MP; = {O,ifﬂDi

G = ZDil(Pi'Di)
6. GROUPING STAGE

We used a grouping method to better highlight
the complexities of utilization of the API calls in

malignant applications in order to give
comprehensive coverage of the detection
performances..
7. OBSCUR

Fig 2: Architecture for ranking the API calls

Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023) 09

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

This allowed us to present a high-cost coverage
of the detection performances. We could create
API call groups that were quite effective in
spotting fraudulent apps. We designated as
irrelevant API calls those calls that were in
benign apps but were deemed insignificant. We
concentrated on the APIs utilized by the
malicious applications the most. Some of the
aspects we looked at were prevalent in
malicious applications. By using complement-
ing techniques that avoid fingerprinting
malware, this system aimed to classify API calls
into three distinct levels and then classify them
according to the level of hazard they posed. For
the investigation, we used a full set of 15,036
API calls, each of which might be used by
malicious programmers to carry out a variety of
tasks throughout the system. Our research
identified three distinct types of API requests
founding malicious apps: Obscure (A3), Critical
(A2), and Obstreperous (Al). We figured out
which API methods were used more frequently
in malware as compared to benign applications
and then took the intersection of those two

numbers. The ' critical API calls' category is
what we term it because malicious apps

frequently use these APIs rather than benign
apps.

8. OBSCURE GROUP (A3)

We found intersections between API calls used
by both malicious and benign applications and
discovered that the total count of API calls in
both benign and malicious apps was about
equal. When looking at the API calls made by
both malware and benign applications, the
frequency with which each API request is made
is also considered. For the sake of clarity, we
took into consideration the frequency with
which each API call is utilized by the benign

applications. When it came to potentially
harmful calls, we followed the same line of
thinking. Thus let represent a collection of API
calls which are used by malicious applications
and their frequency and represent a collection
of API calls which are used by benign
applications and their corresponding frequency.
Thus let M={MIM2,... Mj}
collection of API calls which are used by

represent a

malicious applications and their frequency and
C={CI1,C2,...,Ci} represent a collection of API
calls which are used by benign applications and
their corresponding frequency. Thus, we
isolated the obscure combination by extraction
of API calls that appeared approximately
equally in benign and malicious applications. In
Area 3 (see Fig. 5), the calls are obscure (A3).
We took a set theory method and made use of
the intersection process in order to differentiate
between benign and malware combinations.
This process detects API requests which are
frequent and similar to one another. However, a
threshold value was added as a result of a shift
in the frequency of API calls; because of this
threshold constant, the classification of API
calls as either malicious or benign and therefore
belonging to obscure or critical groups is
unstable. Out of a total of 15,036 calls, only
1,687 were placed in the obscure group.

9. CRITICAL GROUP (A2)

We were able to obtain the intersection of the
API calls that were present in malicious applica-
tions more frequently than they were in benign
applications by using our data. Since harmful
apps often use these API calls rather than benign
apps, we label this group "the critical API calls
group. Thus let M={M1,M2,...Mj} represent a
collection of API calls which are used by
malicious applications and their frequency and

10 Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023)

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

let C={C1,C2,...Ci} represent a collection of
API calls which are used by benign applications
and their corresponding frequency. As illustrat-
ed in Figure 7, we can extract Area 2 (A2) by
extracting the API calls which were used
regularly in malicious files rather than in benign
files since we know the exact time each API call
appeared in both benign and harmful apps. The
set-theoretic intersection process that takes
place between the benign and malicious groups
was implemented in the 'critical' group as we
did in the first group. This was done in order to
assess the level of danger posed by the 'risky'
group. However, the characteristic that distin-
guished this group from others was that the
frequency of these API calls for malicious appli-
cations was significantly higher than the
frequency of API calls for clean apps. Because
of this, a threshold value must be used when
using the intersection operation to detect
comparable API requests. API calls from benign
apps are less likely to be considered active,
specified, and notable even when the threshold
is set at a high value. In other words, malicious
API calls are increasingly common. C and D are
the intersection points of the two circles (benign
and malicious circles). Let A be center point of
the benign circle (x,, y,) of radius ry and B be the
center point of the malware circle (x; ,y;) of
radius 1; . There are three subareas at the
intersection part {42,43,...,A4} that need to be
calculated (see Figure 7), {42,43,...,A4} make
up the right, left, and center sides of the intersec-
tion, respectively. The area A3 contains confus-
ing API calls, while A2 contains critical API
calls.

