

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

25
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

Advanced Techniques of Malware Evasion and Bypass in the Age of

Antivirus

Kausar Parveen and Kinza Batool

Department of Computer Sciences, University of Engineering and Technology, Lahore

kbatool5121472@gmail.com
Received: Jul 06, 2024; Accepted: Jul 29, 2024; Published: Sep 12, 2024

ABSTRACT

The use of antivirus software as the main line of protection against growing

cyber threats highlights the necessity of comprehending and resolving its limits. This

study provides light on the ease of use and accessibility of tools used by hackers by
carefully examining the complex terrain of malware evasion and bypass tactics. The

persistent evolution of malware evasion and bypass techniques presents a significant

cybersecurity challenge. The main objective is to educate users about the ever-changing

hazards and provide them with the knowledge they need to properly strengthen their

digital defenses. The literature analysis highlights the necessity for continued attention

by establishing a strong correlation between the effectiveness of evasion strategies and

their age and popularity. While modern antivirus software shows strong resistance

against a range of tried-and-true techniques when updated on a regular basis, the study

reveals a crucial component in its testing. This entails applying simple yet effective

tweaks to well-known evasion techniques, demonstrating their capacity to fool even the

most recent antivirus software. A thorough examination of malware evasion tactics,

including both on-desk and in-memory approaches, is given in the methods section.
Packing, obfuscators, protectors, reflective DLL injection, remote process memory

injection, process hollowing, and inline hooking are all covered in detail in this paper.

Subsequently, the study delves deeper into distinct evasion strategies, such defensive

evasion through direct system calls and sophisticated evasion tactics, showcasing

malware developers' versatility in evading antivirus and endpoint detection and response

(EDR) systems.

Keywords: Malware evasion, Malware bypass, Cybersecurity, antivirus, evasion.

ISSN: 2522-3429 (Print)

ISSN: 2616-6003 (Online)

International Journal for
Electronic Crime Investigation

DOI: https://doi.org/10.54692/ijeci.2023.0803200

Vol. 8 issue 3 Jul-Sep 2024

mailto:kbatool5121472@gmail.com

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

26
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

1. INTRODUCTION

1.1. Opening Section

The widespread usage of the internet by

many sectors of the population has

made communication, entertainment,

and information retrieval more
convenient. But users that take

advantage of this accessibility run the

risk of being hacked by malicious

software that compromises user privacy

and sensitive data. As a major

protection mechanism against

cyberattacks, people frequently resort

to antivirus software in reaction to this

digital terrain. [1] Selecting trustworthy

sources is crucial since downloading

data from unknown sources can result

in viruses, even with the widespread use
of popular software like web browsers.

Users can delete or clear suspicious

files from quarantine by using antivirus

applications, which are essential for

alerting users about them. [2] The

dependability of these defensive

technologies depends on user

confidence, which means that the

antivirus program and its signature

database need to be updated on a

regular basis.

1.2. Background of the Research

Hackers are a constant danger to

cybersecurity because they use a variety

of evasion and bypassing techniques to

access equipment without

authorization. In order to meet this

challenge, antivirus software providers

are always creating new protection

methods and upgrading signature

databases. [3] On the other hand, the

ongoing appearance of new viruses

raises the possibility that the defenses in
place now could not always be enough.

By exploring the intricate world of

malware evasion and bypass

techniques, this study sheds insight on

how cyber threats are changing and

highlights the need for creative

solutions to strengthen digital defenses.

1.3. Statement of the Problem

The increasing complexity of malware
evasion and bypass techniques poses a

significant cybersecurity concern in the

age of sophisticated antivirus programs.

Concerns over the effectiveness of

present defensive systems are raised by

the rising number of new infections,

and in spite of antivirus software

vendors' constant attempts to create

strong protection measures. The goal of

this study is to thoroughly investigate

the limitations of antivirus software,

with a particular emphasis on the
accessibility and usability of tools used

by hackers. The goal of the research is

to improve digital defense techniques

by providing useful insights by

comprehending and overcoming these

constraints.

1.4. Rationale

The understanding of the dynamic

nature of cyberthreats and the

requirement for a proactive approach to

cybersecurity serve as the foundation
for this study. It is impossible to

exaggerate the significance of having

strong antivirus software in light of

people' growing reliance on digital

platforms. Through investigating the

always changing strategies for evading

and bypassing malware, [4] this study

seeks to support continuous endeavors

to fortify digital defenses. The results of

the study will provide useful

information for antivirus software

manufacturers as well as users,
resulting in a more robust cybersecurity

environment.

1.5. Scope of the Study

This study is important because it may

help users learn about the constantly

evolving risks posed by cyberattacks

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

27
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

and provide them with the information,

they need to strengthen their online

defenses. Researchers have established

a relationship between the popularity

and age of evasion tactics and their
efficiency, which is useful information

for antivirus software producers as well

as consumers. [5] The study's

conclusions will further the current

cybersecurity conversation by

encouraging a more knowledgeable and

proactive defense against changing

cyberthreats.

