
A Tri-Character guided exact String-matching Algorithm for Efficient str detection In

Forensic DNA Analysis

Int. J. Elect. Crime Investigation 9(1): IJECI MS.ID- 09 (2025) 135

A Tri-Character guided exact String-matching Algorithm for

Efficient str detection In Forensic DNA Analysis

1 Syed Faizan Ali Shah, 2Amna Asif Lodhi, 3Khawar Maqsood

13Mohi ud din Islamic University Nerian Sharif AJ&K, Trarkhal, Pakistan,

2Riphah International University Sahiwal, Pakistan,

Corresponding Author: faizan.ali@miu.edu.pk

Received: June 17,2025; Accepted: June 29,2025; Published: June 30,2025

ABSTRACT

The importance of string-matching algorithms in the world of modern DNA forensic

technology cannot be over-stated. Short Tandem Repeats (STRs) play an important role

in forensic DNA analysis due to their high variability among individuals. Fast and

accurate detection of STRs in large-scale genomic data is most important for criminal

investigations, identity verification, and population studies. This study introduces a novel

exact string-matching algorithm, the Tri-Scan for Left, Right, and Middle Character

(TSLRMC) approach, tailored for efficient pattern detection in forensic DNA sequences.

This research addresses limitations found in some famous and widely used exact string-

matching algorithms. Proposed algorithm improves the running time for scanning pattern

string in a long text string. The novelty of the proposed algorithm is to optimize the

scanning by scanning the pattern string left, right and middle characters in the long DNA

sequence string and then scanning the remaining characters of the pattern string in that

partial text window where the pattern string’s left, right and middle characters are found.

The proposed algorithm shows significant improvement compared with the most popular

exact string-matching algorithms, based on running time as well as number of characters

compared. Time complexity of this proposed novel TSLRMC algorithm is O (n-m) in

worst case, O (mn) in average case and O (1) in best case.

Keywords: TSLMC (Text scan for left right and middle character), T(Text), P(Pattern),

STR (Short Tandem Repeat)

ISSN: 2522-3429 (Print)

ISSN: 2616-6003 (Online)

International Journal for
Electronic Crime Investigation

DOI: https://doi.org/10.54692/ijeci.2025.0901/251

Research Article

Vol. 9 issue 1 Jan-Jun 2025

A Tri-Character guided exact String-matching Algorithm for Efficient str detection In

Forensic DNA Analysis

Int. J. Elect. Crime Investigation 9(1): IJECI MS.ID- 09 (2025) 136

1. INTRODUCTION

DNA forensics depends a lot on being

able to correctly identify Short Tandem

Repeats (STRs), which are specific

repeating patterns of 2 to 6 base pairs in

genomic DNA. Because these STRs are

highly polymorphic, they are useful for

identifying people, especially in

criminal investigations and legal cases.

As genomic data grows and the need for

quick analysis grows, it is becoming

more and more important to have

efficient algorithms for finding patterns

in DNA sequences. Traditional

sequence alignment tools like BLAST

and BWA, although accurate, often

suffer from computational inefficiency

when processing huge genomic

datasets. In this context, exact string

matching algorithms play a vital role by

enabling rapid and precise matching of

nucleotide sequences. Their application

in locating and comparing STR regions

within vast DNA sequences is crucial

for minimizing time and computational

resources in forensic workflows.

Therefore, developing optimized string

matching algorithms tailored for DNA

forensic applications — like the

proposed Tri-Character Based

Matching Algorithm — is of critical

importance. Collected data often

consists of letters and numbers

presented in a format accessible to

human readers. When we talk about the

string of characters we mostly think as

lines of English letters that humans can

understand and read. Computers store

alphanumeric characters as numerical

values, not as human-readable text. In

most programming languages, such as

C and Java, character data types are

internally treated as numeric values.

Identifying a specific pattern within a

lengthy text string, potentially

comprising billions of characters, is a

complex task for the human brain.

Therefore, specialized computer

algorithms are developed to perform

such operations with high speed and

precision.

The importance of string matching

algorithms to the world of modern

technology cannot be overstated. Like

molecular biology, text processing, web

search, image processing, and network

intrusion detection [1]. Some other

important applications are the

categorization of diseases, survival rate

prediction for a patient who has specific

diseases, verification of fingerprints,

detection of a face, iris discrimination,

chromosomes shape discrimination,

optical character recognition[2]. String

matching algorithm is the most studied

subject in the wider category of text

processing[3]. Normally, pattern or

string matching algorithms are

categorized into two broader types,

approximate and exact string matching

algorithm [4].