Step 1: We may compute the intersection's total
area by using Area {42,43,...,44}

Step 2: {42,A43,...,A4} In order to determine the
three individual subareas

Ay = Apie(CBD) — Acpp
Az = Apie (CD) — Acp
Ay = Apie(DAC) — Apac
Step 3: Because the intersection is connected to
the two circles, the area’s angle where the
circles meet (area that looks like a pie) may be
stated using the following relation
Apie * 21 = a * Acireie

Acircle

A =aq*x——
pie by
nr?
Apie = a* ——

Ao = 0.5 a 7?2

pie

Ayie = (DAC) = .5« DAC * 1§

Apic = (CBD) = 0.5 x CBD * 1}
Ayie = (CD) = 0.5+ CD

Step 4: Use the cosine rule to get the angles.
¢ =12+ AB? — 2 1, * AB * cos(CBA)
Step 5: We can compute distance AB using the
coordinates of point A and point B:
AB = sqrt(x; = X0)* = sqrt(yy — ¥o)*
cos(BAC) =r¢ + AB? + % * 7y * AB
_ e
BAC = acos(r¢ + AB? + ?1 * 19 * AB)
N ré
ABD = acos(r{ + AB* + 70 #1y % AB)
Step 6: To get the triangles, we can compute the
following: Knowing the distances and angles
between two triangles
Apac = 0.5 = r¢sin(DAC)
Acgp = 0.5 x rZsin(CBD)
Step 7: We have reached at the final step where
we can calculate the total area. Area = A; +
A, + A3)
A = Apie (DAC) — Apac + Apie (CBD)
— Acpp + Apie (CB) - Acp
A =0.5%(DAC) 1§ — 0.5 x1¢ = sin(DAC)
+ 0.5%(CBD) * 1% — 0.5 x 1¢
* sin(CBD) + 0.5 *(CD)
Following that, extraction of the linked API
calls with malicious applications is allowed, as

Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023) 11

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

illustrated in Fig. 7. The building of the intersec-
tion of value combinations and frequency
displayed details regarding such characteristics
which were present within several malware
applications. When compared to the count of
presence within benign applications, value
combination of API calls used among the malig-
nant applications has a higher total count. To
demonstrate this idea, let's say that a particular
API call was required 10 times by the concerned
malware combination, but the benign set only
asked it twice. As a result, given that the sample
API call was found to occur more frequently in
the malicious dataset, we have reason to believe
that it is connected to a malicious dataset. In
addition, there were only 737 potentially critical
calls out of 15,036 total calls. While comparing
it to the benign dataset, we see that the
malicious dataset makes a significantly higher
number of API calls in order to communicate
with the system. For instance, the collected
malware apps use the APIs for telephone
controller, short message service manager,
storage, system service, logs, databases, and
device details often more than benign applica-
tion does. This is because malware applications
are designed to exploit vulnerabilities in mobile
operating systems. The differential ranking of
the API calls is mentioned in Table 2.