1.6. Significance of the Study

This study is important because it may

help users learn about the constantly

evolving risks posed by cyberattacks
and provide them with the information,

they need to strengthen their online

defenses. Researchers have established

a relationship between the popularity

and age of evasion tactics and their

efficiency, [16,7] which is useful

information for antivirus software

producers as well as consumers. The

study's conclusions will further the

current cybersecurity conversation by

encouraging a more knowledgeable and
proactive defense against changing

cyberthreats.

2. RELATED WORK

2.1. Literature Review

Installing antivirus software is seen as a

crucial first step in safeguarding one's

privacy on the internet. This literature

study [1] however, explores the

shortcomings of these products,

emphasizing the ease of use and

accessibility of techniques used by

hackers to get around antivirus

software. There is a significant
association between the popularity and

antiquity of evasion tools and their

effectiveness, even though modern

antivirus software that receives

frequent updates works well against

them.

 Interestingly, the study highlights

default configuration weaknesses,

showing that even the most recent
antivirus software can be tricked by

small changes to well-established

evasion strategies. The study

emphasizes the need for ongoing

watchfulness since hackers use easily

available resources to take advantage of

potential vulnerabilities. The literature's

ultimate goal is to increase user

awareness of the hazards related to

cybersecurity by advising them to stay

vigilant and knowledgeable about the

latest developments in digital threats.
Extending the research, the authors

contrasted in a later paper the efficacy

of antivirus software bypassing

techniques on the Windows operating

system with Kalogranis’ work. In order

to expand on their research, the authors

included a new antivirus bypass tool

dubbed TheFatRat [8], replicated the

tests using the tools used by Kalogranis,

and utilized a payload created with

Metasploit. Shellter and Veil-Evasion
were unable to get past security. Of the

six antivirus applications that were

employed, TheFatRat was able to

bypass one (PeCloak.py 4) [9], whereas

Avet was able to bypass five.

The research [10] chose to limit their

testing to Bitdefender after reading an

analysis of the antivirus software in

another study, which ranked

Bitdefender as one of the top options.

The target PC was able to access the

Remote Access Trojan (RAT) malware
through the use of the Apache server.

The authors examined nine different

antivirus bypass methods, taking into

account whether the antivirus program

would be able to detect RAT as well as

whether it would be able to prevent the

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

28
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

triggered Meterpreter session that RAT

activated. As a fraction of the total

number of ways for each tool, the

effectiveness of these tools was

displayed.
This paper [11] presents a new

approach to return-oriented

programming (ROP)-based code

obfuscation. The two main aspects of

ROP— automated analysis and creation

of ROP chains for a given code and the

repurposing of valid code as ROP

gadgets—pose problems to standard

malware research. The developed

program, ROPInjector, uses executable

code to patch the ROP chain and

convert shellcode to its ROP
equivalent. Experimental results on

VirusTotals show that ROPInjector can

bypass nearly every antivirus program,

demonstrating the efficacy of ROP in

obfuscating code. This study highlights

the need for improved cybersecurity

measures by highlighting the possible

threat posed by ROP in cyberattack

campaigns.

The research [12] concentrated on

malware that can change its code on the
fly to avoid detection, known as

polymorphic malware. This method

entails developing several malware

variations, each with a unique code

signature. Upon execution, the malware

randomly chooses and runs one of the

variations. Because each form of the

malware has a different code signature,

this makes it harder for antivirus

software to detect the malware.

The literature study leads to the

conclusion that, although antivirus
software is not perfect, antivirus

software bypass technologies do have

benefits and drawbacks. The

effectiveness of some antivirus

software bypassing tools varies

significantly, as has been observed.

This variation can be ascribed to a

number of factors, including research

methods, test dates, the type of malware

being bypassed, its version, the tested

antivirus software version, and even the
collection of antivirus solutions that

have been tested. Antivirus software

and anti-virus software are engaged in a

fierce competition in which the

advantages of each side might have a

substantial impact on the outcome.

As demonstrated, individual antivirus

bypassing has been researched in the

past for older antivirus versions. To the

best of the author's knowledge, no

thorough study has been done on the

use of many antivirus bypass strategies
together, nevertheless. Even while

separate strategies have been

researched and developed, it has not yet

been investigated how efficient they are

when combined. Considering the

dynamic nature of malware and

antivirus software, it is important to

explore the ways in which different

methods can be blended to get beyond

several security levels. By better

understanding antivirus software flaws,
more resilient and efficient security

measures may be created. This research

can help.

2.2. Methodology

Malware evasion refers to strategies

used to evade security system detection.