Exact string matching algorithm

problem generally formalized as

follows.

∑ = Finite set of alphabet

T= String of text from ∑ where |T|=n

P= Pattern string derived from ∑ where

|P|=m

There are many applications of exact

string matching like molecular biology,

text processing, web search, image

processing, and network intrusion

detection.

A Tri-Character guided exact String-matching Algorithm for Efficient str detection In

Forensic DNA Analysis

Int. J. Elect. Crime Investigation 9(1): IJECI MS.ID- 09 (2025) 137

The primary objective of the string

searching algorithm is to find

existences of P (pattern string) in T (text

string).length of pattern is m generally

known as pattern P, where n length of

text represented as T[5]. Below is fig

show overview of exact string matching

algorithm’s hierarchy

The simplest algorithm used for pattern

matching or we can say string searching

is a brute force algorithm which is also

called the Naive algorithm [6].this

algorithm is the simplest one and the

working idea is it compare string and

pattern with shifting sliding window on

character and compare pattern again.

The brute force algorithm has O

(nm) time complexity in all cases (best

case, worst case, average case).

Knuth Morris Pratt algorithm

developed by D.E. Knuth, with J.H.

Morris and V.R. Pratt. This algorithm is

also scanning pattern in a string from

left to right, but its importance and

improvement is shifting of text sliding

window.it shifts the text sliding

window based on the previous track of

comparison if a mismatch occurred.

This algorithm works in two phases one

is preprocessing and final and the

second is searching [7]. The time

complexity for the preprocessing phase

is O (m) and the searching phase is O

(nm)

Figure 1: General description of exact string matching algorithm

A Tri-Character guided exact String-matching Algorithm for Efficient str detection In

Forensic DNA Analysis

Int. J. Elect. Crime Investigation 9(1): IJECI MS.ID- 09 (2025) 138

Boyer Moore algorithm is best and

taken as a base for all researchers[8].

Single pattern algorithms are the best

tackle with Boyer Moore. This

algorithm works a little differently from

other algorithms discussed above. This

algorithm starts scanning from right to

left for pattern scanning. If a mismatch

occurs BM builds two heuristics one is

a bad character and the second is called

good suffix heuristic. Preprocessing

phase time and space complexity is O

(m+|∑|) worst and best cases for

searching is O (nm) and O (n/m)

respectively

The Quick Search algorithm is a

simplified variant of the Boyer-Moore

algorithm that focuses solely on the bad

character heuristic to achieve efficient

pattern matching. Quicksort algorithm

also has two phases preprocessing and

scanning. Time complexity for the

reprocessing phase is O (m+ 𝜎). It’s an

important factor is the quadratic worst

case for the searching phase.

Robin karp algorithm is another well-

known string matching algorithm. Its

key factor is using of hash function to

search pattern string (m) in long text

string (n) if hash value of both string are

same then it compare again and if hash

value is not matched then pattern string

will shift to right which will affect the

performance of Robin karp

algorithm[9]. Computing of hash value

for pattern and long text string is one of

the main drawbacks of this algorithm.

2. RELATED WORK

Now a days string matching algorithms

are one of the most studied and

important field in computer

science[10]. Recent advances in DNA

sequencing have necessitated the

development of highly efficient string

matching algorithms tailored for

forensic applications. Traditional

sequence alignment tools like BLAST

and BWA are effective but

computationally intensive when

applied to large-scale forensic

datasets,[11] [12].The Brute force

algorithm is also called Naive algorithm

[6] and is the simplest algorithm for

exact string matching. All positions in a

text from 0 to nm are parsed. Cycle

through all the chains whether they find

a pattern or not. The time complexity of

the brute force algorithm is O (mn) in

the worst case and is linear in practice

[13]. KMP exact string matching

algorithm is derived somehow from

brute force algorithm. Important factor

is that it keeps track of previous

matches found in string against pattern

until mismatch occur because shifts of

pattern on sliding text window depends

on these previous matches[13].Time

complexity for preprocessing phase is

O (m) and O (nm) for searching

phase.BM algorithm improve two

factors, time taken for execution and

number of shifts taken in whole process

of string matching very efficiently. This

algorithm ranked as most efficient one

in this field of exact pattern

matching[14], [15] Main factor of this

algorithm is that it start from right of the

pattern string to left and generate bad

character heuristic. Rabin-Karp

algorithm uses hash function to find

pattern[9] .Its best and efficient

applications are plagiarism detection,

segment concerning DNA chain. The

complexity of in worst case is O ((n-m

+ 1) m) to O (nm + 1)[16].