Table 3 presents a subgroup of multiple API
calls that were in this set and which are utilized
much regularly among malicious applications
than they are in benign applications. This was
necessary because of the limited amount of
space available. The characteristics that
malicious application employ requires critical
API calls to get access to the system, according
to our investigation. Examples include "detDe-

viceld" and "getSubscriberld" methods for

stealing sensitive data such as (IMEI) and
Identity (IMSI) numbers and sending them
through the network using setWifiEnabled or
execHtpRequest. Malware programs can be
affected from techniques linked to sending
messages and receiving messages (such as
"getDefault,”, and .
SetMessage") according to the findings. The

"sendTextMessage,"

malware dataset, it turns out, affects obfuscation
and other static analysis elimination strategies
(e.g., Ciphergetlnstance).For this reason, we
hypothesized that classes like "Getdeviceid" and
"TelephonyManager" could have needed
additional rights to keep them safe from poten-
tially malicious apps like "SmsManage" and
"SmsMessage".Some API requests, such as
"Getdeviceid,"," Getsubscriberid," and "Setwif-
ienabled, were already blocked by Google

permissions.
10. OBSTREPEROUS GROUP (A1)

We only included APIs that were found in
malicious apps and were absent from benign
ones. Illustrated in Fig. 7. C={C1,C2,...,C;} Let
C be a product of the collection of API requests
which happen most frequently among benign
applications is C; while M={M1,M2,...M; } is
defined as API calls that appear frequently in
malware programs. We compute the following
to find the Obstreperous calls:

R=M/.)
In relation to the equation shown above, the
characteristics of obstreperous calls are more
obviously geared toward harmful applications.
Concerning Fig. 7, in contrast to the other two
categories, no explicit criterion was found for
the frequency of API calls because this set is
unquestionably more skewed from malignancy.
Because no single particular frequency term
must be met, and because there is a greater

12 Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023)

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

potential for malicious API calls in most of
these conditions, a previously implemented
threshold is rendered meaningless, and its
function is rendered moot within the context of
this scenario. API generation technology such
as the one described here was employed to
create API requests that were then incorporated
into the malicious dataset in their entirety. The
outcomes of the experiments demonstrate
several API calls. (i,e.

(Lorg/w3c/dom/DOMException.getMessage,)
(Java/lang/Thread;.setContextClassLoader,)
(Android/content/Context;.deleteFile,)
(Android/database/sqlite/SQLiteDatabase, que-
ry, Java/net/URL;.openConnection,)
(sAndroid/telephony/TelephonyManager, get-
LinelNumber) are specifically discovered in
malicious applications, not in benign applica-
tions. Among the 15,036 API calls, only 4 are
found to be Obstreperous calls.

TABLE 2
DIFFERENTIAL RANKING OF THE API CALLS

API Calls Name
Android/Telephony/

Meaning

To gain access to

ncalendar;. Set

Telephonymanager;. sensitive data
Getnetworkoperator
Java/Util/Gregoria To gain access to sensitive

data (Current Time)

Java/lo/Bytearrayo
utputstream; Reset

To gain access to
sensitive data

Java/Lang/Stringb
uffer;.Insert.

For obfuscation
purposes

Cipher. Getinstance ()

For obfuscation purposes

Sendtextmessage ()
Smsmanager ()
Setmessage ()

in order to send and
receive SMS messages

Setwifienabled () For communicating
Exechttprequest () over the network
Getdeviceid () To gain access to
Getsubscriberid () sensitive data (phone’s

unique device ID)

RuntimeException ()

For the execution of
external commands

Get Last Known Location: it communicates
the device's location information to a remote site
and returns the device's last known location
from the specified provider. This technique is
employed by the Geinimi family.

Get Line 1 Number: It sends sensitive informa-
tion, such as a phone number, to a remote server
as a string; we've seen this on nearly all Android
devices. This is how the Fokonge family do
things.

Set Context Class Loader: It can be used to
dynamically load harmful software since it
loads exterior classes or sources from certain
repositories. Malware applications could use the
Class Loader class to replace the corresponding
software with malicious software to get around
current countermeasures. It is quite likely that
the malicious code is concealed either under-
neath the next route (/assets) or within the safe
digital (SD) card. This strategy appears to be
used by most members of Android. Steek
family. Malicious software only requested
permission for full Internet access once
throughout the installation. It might appear as a
smaller threat to possible sufferers if this
malicious software just asks for permission
during installation. Installing the malware on a
smartphone triggers it to open and show
information about any fraudulent apps that have
been installed. The set Context Class Loader
technique is called a similar amount of times by
malicious applications that belong to the Steek
family.