This can involve using encryption to

conceal dangerous payloads,

polymorphic code that alters its

appearance, and taking advantage of

security software flaws. Avoiding

detection frequently necessitates
constant adjustment to security

solutions' countermeasures. Malware

evasion can be on desk or in memory.

 more, so that they can avoid "Heuristic

Detection," which makes it difficult for

the program to understand the

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

29
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

instructions from antivirus software.

2.2.1 Malware Evasion On-Desk

a) Packing
Malware is packed similarly to a

compressed file, including new

instructions and a larger file size to

evade "signature-based detection."

b) Obfuscators

It obfuscates the blacklisted functions,

such as VirtualAlloc, VirtualProtect,

and more, so that they can avoid
"Heuristic Detection," which makes it

difficult for the program to understand

the instructions from antivirus software.

c) Protectors

Although it complicates the malware's

reverse engineering process, the

Protectors app [3] is a regular one that

wasn't intended for use in evasion, but

it still has its uses.

Malware Evasion In-Memory

a) Remote Process Memory

Injection

In order to apply this technique, we

require certain APIs, such as: We inject

our process or payload into a normal

process like

Antivirus Evasion

Techniques

On-Disk In-Memory

Obfuscators Packers
Protectors Cryptors

Process

Memory

Injection

Inline

Function

Hooking

Process
DLL

Hallowing
Injection

Figure 1. Types of Malware Evasion

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

30
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

Figure 3: Common APIs for Remote Process Memory Injection

Reflective DLL Injection

An injection method that dispenses with

using the conventional Windows APIs

to load DLLs in order to load a DLL

into the memory of a process. When

limitations or security safeguards

prevent the use of conventional DLL

injection techniques, this can be

helpful. The method by which

Reflective DLL Injection operates is
called manual mapping. The

fundamental idea is to execute the DLL

directly from memory by mapping it

there rather than utilizing the regular

Windows API calls. As a result, the

DLL can function without raising

security alerts or drawing attention

from antivirus programs.

b) Process hollowing

On-Desk

Cryptors Protector Obfuscators Packers

Figure 2: Showing Methods to Evade AV

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

31
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

We create a fictitious process that

consumes space, pause it, modify its

content to match our payload, and then

restart the process with his updated

instructions and content.

A technique called "inline hooking"

allows you to change a process's code

while it's still executing in memory.

Redirecting function calls from the
original code to a new location in

memory accomplishes this. Although

there are other approaches, these are the

well-known ones that are employed.

In the current digital era, cyber-attacks

are a constantly changing concern. It's

critical to stay one step ahead of

attackers who are always coming up

with new ways to get around

established defenses. This research

outlines the strategies employed by
these attackers, with a particular

emphasis on how they evade Endpoint

Detection and Response systems.

Certain malware can successfully evade

detection by employing strategies like

the usage of syscalls. These strategies

go beyond the first infiltration phase.

Attackers use sophisticated tactics like

process injection and DLL hijacking to

keep control of the system after they

have gained access. Regarding analysis,

'Dark Crystel RAT (DCrat)' is
highlighted as a leading illustration of

contemporary cyber risks. Examining

this danger in depth gives readers a

thorough grasp of the difficulties this

type of malware poses by illuminating

how it operates. This information

serves as a tool and is not merely

academic. Individuals, companies, and

organizations can better prepare and

safeguard their digital assets in an

increasingly hostile cyber environment
by being aware of these hazards.

Techniques of Malware Evasion and

Bypass

Following are the techniques used:

2.3.1. Technique 1

Defense Evasion Technique Using

Direct Sys-calls and Advanced

Evasion Methods
In order to escape AV/EDR detection,

this strategy entails creating a suite of

tools that utilize direct syscalls, evade

sandboxes, employ strong encryption,

and change procedure names. It also

describes how to circumvent security

protections and generate memory

snapshots using the well- known utility

Dumpert, which makes use of direct

syscalls [6]. Notably, Microsoft

Defender identified
Dumpert after it was created and

utilized on the disk. This discovery

prompted research into avoidance

strategies for both static and dynamic

scenarios.

It's essential to understand the specifics

of Native APIs and Windows APIs.

Applications run in user mode on

Windows. They carry out operations

using Windows APIs. Security

solutions like AV/EDR can't view

anything past the native APIs included
in ntdll.dll. Consider malicious

software that makes use of Windows

API functions like

WriteProcessMemory,

CreateRemoteThread, and

VirtualAllocEx. These APIs link to

additional ntdll.dll API activities. The

majority of the operations in ntdll.dll

are sets of instruction steps that initiate

kernel system level operations.