Berry Ravindran algorithm performs

A Tri-Character guided exact String-matching Algorithm for Efficient str detection In

Forensic DNA Analysis

Int. J. Elect. Crime Investigation 9(1): IJECI MS.ID- 09 (2025) 139

shifts by considering the bad-character

shift for two successive characters to

the right of the partial text window. The

analysis phase of Berry Ravindran’s

algorithm takes O (nm) time. Therefore,

O (nm) is the worst execution time of

the BR algorithm. O (n / m + 2) is the

best execution time of the BR

algorithm. The exact string matching

problem is one of the most studied

problems in computer science [11].

Raita developed an exact pattern

matching algorithm named as Raita

[17]. Raita algorithm first compares the

last pattern's character, then the first and

finally the middle character with the

selected text window. If three

characters are matched, then start

comparing the other characters of the

pattern. Raita algorithm performs the

shifts like the BM Horspool algorithm.

Raita has the same preprocessing phase

as Boyer-Moore Horspool Bad

character function and takes O(m+|Σ|)

time before searching. O (|Σ|) extra

space is required to compute

preprocessing phase as Horpool BM

algorithm. The principle factor of BM

algorithms to traverse pattern character

in long text string from left to right.[14]

Pattern matching algorithms means to

pores raw data[15]. Today

technological development creates

huge bulk of raw data which needs to be

processed and fetch information from

them. Traditional algorithms like Naive

and KMP are simple but can be

inefficient or require extra memory.

Boyer-Moore and Horspool offer better

performance using heuristic shifts but

perform poorly with small alphabets

like DNA. Rabin-Karp is good for

multiple patterns but suffers from hash

collisions. The proposed TSLRMC

algorithm reduces unnecessary

comparisons by scanning key

characters, making it faster and more

efficient for exact DNA pattern

matching.

3. PROPOSED SOLUTION

3.1. Aims And Objectives

The goal of this research work is to

study existing exact string-matching

algorithms and subsequently to design

an efficient exact string-matching

algorithm to improve data searching.

Many exact string-matching algorithms

focus on the number of character counts

and running time to find pattern string

in long text string. Keeping these

factors in mind the specific objective of

the study is to propose an algorithm that

reduces time and the number of

character counts. Some limitations are

found in existing string-matching

algorithm like most basic Not So Naïve,

Information gained about text for one

value of shift is entirely ignored in

considering other value. And in KMP

algorithm Time wasted because of

prefix function. Mostly used and well-

known algorithms, Boyer-Moore and

BM Horspool are less effective when

applied to binary strings and short

pattern lengths due to limited shift

opportunities. Rabin Karp takes more

time to compare pattern string in long

text string.

The proposed algorithm will be used to

obtain comprehensive simulation

results for comparison of its

computational performance with

existing exact string matching

algorithms. Proposed algorithm give

improved running time but somehow

number of shifts taken for sliding text

A Tri-Character guided exact String-matching Algorithm for Efficient str detection In

Forensic DNA Analysis

Int. J. Elect. Crime Investigation 9(1): IJECI MS.ID- 09 (2025) 140

window are not so good of long pattern

string. This limitation could be

overcome in future work.

3.2. Data sets

In this study, sequence of DNA is used

to test and evaluate the results of our

proposed algorithm (TSLRM) as well

as to evaluate performance compared

with other exact string matching

algorithms. The research presented in

this dissertation is based on the

experimental approach for

understanding exact string matching

algorithms and its working pattern. The

static file containing billions of DNA

sequence string used for testing of

algorithm and on the same file other

previously developed algorithms also

test on the same file as data set. This file

is prepared by generating paragraphs

from the NCBI along with

synthetically generated nucleotide

sequences. Pattern string from this text

statically collected with varying length

of 6, 12,18,24,30 and 45.

4. PROPOSED TEXT SCAN FOR

LEFT RIGHT AND MIDDLE

CHARACTER ALGORITHM

(TSLRMC)

Text Scan for pattern string First, last

and middle Characters exact pattern

matching algorithm compares a given

pattern from both sides simultaneously.

It did not require the whole pattern to be

searched if a mismatch occurs. In case

if pattern string left character or left and

rightmost character of pattern string

does not match then the whole pattern

could not need to be scanned. If both

characters are found, then look for the

middle character at the same time. If it

matches in text string, then compare the

remaining pattern string character

within the selected partial text window.