DOM Exception: It is possible to use it when
certain events take place. In our research, we
discovered that malicious apps used
Lorg/w3c/dom/DOMException)

Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023)

13

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

(Lorg/w3c/dom/DOMEXxception; <init>.(SJa-
va/lang/String;)V) .This method appears to be
used by much of Android Steek group.

Open Connection: This method is belonging to
Android. Generisk group. The group establishes
linking to predetermined distant server, loads it,
and then runs the code that it contains.

11. STATISTICAL ANALYSIS

Figure.3 summarizes all the attributes from both
the “critical calls" as well as the “Obstreperous
calls" groups that we considered in our experi-

ment.
Number of API Calls
1,800 1,687
1,600
1,400
1,200
1,000
800 737
600
400
200 P
0
OBSCURE GROUP CRITICAL GROUP OBSTREPEROUS GROLP
A3 A2 A1

Fig 3: Distribution of Features across the
Groups

In order to choose the most relevant characteris-
tics from those that were available, we comput-
ed the IG for each one of them. Classifications
of API calls can be made with reasonable ease
using the primary categories. There is a variety
of APIs available for each type of group. The
following criteria will be used to assign a value
to each feature: ‘very important’, ‘important’,
‘normal’, or “‘unimportant’.

Figure.4 demonstrates that the IG has been
implemented in each feature. The score
indicates the importance, in the opinion of the
IG, of each of the best 12 characteristics found

within the risky set. It approves that in mobile
malware detection, the features chosen are very
much important. In order to determine the
significance of each feature to the data set that
has been provided, the procedure calculates the
splitting conditions regarding decision trees.
Each permission's IG is determined by the
formula below.

gain (c,r_i)=entropy (c)-entropy (c|lr_i) C
refers to the class value (i.e., malignant or
benign) and is the attribute. The entropy (c) is
the information entropy. The ideal collection of
features depends on the classifier and is fewer
than the total number of available features. We
begin by utilizing all of the features in combina-
tion with ML techniques, and after that, we pick
the attributes for evaluation from either the
critical calls or Obstreperous calls.

Getsubscribierid
Exechttprequet
Setmessage

Cpher.Getinttsnce

Byteerrayoutputstréam;R eset

Get Network Opreaor

Fig 4: Information gain for the top features
in the critical group

12. LEARNING-BASED DETECTION

12.1. Data normalization

Before using ML algorithms, it is critical to
normalize the data. Now that we have compiled
the essential characteristics (critical and
Obstreperous attributes set), weights need to be
assigned for those attributes and express them

using a vector space.

14 Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023)

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

Normalization of the term frequency (TF) was
used in order to minimize situations in which
the classifier has varying weights when making
decisions. The represents the extracted
dictionary, where the dictionary was drawn
from both groups of data (critical and
Obstreperous groups). A weighted vector space,
(Wan = Wyn
or absence of a precise attribute in an app in the

, Wi, €40, 1} shows the presence

form of a (TF) representation. This word
denotes the regularity with which the
functionality can be accessed within the
application. The (TF) can be scaled to values by
the division of the frequency of an appearance
by the amount of features within the application
(0, 1). The following is a formula for calculating

the tf; ; = 2::” (TF) the normalization of the

dataset provides for a matrix-like view of the

vector representation where rows indicate
application vectors and columns represent
features. Performing this action enables the
application of a variety of ML algorithms, and it
also enables us to identify areas of similarity
and difference by employing similarity-
measuring algorithms.