AV/EDR tools often connect to Native

APIs and modify the application's

route whenever it performs these

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

32
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

activities, enabling them to detect

potentially dangerous activity in the

app. EDRs load their DLLs into the
process memory at startup in order

to monitor the actions of the

application.
Defense Evasion Technique: A Two-

Part Exploration

Part 1

Using native API function names, the

syscalls are discussed in the first

section. Next, to further complicate

static analysis, the tool is enhanced with

name changes. Creating ASM/H

pairings with SysWhispers 2, which

always utilizes random function names

and determines syscalls as they change,

is one step in setting up this evading

detection technique.
his resolves the function hash into

syscalls and make the call.

The native calls show up when you use

IDA-PRO to perform a static analysis

of the implant. These calls serve as

markers of the binary's activity. With

this combination, malware researchers

may easily infer that the program is

carrying out a process injection—a

technique frequently used by malware

creators for this very goal.
The method uses three sandbox evasion

tactics in addition to encryption:

determining the RAM capacity,

determining the processing speed, and

determining the number of core

processors. The code above specifies

that 8GB of RAM is required; the

values for core processors and RAM

capacity are adjustable. The application

is meant to stop running right away if

the RAM is discovered to be less than
4GB.

Even with the use of direct syscalls,

which effectively get over most

AV/EDR solutions [13], there is still a

need to improve the implant's stealth

and resistance to analysis. AES

encryption is used to further obscure

against static analysis. Understanding

that the well-known program

msfvenom regularly generates

shellcodes that are detected by

AV/EDR systems, the shellcode was

encrypted using AES to strengthen its

tealthiness.

Part 2

To increase its stealth, the approach

incorporates random naming for

operations and functions, as was

discussed in Part 1. For this reason, both

the prototypes' names and the names of

these operations were changed.

Notably, prototypes of Native APIs are

still easily recognizable even if they are

not yet defined.

This version of the implant has function

names that are chosen at random. This

method is purposefully designed to

make static analysis more difficult for

malware experts. This foresight also

takes into consideration possible future

circumstances in which AV/EDR

systems could identify the binary using

these function names and the signatures

that go along with them [14].

The methods were tested on Windows
11 by pitting them against McAfee,

Microsoft Defender, and Kaspersky

[15]. Surprisingly, none of these

security measures were able to identify

the implant, suggesting that the static

and dynamic assessments required by

these security measures were

successfully circumvented.

The payload was integrated into

explorer.exe. The payload's presence

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

33
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

can be observed within the memory

address of explorer.exe, designated as

RWX.

AntiScan was also used to evaluate the

binary.me to assess the methods'

effectiveness in detecting things.

Remarkably, the binary escaped
detection entirely.

By using randomized procedure names,

strong encryption, sandbox evasion

techniques, and direct syscalls, it was

possible to successfully avoid

EDR/XDR detection. In the final part,

the strategy that may be used to go past

Outflank's Dumpert tool is intended to

be explained.

2.3.1.1. Bypass Dumpert Tool

(Outflank)

Outflank created an amazing program

that creates memory dumps by using

straight syscalls. But because it's open-

source, the majority of AV/EDRs have

updated their signatures to support

Dumpert. Instead of changing the

signature, a

different and more effective bypass

technique was selected, with

remarkable results. To begin with,

@TheWover's tool 'Donut' was used to
create an autonomous shellcode for

Dumpert [16] in its raw form. All it

takes to convert Dumpert.exe into raw

shellcode is a simple command.

In order to avoid Dumpert's static

analysis, in- memory execution is used.

Although Dumpert's default method for

creating memory dumps is through

direct syscalls, an injector was also

created to load Dumpert shellcode into
a remote process. The same approaches

that were previously mentioned are

incorporated into this loader.

Because direct syscalls are incorporated

into the injector to get beyond the user-

mode hooking that AV/EDRs impose,

this technique effectively gets around

AV/EDRs.

2.3.2. Technique 2

Achieving Elevated Reverse Shells

via DLL Hijacking and Mock

Directories

The goal of this approach is to obtain a

high-level privileged reverse shell by

circumventing Windows UAC security

features through the use of DLL

Hijacking and Mock directories. The

method, which security experts have

identified, uses dummy files in

conjunction with a simplified DLL

hijacking procedure to get around UAC

protections. Tests on Windows 10 were
able to successfully disable the UAC

security mechanism, raising concerns

about how resistant Windows 11 is to

similar tactics.

Escalating privileges is usually the next

step after gaining initial access, with

objectives such as hash dumping or

performing [16] privileged actions that

enable lateral movement inside a

network. Think about a domain user

who uses a PC and is also the local

administrator. In the event that this user
is compromised by an attacker, there is

an instantaneous push to elevate

privileges in order to dump hashes and

utilize that user's NTLM hashes for

network authentication. But since there

is already an elevated reverse shell in

place and a privileged connection to the

C2 server established, there is no need

for this kind of escalation. This method

will explore the principles of DLL

hijacking and identify particular
Windows binaries that are helpful in

executing this attack. The preferred

instruments comprise Metasploit for

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

34
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

constructing.