If a mismatch occurs, then shift the

pattern to one index forward.

TSPLFMC has two cases when

scanning the pattern last, first and

middle characters in the text string in

preprocessing phase or scanning phase.

Below figure explains general work.

This algorithm finds pattern left and

right character then selects that string as

a partial text window which is also

known as a sliding text window. This

algorithm also starts from left to right.

Like other algorithms the proposed

algorithm also start working from left to

right. First step is to scan left character

of pattern P [0, 1 . . . M-1] in text string

T [0, 1. . . . N-1]. If the character is

found in the string, then an important

step that improves the efficiency of the

proposed algorithm is search pattern M-

1 character in text string at (m-1) from

the character where the pattern left

character found if right character not

found then left found character shift one

step next in a text string. if the string has

this character and this character must be

the same distance from found left

character of pattern in a string as the

length of the pattern then move sliding

text window where left character found

and right charter at pattern length. The

below figure shows this process.

These cases are occurred in scanning of

pattern string in text string. If first P[0]

is not found in the T[i+1…n-1.] if P[0]

found at T[i+1…n-1] but P[m-1] not

found at T[i’’], and

A Tri-Character guided exact String-matching Algorithm for Efficient str detection In

Forensic DNA Analysis

Int. J. Elect. Crime Investigation 9(1): IJECI MS.ID- 09 (2025) 141

Figure 2: general working of sampling based algorithm

Figure 3 selection of sliding text window

P[0] found at T[i’] and P[m-1] =

T[i’’] but P[m/2] ≠ T[i’’’]. In this case,

TSPLRMC continues scanning for the

appropriate text window. If fail to find

an appropriate window then takes a

maximum shift and not only the

scanning in the T[i+1…n-1] but also

searching of P in T is also completed.

Scanning phase search T[7…24] and

did not find P[6] at any location as a

result searching of pattern P in the Text

T is completed and TSPLRMC is

A Tri-Character guided exact String-matching Algorithm for Efficient str detection In

Forensic DNA Analysis

Int. J. Elect. Crime Investigation 9(1): IJECI MS.ID- 09 (2025) 142

exited.

The 2nd possibility in Figure 3.2;

describes that when a mismatch occurs

between P[4] and T[4] then the

scanning phase called. Scanning phase

found P[6] at T[13] but P[0] not found

at T[7]. TSPLFMC continues scanning

the text string until a combination of

P[m-1], P[0]and P[m/2] found at T[i’],

T[i’’] and T[i’’’] or scanning text string

for pattern last, first and middle

characters completed.

Third possibility when describe in

Figure 5.2; that P[6] = T[13] and P[0]

= T[7] but P[3] ≠ T[10] in this cases it

continues scanning until a text window

is found who’s last, first and middle

character are equal to pattern first, last

and middle characters.

The new text window in the text

string is only selected when P[m-1] =

T[i’], P[0]=T[i’’] and P[m/2] =

T[i’’’]. Preprocessing (Scanning) phase

looks for P[0] at T[i’’] only when P[m-

1] = T[i’] and when P[0] = T[i’] and

P[m-1] = T[i’’] then look for P[m/2] at

T[i’’’] otherwise continue scanning text

for P[m-1].

4.1. TSLRMC Algorithm Pseudo

Below complete pseudo code of

proposed algorithm including finding

of partial text window and searching of

pattern string in selected PTW is

described.

SearchingPat (T, P)

N length (T)

M length (P)

For i 0 to length (N-

M+1)

If T[i]==P[0] and T[i+M-

1]==P[M-1] and T[i+M/2]==P[M/2]

 k=1

 j=1

 t=1

 While j < t +M-1:

 If T[j] ≠ p[k]

 Exit from loop

 J+=1

 k+=1

 m+=1

If m = M

The static file containing billions of

English words used for testing of

algorithm and on the same file other

previously developed algorithms also

test on the same file as data set. Text

analysis of the characters on the left,

right and middle of a real string

algorithm compares the string to a

given pattern simultaneously on each

page. It was not necessary to examine

the general trend of the imbalance. In

case if pattern string left character or

left and rightmost character of pattern

string does not match then the whole

pattern has no need to be scanned. If

both characters are found, then look for

the middle character at the same time. If

it is matched in text string, then

compare the remaining pattern string

character within the selected partial text

window. If a mismatch occurs, then

shift the pattern to one index forward.