13. EVALUATION METRICS

In order to determine the effectiveness of
classification models, we have selected the
following: accuracy, precision, recall, and the
F-measure standard metrics. Estimates for these
measures are derived from values of true
positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN).

e TP: The count of correctly discovered
malware applications is represented.

e TN: The count of correctly discovered
benign applications is represented.

e FP: Count of benign apps mistakenly
categorized as malware applications.

e FN: Count of malware an application
mistakenly

categorized as benign

applications.

Accuracy It calculates an estimate of the
proportion of successfully detected connection
records relative to the total test dataset. When
there is a higher level of accuracy, the ML
model is considered to be superior. The
accuracy is a useful measurement for the test
dataset since it consists of classes that are evenly
distributed, and it is explained in following
manner:
Accuracy

_ (TP +TN)
= (TP + TN + FP + FN)

Precision You can figure out the percentage of
correctly identified data by doing the following
calculation.

Precision = TP/(TP +FP)

Recall You can figure out the percentage of
correctly identified malicious data by doing the
following calculation.

Recall = TP/(TP +FN)
F-Measure The following formula can be used
to calculate the precision and recall combined

Precision * Recall

FM =2
easure * Precision + Recall

14. RESULTS AND ANALYSIS

The primary objective is to investigate whether
the considered attributes from the critical set
and Obstreperous calls can be utilized to
construct complicated classifiers that can
forecast the classes of mobile malware, or the
risk factors associated with it. After ignoring the
features of the dataset that were deemed to be
insignificant, all 741 different features were

Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023)

15

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

collected from either the critical or
Obstreperous categories. 6 ML algorithms J48,
random forest (RF), k-nearest neighbors
(k-NN), random tree (RT), naive Bayes (NB),
Support vector machine (SVM) were used in
10- fold cross-validation for each group (critical
group and Obstreperous group). The empirical
findings imply that the proposed method is
effective at recognizing mobile malware, as
evidenced by the fact that it attained an
F-measure of 94.04\%, as displayed in Fig. 8. In
the process of conducting mobile application
analysis and forensic investigations into
malware, our model can substantial assistance.
The k-NN and random tree algorithms are the
fastest when it comes to training and testing a
classifier; both require 200 milliseconds. J48 is
the most time-consuming, requiring 920
milliseconds. SVM takes 980 milliseconds in
order to complete the training and testing, and
for a random forest, an average of 0.73 seconds
is required. Overall, the system is predictable
and dependable in real-time applications, with a
speed that is suitable for all five classifiers.

96

92

RF 148 sw RT K-NN NB

Fig 5: F Measure Score
15. CONCLUSION

The development of a secure mobile computing
environment, the protection of sensitive data,
and the detection of malicious software all need

the identification of the most prevalent features
demanded by malware applications. The behav-
ior of an Android app is reflected in permissions
and important API calls that the program makes.
To identify malicious programs, we present a
classification approach that includes the consid-
eration of authorizations and API requests. This
was provoked by the growing count of applica-
tions and the absence of efficient malware
recognition technologies. There are three stages
to our analysis: preprocessing, extraction, and
grouping stage. With so many APIs used by
Android apps, we devised a grouping method in
order to target only the top important ones to
increase the chances of finding Android
malware.

Obscure set (common API calls in both
malicious and normal applications).

Critical set (common API calls in a malicious
application which are less like those in normal
applications).

Obstreperous set (API calls that are present in
the malicious applications and absent in normal
applications).In order to find the top discrimi-
nating set of attributes for malware detection, a
frequency examination is run on the important
groups. As a result of the findings, it's clear that
malicious Android apps make a distinct set of
APl calls and request permissions more
frequently than normal Android applications to
access user data than benign apps. For instance,
the API requests for the SMS manager, storage,
telephone manager, system service, device
information, logs, and database are substantially
more prevalent in malware applications.
According to our suggested method's empirical
results, which used an actual malware dataset of
15,036 Android applications, it is successful at
recognizing mobile malware and can greatly

16 Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023)

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

contribute in malware forensic investigation and
mobile app analysis. Using IG and API frequen-
cy calculations, a useful subset of features is
narrowed down, and the TF is then utilized to
reduce the dimensionality @ of the
narrowed-down set. The J48, k-NN, RT, RF, and
NB algorithms are among the ML approaches
we use in our research. The findings of the
experiments show that our model is capable of
reaching an F-measure of 94.03%.