Dynamic Link Libraries, or DLLs for

short, are repositories of processes and

code that facilitate Windows programs.

Because they use the Portable

Executable (PE) file type, they are

similar to EXE files but cannot be

executed directly. In

essence, DLL hijacking enables the

insertion of malicious code into

particular apps or services. This is
accomplished by replacing the original

DLL with a malicious one, making sure

that the malicious DLL launches when

the service is turned on. Because of the

way certain Windows applications look

for and load DLLs, such a swap

becomes possible. When the DLL path

of a service is not predefined in the

system, Windows will automatically

look for it in the environment path. By

using this search pattern, attackers can
place the rogue DLL in a location that

Windows is aware of, preparing the

way for the malicious code to be

executed.

2.3.2.1. UAC – User Account

Control

Initially included in Windows Vista and

maintained in later iterations, UAC

functions as a safeguard. Elevated

rights cannot be provided to high-risk

apps unless the user confirms it.

Microsoft added "exceptions" to the
UAC framework in an attempt [17] to

improve user experience. This allowed

trusted system DLLs stored in

C:\Windows\System32\ to

automatically rise to higher privileges

without triggering a UAC question.

2.3.2.2. Mock Directories

In essence, a fake directory is a

mimicked directory that can be

identified by its trailing space.

Consider the Windows trustworthy

directory "C:\Windows\System32."
The dummy equivalent would be

"C:\Windows\System32," with the

trailing space being the main

distinction. Here, it's crucial to
emphasize that Windows Explorer

cannot be used to create mimic

directories. PowerShell or the

command prompt (cmd) must be used

for creation. It is not possible to create

"C:\Windows," however it is possible

to set up "C:\Windows \System32."

2.3.2.3. TaskManager

(taskmgr.exe)

Taskmgr.exe's integrity level was
checked throughout the study.

Taskmgr.exe is located in

"C:\Windows\System32" and loads

many DLL files when it runs. Attackers

have the chance to use the DLL

hijacking technique with this program

[18]. This procedure "autoelevates"

each DLL it introduces because of its

high integrity level by design. It is

possible to use many executables in a

DLL hijacking attack [19].

"computerdefaults.exe" is the attack
executable selected in this method.

Attackers use these binaries to increase

[20] their level of power in Windows,

enabling them to perform DLL

hijacking and change registry settings,

among other things

2.3.2.4. Exploitation

This section explores the attack's

mechanism, showing how an attacker

may bypass Windows 11's UAC
protections and acquire an

administrator shell by using DLL

hijacking and fake folders. This

method's effectiveness was verified on

Windows 11, even while Windows

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

35
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

Defender was turned on.

Steps:

1. Crafting a Malicious DLL

Constructing

2. Mock Folder and Loading the

Malicious DLL

3. Securing an Administrative

Reverse Shell

4. Launching Mimikatz

To begin, a shellcode was formulated

utilizing Msfvenom in the CSharp

format, with Metasploit serving as the

C2 server.

“Msfvenom -p

windows/x64/shell_reverse_tcp

lhost=0.0.0.0 lport=555 -f CSharp”.

Following the creation of the shellcode,

a straightforward C++ program was

developed to produce a DLL file. This
program incorporated the previously

generated shellcode.

The next step is creating a batch

program that creates fictitious folders,

copies a file to one of these fictitious

directories, and tries to load the

malicious DLL. There are a number of

ways to use Mimikatz and avoid

Windows Defender detection. On the

C2 server [6], user hashes were
collected when Mimikatz was

successfully launched. Numerous

network-wide attacks may be carried

out to authenticate users using these

NTLM hashes.

2.3.3. Technique 3:

Direct System Calls for AV/EDR

Evasion, User-Mode vs Kernel Mode

A variety of techniques are employed

by contemporary AVs and EDRs to do

both static and dynamic analysis. They
may look at a variety of signatures,

including keys, hashes, and recognized

strings, to find out if a file on disk is

dangerous.

Nevertheless, attackers have created a

wide range of obfuscation techniques,

rendering static analysis all but useless.

Dynamic/heuristic analysis is the

primary emphasis of modern EDRs,

which allows them to keep an eye on

how each process behaves on the
system and search for unusual activity.

As a result, if malicious files have been

disguised, this approach can download

them and perhaps leave the EDR

unnoticed [9]. However, as soon as the

virus is activated, the EDR will

recognize it and stop it. User-land

hooks are used by the majority of AVs,

EDRs, and sandboxes to monitor and

intercept each user-land API call. They

are unable to trace a technique that
enters kernel mode and conducts a

system call.

The fact that system call numbers differ

between OS versions and occasionally

even between service build numbers

presents a problem. Nonetheless, the

inmemory NTDLL module may be

scanned to retrieve the syscall numbers

using a library called inline syscall. The

tricky part of this is that this module

uses Windows API calls to retrieve the

syscall number. These routines will not
obtain the right number if an AV/EDR

hooks them. Using Syswhispers is one

alternate method that this blog

discusses. By creating header/ASM

files that implants can utilize to start

direct system calls, SysWhispers helps

in evasion.