5. EXPERIMENTAL ANALYSIS

Like other algorithms the proposed

algorithm also starts working from left

to right. First step is to scan the left

character of the pattern P [0, 1 . . . M-1]

in long text string T [0, 1. . . . N-1]. If

the character found in the string, then an

important step that improves the

efficiency of the proposed algorithm is

A Tri-Character guided exact String-matching Algorithm for Efficient str detection In

Forensic DNA Analysis

Int. J. Elect. Crime Investigation 9(1): IJECI MS.ID- 09 (2025) 143

to search for pattern M-1 character in

text string at (m-1) from the character

where pattern left character found in

text string. If the right character does

not find, then left found character shift

one index next in that text string. If the

string has this character and this

character must be the same distance

from found left character of pattern in a

string as the length of the pattern, then

move sliding text window where left

and right charter of pattern find these

characters. Then at the same time find

middle character. If these conditions

matched the proposed algorithm

traversed in that partial text window to

find complete sequence.

TSLRMC exact string matching

algorithm takes remarkably less time to

compare pattern string P in long text

string. Below table show statistical

calculation of proposed TSLRM

algorithm and some important and well

known algorithms used as base to the

field of exact string matching

algorithm.

 A text string of length ten

million (10,000,000) characters is

selected for the experiment of different

exact pattern matching algorithms.

Same text file tested on different length

of pattern like 6, 12,18,24,30 and 45.

The experiments calculate the total time

or simply running time to find

characters all the existences of pattern

P in text T.

Table 1: Running time base comparison of TSLRMC algorithm with other exact

string matching algorithms for different length of pattern string

A Tri-Character guided exact String-matching Algorithm for Efficient str detection In

Forensic DNA Analysis

Int. J. Elect. Crime Investigation 9(1): IJECI MS.ID- 09 (2025) 144

This table shows clearly proposed

algorithm improves running time

effectively. Below chart represent

graphical calculation and describes

different behaviors for different length

of pattern strings.

This chapter presents experiments and

results of the research work and

TSLRMC exact string matching

algorithms with existing pattern

matching algorithms as Naivee, Not So

Naive, BM, BM Horspool, KMP and

BM. Text Scan for

Pattern left, right and middle characters

is compared using character compared

base and running in seconds.

Comparisons with existing algorithms

in different sections and the results are

shown by using tables and graphs.

Clearly above results show studied

novel algorithms improved the results

than existing algorithms and these are

the algorithms taken as base for these

research area and BM is considered as

most used and important algorithm.

Average running time for TSLRMC is

4.860881 whereas for Notsonaive,

Naive, Boyer Moore, BM Horspool,

Robin Karp and KMP is 23.07797,

8.446011, 7.433451, 7.266468,

21.43852, 7.506574.

Figure 4: Running time base comparison of TSLRMC algorithm with some of the

most well-known exact string matching algorithm for different length of pattern

string

0

5

10

15

20

25

30

6 12 18 24 30 45

R
u

n
n

in
g
 t

im
e

Pattern length

Notsonaiv

Naive

BM

Horspool

Robin Karp

KMP

TSPLRMC

A Tri-Character guided exact String-matching Algorithm for Efficient str detection In

Forensic DNA Analysis

Int. J. Elect. Crime Investigation 9(1): IJECI MS.ID- 09 (2025) 145

Figure 5: Average running time of proposed TSPLRMC algorithm compared with

other exact string matching algorithms

As in Figure 4 shows that TSLRMC

exact string matching algorithm takes

less time to compare pattern string in

long text string than the all other

discussed algorithm.

6. CONCLUSION

The proposed TSLRMC algorithm

holds strong potential for real-world

applications, particularly in forensic

STR profiling, where rapid and

accurate identification of short tandem

repeats in DNA sequences is crucial for

criminal investigations, paternity

testing, and identity verification. Its

efficient pattern-matching approach

makes it well-suited for integration into

forensic DNA analysis pipelines that

handle large-scale genomic databases.

Study shows TSLRMC exact string-

matching algorithm used three pointers

simultaneously to generate sliding text

window of pattern P[0…m-1] with the

text T[i-m…i]. TSLRMC exact pattern

matching algorithm scans pattern last,

first and middle characters in the text to

select PTW. If left, right and middle

characters are found at appropriate

position in the text string then pattern is

aligned with them, and new text

window is selected which is PTW for

remaining string of pattern. Otherwise

continue scanning text for pattern left,

right and middle characters. The time-

complexity is O (n-m) in the worst case,

O (km) in the average case and O (1) in

the best case.

Text characters are consisting of

billions of static English alphabets.