REFERENCES

[1] R.Husnain, A. Nauman, A. Muhammad,
L. Biju and R. Hamid, "AndroMalPack:
enhancing the ML-based malware
classification by detection and removal
of repacked apps for Android systems,"
Scientific Reports, vol. 12, no. 1, pp.
19-34, 2022.

[2] F.Faezeh, H. M. Sayad J. Alireza and A.
Mamoun, "Artificial intelligence for
detection, estimation, and compensation
of malicious attacks in nonlinear
cyber-physical systems and industrial
IoT," IEEE transactions on industrial
informatics, vol. 16, no. 4, pp.
2716-2725, 2019.

[3] A. M. Taleby, L. Qianmu, R. Mahdi and
R. A. Raza, "A survey on smartphones
security: software vulnerabilities,
malware, and attacks," arXiv preprint
arXiv: 2001.09406, 2020.

[4] M. Anjali, Permissions Ranking With
Statistical Techniques for Android
Malware Detection, “Doctoral disserta-
tion, 2022.

[5] M. Sreenath and S. Anuradha, “The
political economy of digital automation:
measuring its impact on productivity,
economic growth, and consumption,
“Routledge, 2020.

[6] Z.Jason, "Machine learning with feature
selection using principal component
analysis for malware detection: a case
study," arXiv ~ preprint arXiv:
1902.03639, 2019.

[7T A. Saba, S. M. Ali, A. Khan and A.
Mansoor, "Android malware detection
\& protection: a survey," International
Journal of Advanced Computer Science
and Applications, vol. 7, no. 2, 2016.

[8] P. Faruki, B. Ammar, V. Laxmi,
Ganmoor, Vijay and Gaur, Manoj Singh
and Conti, Mauro and Rajarajan,
Muttukrishnan, "Android security: a
survey of issues, malware penetration,
and defenses," IEEE communications
surveys \& tutorials, vol. 17, no. 2, pp.
998-1022, 2014.

[91 Z. Yajin and J. Xuxian, "Dissecting
android malware: Characterization and
evolution," in 2012 IEEE symposium on
security and privacy, IEEE, pp. 95-109,
2012.

[10] R. Vaibhav, C. Yan and J. Xuxian,
"Droidchameleon: evaluating android
anti-malware against transformation
attacks," in Proceedings of the 8th ACM
SIGSAC symposium on Information,
computer and communications security,
pp. 329-334,2013.

[11] I. Miilhem, B. Issa, and M. B. Jasser., "A
Method for Automatic Android Malware
Detection Based on Static Analysis and
Deep Learning," IEEE Access, vol. 10,
pp- 117334-117352, 2022.

[12] B. Shikha, and S. Muttoo, "Evading
android anti-malware by hiding
malicious application inside images,"
International Journal of System Assur-

ance Engineering and Management, vol.
9, pp. 482-493, 2018.

[13] I. Rejwana, S. M. Islam, S. Sajal, H. M.
Jamal and M. Md Abdul, "Android
malware classification using optimum
feature selection and ensemble machine
learning," Internet of Things and
Cyber-Physical Systems, vol. 3, pp.
100-111, 2023.

[14] W. Chao, X. Qingzhen, L. Xiuli and L.
Shougiang, "Research on data mining of
permissions mode for Android malware
detection," Cluster Computing, vol. 22,
pp. 13337-13350, 2019.

Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023)

17

A Comparative Analysis of Malware Detection Methods Traditional vs. Machine Learning

[15]

[17]

[18]

[19]

(21]

D. Shuaifu, W. Tao and Z. Wei, "Droid-
Logger: Reveal suspicious behavior of
Android applications via instrumenta-
tion," in 2012 7th international confer-
ence on computing and convergence
technology (ICCCT), IEEE, pp.
550-555, 2012.