2.3.3.1. SysWhispers1 vs

SysWhispers2:

Although there is no requirement to

specify which Windows versions to
support, the usage is nearly comparable

to that of SysWhispers1. Behind the

scenes, most of the changes take place.

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

36
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

It no longer uses @j00ru's syscall tables

and instead uses the @modexpblog-

popularized "sorting by system call

address" technique, which significantly

reduces the size of the syscall stubs.

The particular implementation in

SysWhispers2 is a modification of the

concept of @modexpblog. The function

name hashes are randomized with every

generation, which is one difference.

Notable is also another version that was
previewed previously by

@ElephantSe4l and is built on C++17.

Although it is still accessible, the

original SysWhispers repository could

eventually be retired.

2.3.3.2. API Hooks and Windows

Architecture

AV/EDRs use a technique called

"hooking" to intercept function calls

and direct code flow to a controlled

environment where the call's
maliciousness may be examined. It is

clear from looking at the Windows

Architecture that a library by the name

of NTDLL controls how user programs

interact with the more complex OS

operations.DLL.

The primary link between user-mode

apps and the OS is the Native API

(NTDLL.DLL). As a result, the OS

serves as the interface between all

applications. For example,

ZwWriteFile and other frequently used
Native APIs are stored in NTDLL.DLL.

Several DLLs are loaded into a

process's memory address space when

it is started. When an AV/EDR loads a

DLL, it can alter the function's

assembly instructions by adding an

unconditional jump at the start that

points to the EDR's code.

Modern operating systems use multiple

privilege levels and virtual memory to

isolate and separate running processes.

Kernel-mode and user-mode are the

two primary privilege levels recognized

by the Windows operating system.

Windows ensures that apps stay
segregated and are unable to

directly interact with system

resources or critical memory
regions by using this technique [18].

Direct access could be dangerous by

nature and could cause problems

with the system. The CPU switches
to kernel mode when a program

attempts to carry out a privileged

job. Software can enter kernel mode
thanks to syscalls, which makes it

easier to do privileged tasks like

writing files. Take the previously
described Win32 API function

WriteFile as an example. A process

invokes the user-mode WriteFile

function when it wants to write a
file.
2.3.3.3. Injecting Shellcode Via

Windows API

Standard techniques for inserting

shellcode into a process are widely

known to individuals who are

knowledgeable about malware creation.

Shellcode injection is frequently carried

out by attackers using Windows API

calls as VirtualAllocEx,
WriteProcessMemory, and

CreateRemoteThread. By using this

procedure, a section of memory is

created where the shellcode may be

written. Then a remote thread is started,

and the system waits for it to finish. A

shellcode that would be inserted into

the NOTEPAD.EXE process was

created using msfvenom. This

shellcode's goal is simple: it shows a

message box with the words "Hello,

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

37
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

From Red Team Operator."

“Msfvenompwindows/x64/messagebo

x TEXT="Hi, From Red Team

Operator" -f csharp > output.txt.

This method introduces shellcode into a

process by utilizing Windows APIs.

The purpose of the presentation is to

show that AV/EDR systems can
identify such behaviors since they have

hooks on these APIs. When memory is

allocated to a process and marked as

concurrently executable and writable,

concerns are aroused. Since the

shellcode is transcribed, executed, and

created in memory using Windows

APIs, it is obvious that AV/EDR

systems would detect and flag these

events.

2.3.3.4. Windows API Calls

This technique involves generating and

injecting shellcode into notepad.exe. To

achieve this, either the process name or

the process id is required. Thus, the

technique retrieves the pid of

notepad.exe.

2.3.3.5. Shellcode Injection

Through Syscalls

A program that writes the shellcode into

the process and allocates memory via

direct syscalls was created using the
same previously produced shellcode.

SysWhispers2, a program that

dynamically resolves syscall numbers,

was used. Due to SysWhispers1's

reliance on the Windows operating

system, SysWhispers2 was created and

put to use.

The primary operating system for this

method was Ubuntu, which posed a

problem with the ASM/Header pair

generated by SysWhispers2. There is a
separate assembly format needed for

compilation with Mingww64, and there

is a distinct assembly format for

MASM. Conor Richard deserves

recognition for reworking the current

assembly, adding support for x86

(Wow64 & Native) and NASM ASM,

and enabling compilation using

MinGW and NASM straight from the

command line. A malicious program

was created [21] that inserts the

shellcode—created by msfvenom—
into the process using direct syscalls.

This time around, all operations—

including creating memory and

inserting the shellcode into the remote

process—are carried out using direct

syscalls.