Pattern characters are also static

sentences collected from same text

string. Experiments were conducted on

the file size of 10 million characters

with different pattern sizes (6, 12, 18,

23.07797

8.446011

7.433451
7.266468

21.43852

7.506574

4.860881

Average running time

Notsonaiv Naive BM Horspool Robin Karp KMP TSPLRMC

A Tri-Character guided exact String-matching Algorithm for Efficient str detection In

Forensic DNA Analysis

Int. J. Elect. Crime Investigation 9(1): IJECI MS.ID- 09 (2025) 146

24, 30, and 45). Experimental results

show that TSLRMC exact string-

matching algorithms are quite efficient

than the existing algorithms

For future work, TSLRMC could be

extended with multithreading

capabilities to improve runtime

performance on large datasets further.

Additionally, we aim to optimize the

algorithm for binary string inputs and

explore its adaptableness for

approximate string matching scenarios,

which are common in noisy or error-

prone DNA sequencing data.

7. REFERENCES

[1] S. Hakak, A. Kamsin, P.

Shivakumara, M. Y. I. Idris, and G.

A. Gilkar, “A new split based

searching for exact pattern

matching for natural texts,” PLoS

One, vol. 13, no. 7, p. e0200912,

Jul. 2018.

[2] S. Elie, “An overview of Pattern

Recognition,” Apr. 2013.

[3] C. Charras and T. Lecroq,

Handbook of Exact String-

Matching Algorithms, p. 221.

[4] L. H. Keng, “Approximate String

Matching With Dynamic

Programming and Suffix Trees,” p.

102.

[5] A. Karcioglu and H. Bulut, “q-

frame hash comparison based exact

string matching algorithms for

DNA sequences,” Concurrency

and Computation: Practice and

Experience, vol. n/a, no. n/a, p.

e6505.

[6] Mohammad, O. Saleh, and R. A.

Abdeen, “Occurrences Algorithm

for String Searching Based on

Brute-force Algorithm,” Journal of

Computer Science, vol. 2, no. 1,

pp. 82–85, Jan. 2006.

[7] R. Rahim, I. Zulkarnain, and H.

Jaya, “A review: search

visualization with Knuth Morris

Pratt algorithm,” IOP Conference

Series: Materials Science and

Engineering, vol. 237, p. 012026,

Sep. 2017.

[8] K. Al-Khamaiseh and S.

ALShagarin, “A Survey of String

Matching Algorithms,” vol. 4, no.

7, p. 13, 2014.

[9] Leonardo and S. Hansun, “Text

Documents Plagiarism Detection

using Rabin-Karp and Jaro-

Winkler Distance Algorithms,”

Indonesian Journal of Electrical

Engineering and Computer

Science, vol. 5, no. 2, p. 462, Feb.

2017.

[10] Z. Zhang, “Review on String-

Matching Algorithm,” SHS Web

of Conferences, vol. 144, p. 03018,

2022.

[11] S. F. Altschul, W. Gish, W. Miller,

E. W. Myers, and D. J. Lipman,

“Basic local alignment search

tool,” Journal of Molecular

Biology, vol. 215, no. 3, pp. 403–

410, Oct. 1990.

[12] H. Li and R. Durbin, “Fast and

accurate short read alignment with

Burrows–Wheeler transform,”

Bioinformatics, vol. 25, no. 14, pp.

1754–1760, Jul. 2009.

[13] M. Crochemore and T. Lecroq,

“Pattern matching and text

compression algorithms,” p. 66.

[14] “An improved algorithm for boyer-

moore string matching in chinese

information processing,” in Proc.

2011 Int. Conf. Computer Science

and Service System (CSSS),

Nanjing, China: IEEE, Jun. 2011,

pp. 182–184.

[15] Obeidat and M. AlZubi,

“Developing a faster pattern

A Tri-Character guided exact String-matching Algorithm for Efficient str detection In

Forensic DNA Analysis

Int. J. Elect. Crime Investigation 9(1): IJECI MS.ID- 09 (2025) 147

matching algorithms for intrusion

detection system,” International

Journal of Computer, pp. 278–284,

Sep. 2019.

[16] Aziz, S. Shoaib, K. S. Khurshid, T.

Ahmad, and M. Awais,

“Performance evaluation of DNA

pattern matching algorithms,”

Pakistan Journal of Science, vol.

74, no. 3, pp. 169–175, Sep. 2022.

[17] T. Raita, “Tuning the boyer-

moore-horspool string searching

algorithm,” Software: Practice and

Experience, vol. 22, no. 10, pp.

879–884, 1992.