S. A. Kumar, C. D. Jaidhar, and K. MA
Ajay, "Experimental analysis of Android
malware detection based on combina-
tions of permissions and API-calls,"
Journal of Computer Virology and
Hacking Techniques, vol. 15, pp.
209-218, 2019.

Tao, Guanhong, Zibin Zheng, Ziying
Guo, and Michael R. Lyu, "MalPat:
Mining patterns of malicious and benign
Android apps via permission-related
APIs," IEEE Transactions on Reliability,
vol. 67, no. 1, pp. 355-369, Dec. 2017.

A. Abdelfattah, R. Jean-Marc and T.
Chamseddine, "Enhancing malware
detection for Android systems using a
system call filtering and abstraction
process," Security and Communication
networks, vol. 8, no. 7, pp. 1179-1192,
2015.

P. Vinod, Z. Akka and C. Mauro, "A
machine learning based approach to
detect malicious android apps using
discriminant system calls," Future
Generation Computer Systems, vol. 94,
pp- 333-350, 2019.

Z.Aqil, H. I. Rahmi, S. Wahidah Md and
A. Zubaile, "Android malware detection
based on network traffic using decision
tree algorithm," in Recent Advances on
Soft Computing and Data Mining:
Proceedings of the Third International
Conference on Soft Computing and Data
Mining (SCDM 2018), Johor, Malaysia,
Springer, pp. 485-494, 2018.

W. Shanshan, Y. Qiben, C. Zhenxiang,
Y. Bo, Z. Chuan and C. Mauro, "Detect-
ing android malware leveraging text
semantics of network flows," IEEE
Transactions on Information Forensics
and Security, vol. 13, no. 5, pp.
1096-1109, 2017.

[22]

[23]

[25]

W. Ping, C. W. Jie, C. Kuo-Ming and L.
Chi-Chun, "Using taint analysis for
threat risk of cloud applications,”" in
2014 IEEE 11th International Confer-
ence on e-Business Engineering, IEEE,
pp. 185-190, 2014.

B. James, A. Mohd and D. Gerry,
"Detection of mobile malware: an artifi-
cial immunity approach," in 2016 IEEE
Security and Privacy Workshops (SPW),
IEEE, pp. 74-80, 2016.

K. Pallavi and J. Amit, "Malware detec-
tion techniques in android," Internation-
al Journal of Computer Applications,
vol. 122, no. 17, 2015.

W. Ahsan, 1. Azhar, L. Jahanzaib, N.
Ahsan and B. Anas, "A novel approach
of unprivileged keylogger detection," in
2019 2nd International Conference on
Computing, Mathematics and Engineer-
ing Technologies (iCoMET), IEEE, pp.
1-6, 2019.

[26] Z. Hanqing, L. Senlin, Z. Yifei and P.

[27]

Limin, "An efficient Android malware
detection system based on method-level
behavioral semantic analysis," IEEE
Access, vol. 7, pp. 69246-69256, 2019.

F. Hossein, M. Veelasha, C. Mauro and
B. Lejla, "Efficient classification of
android malware in the wild using robust
static features," Protecting mobile
networks and devices: challenges and
solutions, vol. 1, pp. 181-209, 2016.

[28] K. ElMouatez Billah, D. Mourad, D.

[29]

Abdelouahid and M. Djedjiga, "Mal-
Dozer: Automatic framework for
android malware detection using deep
learning," Digital Investigation, vol. 24,
pp. S48-S59, 2018.

Q. Mengyu, S. Andrew and L. Qing-
zhong, "Merging permission and api
features for android malware detection,"
in 2016 5th ITIAI international congress
on advanced applied informatics
(ITAI-AAI), IEEE, pp. 566-571, 2016.

18

Int.J. Elect.Crime Investigation 7(4):IJECI MS.ID- 02 (2023)