After successfully compiling and

executing, program is caught by

Windows Defender. Windows

Defender discovered this method. The

cause is that it made use of Windows
APIs, which are often observed by

antivirus and endpoint protection

programs. These security tools make it

easy to discover malicious programs

that depend on Windows API calls to

carry out such acts because they have

hooks on user-land APIs.

Windows Defender discovered this

method. The cause is that it made use of

Windows APIs, which are often

observed by antivirus and endpoint

protection programs. These security
tools may easily identify malicious

applications that rely on Windows API

calls to carry out such acts since they

have hooks on user-land APIs.

Once the malware was successfully

compiled, it was possible to avoid both

static and dynamic detection by running

the malware in the presence of

Windows Defender. Within the project,

this method used function names and

random variables.
In the past, unsigned char shellcode was

used for initialization while creating

malware []. Windows Defender was

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

38
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

able to identify the infection as a result.

The virus was identified by MDE as

soon as it came into contact with the

disk, even though it had encrypted the

shellcode and masked API calls.

Further analysis revealed that the

detection was caused by the term

ShellCode. As a result, it has been noted

that antivirus software occasionally

raises a warning based on these

patterns. The virus dynamically
modifies its variable and function

names in order to thwart this and

modify the static signature.

This time, Windows Defender did

not detect the malware, as direct
syscalls were employed. By

leveraging [23] direct syscalls, it's

possible to evade AV/EDR user-
land hooking mechanisms.
This time, not a single antivirus

program detected the malware once it

was uploaded to AntiScan.me. The

outcomes might be explained by the

malware's anti-sandbox methods,

which include examining CPU speed,

RAM capacity, and processor count, or

by the usage of direct syscalls.

However, the virus was able to

effectively avoid both static and

dynamic analysis when tested against
several AV/EDR solutions.

3. RESULTS

Significant new insights into the

dynamic landscape of malware evasion

and bypass tactics are provided by the

research, which also highlights the

continual innovation of measures that

undermine the effectiveness of

conventional antivirus software.

Notably, the study emphasizes the

necessity for creative defensive

strategies by highlighting the
shortcomings of antivirus software.

Testing contemporary antivirus

software demonstrates its strong

resilience to common evasion

approaches, but the research also

identifies flaws resulting from minute

changes to tried and-true tactics. The

methodology thoroughly examines in-

memory and on-desk evasion strategies,

describing methods including packing,

obfuscation, and reflection DLL

injection. Advanced evasion techniques
demonstrate the versatility of malware

creators in avoiding detection. One

such technique is defensive evasion via

direct system calls. The effectiveness of

combining encryption, random naming,

and sandbox evasion to successfully

evade AV/EDR systems is

demonstrated by the results of

particular evasion approaches. The

research also looks at DLL hijacking

and fake directories, which may be used
to elevate reverse shells and cause

issues with Windows UAC protection.

Methods for AV/EDR evasion via

direct system calls are shown, along

with an overview of tools such as

SysWhispers2 and the difficulties

presented by contemporary security

technologies. The study advocates for

proactive defensive tactics and ongoing

awareness in order to improve cyber

resilience in the face of constantly

changing cyber threats.

4. CONCLUSION
Proactive defense and awareness are

crucial in the face of constantly

changing cyberthreats. This study

highlights the need for a comprehensive

and constantly evolving strategy

towards cybersecurity through its

discussion of inventive methods and

procedures. Conventional defenses still

have their place, but ongoing learning

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

39
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

and adaptation are also necessary. This

research seeks to provide people and

organizations with the knowledge

necessary to strengthen their digital

defenses through its thorough

examination. Let this research serve as

a light for improved cyber resilience as

we traverse this digital age.

5. REFERENCES

[1] D. Samociuk, “Antivirus Evasions
Methods in Modern Operating

Systems,” Applied Sciences, vol. 13,

no. 8, pp. 5083, 2023.

[2] D. Waterson, “Managing Endpoints,

the Weakest Link in the Security

Chain,” Network Security, vol. 2020,

no. 8, pp. 9-13, 2020.

[3] S. Choi, T. Chang, S. Yoon, and Y.

Park, “Hybrid Emulation for Bypassing

Anti-Reversing Techniques and

Analyzing Malware,” The Journal of
Supercomputing, vol. 77, no. 1, pp.

471-497, 2021.

[4] S. Gold, “Advanced Evasion

Techniques,” Network Security, vol.

2011, no. 1, pp. 16–19, 2011.

[5] D. Li, S. Cui, Y. Li, J. Xu, F. Xiao,

and S. Xu, “PAD: Towards Principled

Adversarial Malware Detection

Against Evasion Attacks,” IEEE

Transactions on Dependable and

Secure Computing, vol. 1, pp. 1-16,

2023.
[6] A. Monika and R. Eswari,

“Prevention of Hidden Information

Security Attacks by Neutralizing Stego-

Malware,” Computers and Electrical

Engineering, vol. 101, pp. 79-90, 2022.

[7] J. Cabrera-Arteaga, M. Monperrus,

T. Toady, and B. Baudry,

“WebAssembly Diversification for

Malware Evasion,” Computers &

Security, vol. 131, pp. 32-43, 2023.

[8] R. S. Kunwar, “Malware Analysis
of Backdoor Creator: FATRAT,”

International Journal of CyberSecurity

and Digital Forensics, vol. 7, no. 1, pp.

72-79, 2018.

[9] “Evading Scanners,” The Antivirus

Hacker’s Handbook, Wiley, pp. 133-

164, 2015.

[10] F. A. Garba, F. U. Yarima, K. I.

Kunya, F. U. Abdullahi, A. A. Bello, A.

Abba, and A. L. Musa, “Evaluating
Antivirus Evasion Tools Against

Bitdefender Antivirus,” Proceedings of

the International Conference on

FINTECH Opportunities and

Challenges, vol. 18, Karachi, Pakistan,

2021.

[11] C. Ntantogian, G. Poulios, G.

Karopoulos, and C. Xenakis,

“Transforming Malicious Code to ROP

Gadgets for Antivirus Evasion,” IET

Information Security, vol. 13, no. 6, pp.
570-578, 2019.

[12] M. Christodorescu and S. Jha,

“Static Analysis of Executables to

Detect Malicious Patterns,” 12th

USENIX Security Symposium

(USENIX Security 03), 2003.

[13] D. Waterson, “Managing

Endpoints, the Weakest Link in the

Security Chain,” Network Security, vol.

2020, no. 8, pp. 9-13, 2020.

[14] H. Anand, N. Kumar, and S. K.

Shukla, “Adversaries Strike Hard:
Adversarial Attacks Against Malware

Classifiers Using Dynamic API Calls as

Features,” Electronics, pp. 20-37. 2021.

[15] M. Noor, H. Abbas, and W. B.

Shahid, “Countering Cyber Threats for

Industrial Applications: An Automated

Approach for Malware Evasion

Detection and Analysis,” Journal of

Network and Computer Applications,

vol. 103, pp. 249-261, 2018.

[16] M. A. Titov, A. G. Ivanov, and G.
K. Moskatov, “An Adaptive Approach

to Designing Antivirus Systems,”

Safety of Computer Control Systems

Advanced Techniques of Malware Evasion and Bypass in the Age of Antivirus

40
Int. J. Elect. Crime Investigation 8(3): IJECI MS.ID- 02 (2024)

1992 (Safecomp’ 92), pp. 215-220,

Elsevier, 1992.

[17] A. Sharma, B. B. Gupta, A. K.

Singh, and V. K. Saraswat,

“Orchestration of APT Malware

Evasive Maneuvers Employed for

Eluding Antivirus and Sandbox

Defense,” Computers & Security, vol.

115, pp. 10-28, 2022.

[18] H. Liu, W. Sun, N. Niu, and B.

Wang, “MultiEvasion: Evasion Attacks
Against Multiple Malware Detectors,”

2022 IEEE Conference on

Communications and Network Security

(CNS), pp. 10-18, IEEE, 2022.

[19] J. Chen, C. Yuan, J. Li, D. Tian, R.

Ma, and X. Jia, “ELAMD: An

Ensemble Learning Framework for

Adversarial Malware Defense,”

Journal of Information Security and

Applications, vol. 75, pp. 103-114,

2023.
[20] T. Tsafrir, A. Cohen, E. Nir, and N.

Nissim, “Efficient Feature Extraction

Methodologies for Unknown MP4

Malware Detection Using Machine

Learning Algorithms,” Expert Systems

with Applications, vol. 219, pp. 119-

127, 2023.

[21] U. Ahmed, J. C. Lin, and G.

Srivastava, “Mitigating Adversarial

Evasion Attacks of Ransomware Using

Ensemble Learning,” Computers and

Electrical Engineering, vol. 100, pp.
107-119, 2022.

	1. INTRODUCTION
	1.1. Opening Section
	1.2. Background of the Research
	1.3. Statement of the Problem
	1.4. Rationale
	1.5. Scope of the Study
	1.6. Significance of the Study

	2. Related Work
	2.1. Literature Review
	2.2. Methodology
	2.2.1 Malware Evasion On-Desk
	Malware Evasion In-Memory
	Techniques of Malware Evasion and Bypass
	2.3.1. Technique 1
	2.3.2. Technique 2
	2.3.2.1. UAC – User Account Control
	2.3.2.2. Mock Directories
	2.3.2.3. TaskManager (taskmgr.exe)
	2.3.2.4. Exploitation
	2.3.3.1. SysWhispers1 vs SysWhispers2:

	3. Results
	4. Conclusion
	5. References

